fractorium/Source/EmberCL/EmberCLFunctions.h
Person 1dfbd4eff2 --User changes
-Add new preset dimensions to the right click menu of the width and height fields in the editor.
-Change QSS stylesheets to properly handle tabs.
-Make tabs rectangular by default. For some reason, they had always been triangular.

--Bug fixes
 -Incremental rendering times in the editor were wrong.

--Code changes
 -Migrate to Qt6. There is probably more work to be done here.
-Migrate to VS2022.
-Migrate to Wix 4 installer.
-Change installer to install to program files for all users.
-Fix many VS2022 code analysis warnings.
-No longer use byte typedef, because std::byte is now a type. Revert all back to unsigned char.
-Upgrade OpenCL headers to version 3.0 and keep locally now rather than trying to look for system files.
-No longer link to Nvidia or AMD specific OpenCL libraries. Use the generic installer located at OCL_ROOT too.
-Add the ability to change OpenCL grid dimensions. This was attempted for investigating possible performance improvments, but made no difference.

This has not been verified on Linux or Mac yet.
2023-04-25 17:59:54 -06:00

275 lines
7.9 KiB
C++

#pragma once
#include "EmberCLPch.h"
#include "EmberCLStructs.h"
#define USEFMA 1
/// <summary>
/// OpenCL global function strings.
/// </summary>
namespace EmberCLns
{
/// <summary>
/// OpenCL equivalent of Palette::RgbToHsv().
/// </summary>
static constexpr char RgbToHsvFunctionString[] =
//rgb 0 - 1,
//h 0 - 6, s 0 - 1, v 0 - 1
"static inline void RgbToHsv(real4_bucket* rgb, real4_bucket* hsv)\n"
"{\n"
" real_bucket_t max, min, del, rc, gc, bc;\n"
"\n"
//Compute maximum of r, g, b.
" if ((*rgb).x >= (*rgb).y)\n"
" {\n"
" if ((*rgb).x >= (*rgb).z)\n"
" max = (*rgb).x;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y >= (*rgb).z)\n"
" max = (*rgb).y;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
"\n"
//Compute minimum of r, g, b.
" if ((*rgb).x <= (*rgb).y)\n"
" {\n"
" if ((*rgb).x <= (*rgb).z)\n"
" min = (*rgb).x;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y <= (*rgb).z)\n"
" min = (*rgb).y;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
"\n"
" del = max - min;\n"
" (*hsv).z = max;\n"
"\n"
" if (max != 0)\n"
" (*hsv).y = del / max;\n"
" else\n"
" (*hsv).y = 0;\n"
"\n"
" (*hsv).x = 0;\n"
" if ((*hsv).y != 0)\n"
" {\n"
" rc = (max - (*rgb).x) / del;\n"
" gc = (max - (*rgb).y) / del;\n"
" bc = (max - (*rgb).z) / del;\n"
"\n"
" if ((*rgb).x == max)\n"
" (*hsv).x = bc - gc;\n"
" else if ((*rgb).y == max)\n"
" (*hsv).x = 2 + rc - bc;\n"
" else if ((*rgb).z == max)\n"
" (*hsv).x = 4 + gc - rc;\n"
"\n"
" if ((*hsv).x < 0)\n"
" (*hsv).x += 6;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::HsvToRgb().
/// </summary>
static constexpr char HsvToRgbFunctionString[] =
//h 0 - 6, s 0 - 1, v 0 - 1
//rgb 0 - 1
"static inline void HsvToRgb(real4_bucket* hsv, real4_bucket* rgb)\n"
"{\n"
" int j;\n"
" real_bucket_t f, p, q, t;\n"
"\n"
" while ((*hsv).x >= 6)\n"
" (*hsv).x = (*hsv).x - 6;\n"
"\n"
" while ((*hsv).x < 0)\n"
" (*hsv).x = (*hsv).x + 6;\n"
"\n"
" j = (int)floor((*hsv).x);\n"
" f = (*hsv).x - j;\n"
" p = (*hsv).z * (1 - (*hsv).y);\n"
" q = (*hsv).z * (1 - ((*hsv).y * f));\n"
" t = (*hsv).z * (1 - ((*hsv).y * (1 - f)));\n"
"\n"
" switch (j)\n"
" {\n"
" case 0: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" case 1: (*rgb).x = q; (*rgb).y = (*hsv).z; (*rgb).z = p; break;\n"
" case 2: (*rgb).x = p; (*rgb).y = (*hsv).z; (*rgb).z = t; break;\n"
" case 3: (*rgb).x = p; (*rgb).y = q; (*rgb).z = (*hsv).z; break;\n"
" case 4: (*rgb).x = t; (*rgb).y = p; (*rgb).z = (*hsv).z; break;\n"
" case 5: (*rgb).x = (*hsv).z; (*rgb).y = p; (*rgb).z = q; break;\n"
" default: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" }\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Palette::CalcAlpha().
/// </summary>
static constexpr char CalcAlphaFunctionString[] =
"static inline real_t CalcAlpha(real_bucket_t density, real_bucket_t gamma, real_bucket_t linrange)\n"//Not the slightest clue what this is doing.//DOC
"{\n"
" real_bucket_t frac, alpha, funcval = pow(linrange, gamma);\n"
"\n"
" if (density > 0)\n"
" {\n"
" if (density < linrange)\n"
" {\n"
" frac = density / linrange;\n"
" alpha = (1.0 - frac) * density * (funcval / linrange) + frac * pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = 0;\n"
"\n"
" return alpha;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent of Renderer::CurveAdjust().
/// Only use float here instead of real_t because the output will be passed to write_imagef()
/// during final accumulation, which only takes floats.
/// </summary>
static constexpr char CurveAdjustFunctionString[] =
"static inline void CurveAdjust(__global real4reals_bucket* csa, float* a, uint index)\n"
"{\n"
" uint tempIndex = (uint)clamp(*a * CURVES_LENGTH_M1, 0.0f, CURVES_LENGTH_M1);\n"
" uint tempIndex2 = (uint)clamp(csa[tempIndex].m_Real4.x * CURVES_LENGTH_M1, 0.0f, CURVES_LENGTH_M1);\n"
"\n"
" *a = (float)csa[tempIndex2].m_Reals[index];\n"
"}\n"
"\n";
/// <summary>
/// Use MWC 64 from David Thomas at the Imperial College of London for
/// random numbers in OpenCL, instead of ISAAC which was used
/// for CPU rendering.
/// </summary>
static constexpr char RandFunctionString[] =
"enum { MWC64X_A = 4294883355u };\n\n"
"inline uint MwcNext(uint2* s)\n"
"{\n"
" uint res = (*s).x ^ (*s).y; \n"//Calculate the result.
" uint hi = mul_hi((*s).x, MWC64X_A); \n"//Step the RNG.
" (*s).x = (*s).x * MWC64X_A + (*s).y;\n"//Pack the state back up.
" (*s).y = hi + ((*s).x < (*s).y); \n"
" return res; \n"//Return the next result.
"}\n"
"\n"
"inline uint MwcNextRange(uint2* s, uint val)\n"
"{\n"
" return (val == 0) ? MwcNext(s) : (uint)(((ulong)MwcNext(s) * (ulong)val) >> 32);\n"
"}\n"
"\n"
"inline real_t MwcNext01(uint2* s)\n"
"{\n"
" return MwcNext(s) * (real_t)(1.0 / 4294967296.0);\n"
"}\n"
"\n"
"inline uint MwcNextCrand(uint2* s)\n"
"{\n"
" return MwcNextRange(s, 32767u);\n"
"}\n"
"\n"
"inline real_t MwcNextFRange(uint2* s, real_t lower, real_t upper)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
#ifdef USEFMA
" return fma(f, upper - lower, lower);\n"
#else
" return (f * (upper - lower) + lower);\n"
#endif
"}\n"
"\n"
"inline real_t MwcNextNeg1Pos1(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
#ifdef USEFMA
" return fma(f, (real_t)2.0, (real_t)-1.0);\n"
#else
" return (f * (real_t)2.0 + (real_t)-1.0);\n"
#endif
"}\n"
"\n"
"inline real_t MwcNext0505(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -0.5 + f;\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent Renderer::AddToAccum().
/// </summary>
static constexpr char AddToAccumWithCheckFunctionString[] =
"inline bool AccumCheck(int superRasW, int superRasH, int i, int ii, int j, int jj)\n"
"{\n"
" return (j + jj >= 0 && j + jj < superRasH && i + ii >= 0 && i + ii < superRasW);\n"
"}\n"
"\n";
/// <summary>
/// OpenCL equivalent various CarToRas member functions.
/// Normaly would subtract m_RasLlX and m_RasLlY, but they were negated in RendererCL before being passed in, so they could be used with fma().
/// </summary>
static constexpr char CarToRasFunctionString[] =
"inline void CarToRasConvertPointToSingle(__constant CarToRasCL* carToRas, Point* point, uint* singleBufferIndex)\n"
"{\n"
#ifdef USEFMA
" *singleBufferIndex = (uint)fma(carToRas->m_PixPerImageUnitW, point->m_X, carToRas->m_RasLlX) + (carToRas->m_RasWidth * (uint)fma(carToRas->m_PixPerImageUnitH, point->m_Y, carToRas->m_RasLlY));\n"
#else
" *singleBufferIndex = (uint)(carToRas->m_PixPerImageUnitW * point->m_X + carToRas->m_RasLlX) + (carToRas->m_RasWidth * (uint)(carToRas->m_PixPerImageUnitH * point->m_Y + carToRas->m_RasLlY));\n"
#endif
"}\n"
"\n"
"inline bool CarToRasInBounds(__constant CarToRasCL* carToRas, Point* point)\n"
"{\n"
" return point->m_X >= carToRas->m_CarLlX &&\n"
" point->m_X < carToRas->m_CarUrX &&\n"
" point->m_Y < carToRas->m_CarUrY &&\n"
" point->m_Y >= carToRas->m_CarLlY;\n"
"}\n"
"\n";
static constexpr char AtomicString[] =
"void AtomicAdd(volatile __global real_bucket_t* source, const real_bucket_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_bucket_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_bucket_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __global atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n";
}