fractorium/Source/Ember/Isaac.h
Person c3078f018a --User changes
-Update various tooltips.
 -Increase precision of affine and xaos spinners.
 -Increase precision of fields written in Xml files to 8.

--Bug fixes
 -When rendering on the CPU, if the number of threads didn't divide evenly into the number of rows, it would leave a blank spot on the last few rows.
 -Fix numerous parsing bugs when reading .chaos files.
 -Added compatibility fixes and/or optimizations to the following variations: asteria, bcircle, bcollide, bipolar, blob2, btransform, cell, circlecrop, circlecrop2, collideoscope, cpow2, cropn, cross, curl, depth_ngon2, depth_sine2, edisc, eRotate, escher, fan2, hex_rand, hypershift, hypershift2, hypertile1, julia, julian, julian2, juliaq, juliascope, lazyjess, log, loonie2, murl, murl2, npolar, oscilloscope2, perspective, phoenix_julia, sphericaln, squish, starblur, starblur2, truchet, truchet_glyph, waffle, wavesn.
2023-11-29 15:47:31 -07:00

538 lines
15 KiB
C++

#pragma once
#include "Timing.h"
/// <summary>
/// C++ TEMPLATE VERSION OF Robert J. Jenkins Jr.'s
/// ISAAC Random Number Generator.
///
/// Ported from vanilla C to to template C++ class
/// by Quinn Tyler Jackson on 16-23 July 1998.
///
/// quinn@qtj.net
///
/// The function for the expected period of this
/// random number generator, according to Jenkins is:
///
/// f(a,b) = 2**((a+b*(3+2^^a)-1)
///
/// (where a is ALPHA and b is bitwidth)
///
/// So, for a bitwidth of 32 and an ALPHA of 8,
/// the expected period of ISAAC is:
///
/// 2^^(8+32*(3+2^^8)-1) = 2^^8295
///
/// Jackson has been able to run implementations
/// with an ALPHA as high as 16, or
///
/// 2^^2097263
///
/// -Modified by Matt Feemster to eliminate needless dynamic memory allocation and virtual functions and bring inline with Ember coding style.
/// </summary>
#ifndef __ISAAC64
typedef uint ISAAC_INT;
constexpr ISAAC_INT GOLDEN_RATIO = ISAAC_INT{ 0x9e3779b9 };
#else
typedef size_t ISAAC_INT;
constexpr ISAAC_INT GOLDEN_RATIO = ISAAC_INT{ 0x9e3779b97f4a7c13 };
#endif
namespace EmberNs
{
union UintBytes
{
unsigned char Bytes[4];
uint Uint;
};
/// <summary>
/// QTIsaac class which allows using ISAAC in an OOP manner.
/// </summary>
template <int ALPHA = 4, class T = ISAAC_INT>
class EMBER_API QTIsaac
{
public:
enum { N = (1 << ALPHA) };
UintBytes m_Cache;
size_t m_LastIndex = 0;
/// <summary>
/// The structure which holds all of the random information.
/// </summary>
struct EMBER_API randctx
{
T randcnt;
T randrsl[N];
T randmem[N];
T randa;
T randb;
T randc;
};
/// <summary>
/// Constructor which initialized the random context using the values passed in.
/// Leaving these as their defaults is fine, and will still give different
/// results because time is internally used if they are default.
/// However, specifying specific values is useful if you want to duplicate
/// a sequence of random numbers.
/// </summary>
/// <param name="a">First random seed. Default: 0.</param>
/// <param name="b">Second random seed. Default: 0.</param>
/// <param name="c">Third random seed. Default: 0.</param>
/// <param name="s">Pointer to a buffer of 256 random integer seeds. Default: nullptr.</param>
QTIsaac(T a = 0, T b = 0, T c = 0, T* s = nullptr)
{
Srand(a, b, c, s);
m_Cache.Uint = Rand();
RandByte();//Need to call at least once so other libraries can link.
}
/// <summary>
/// Return the next random integer in the range of 0-255.
/// If only a byte is needed, this is a more efficient way because
/// it only calls rand 1/4 of the time.
/// </summary>
/// <returns>The next random integer in the range of 0-255</returns>
inline T RandByte()
{
T ret = m_Cache.Bytes[m_LastIndex++];
if (m_LastIndex == 4)
{
m_LastIndex = 0;
m_Cache.Uint = Rand();
}
return ret;
}
/// <summary>
/// Locked version of RandByte().
/// </summary>
/// <returns>The next random integer in the range of 0-255</returns>
static inline T LockedRandByte()
{
rlg l(*s_CS.get());
T t = GlobalRand->RandByte();
return t;
}
/// <summary>
/// Return the next random integer.
/// </summary>
/// <returns>The next random integer</returns>
inline T Rand()
{
#ifdef ISAAC_FLAM3_DEBUG
return (!m_Rc.randcnt-- ? (Isaac(&m_Rc), m_Rc.randcnt = N - 1, m_Rc.randrsl[m_Rc.randcnt]) : m_Rc.randrsl[m_Rc.randcnt]);
#else
return (m_Rc.randcnt++ == N ? (Isaac(&m_Rc), m_Rc.randcnt = 0, m_Rc.randrsl[m_Rc.randcnt]) : m_Rc.randrsl[m_Rc.randcnt]);
#endif
}
/// <summary>
/// Locked version of Rand().
/// </summary>
/// <returns>The next random integer</returns>
static inline T LockedRand()
{
rlg l(*s_CS.get());
T t = GlobalRand->Rand();
return t;
}
/// <summary>
/// Legacy rand() in the C language returns a number in the range of (0, RAND_MAX], which yields 0-32766.
/// This function is used to simulate that behavior.
/// </summary>
/// <returns>The next random integer in the range of 0-32766 inclusive</returns>
inline T Crand()
{
return Rand(32767);
}
/// <summary
/// Locked version of Crand().
/// </summary>
inline T LockedCrand()
{
rlg l(*s_CS.get());
T t = GlobalRand->Crand();
return t;
}
/// <summary>
/// Return the next random integer between 0 and the value passed in minus 1.
/// </summary>
/// <param name="upper">A value one greater than the maximum value that will be returned</param>
/// <returns>A value between 0 and the value passed in minus 1</returns>
inline T Rand(size_t upper)
{
return (upper == 0) ? Rand() : T(((size_t)Rand() * upper) >> 32);
}
/// <summary>
/// Locked version of Rand().
/// </summary>
/// <param name="upper">A value one greater than the maximum value that will be returned</param>
/// <returns>A value between 0 and the value passed in minus 1</returns>
static inline T LockedRand(size_t upper)
{
rlg l(*s_CS.get());
T t = GlobalRand->Rand(upper);
return t;
}
/// <summary>
/// Returns a random floating point value between the specified minimum and maximum.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="fMin">The minimum value allowed, inclusive.</param>
/// <param name="fMax">The maximum value allowed, inclusive.</param>
/// <returns>A new random floating point value within the specified range, inclusive.</returns>
template<typename floatType>
inline floatType Frand(floatType fMin, floatType fMax)
{
floatType f = static_cast<floatType>(Rand()) / static_cast<floatType>(std::numeric_limits<T>::max());
return fMin + (f * (fMax - fMin));
}
/// <summary>
/// Locked version of Frand().
/// </summary>
/// <param name="fMin">The minimum value allowed, inclusive.</param>
/// <param name="fMax">The maximum value allowed, inclusive.</param>
/// <returns>A new random floating point value within the specified range, inclusive.</returns>
template<typename floatType>
static inline floatType LockedFrand(floatType fMin, floatType fMax)
{
rlg l(*s_CS.get());
floatType t = GlobalRand->template Frand<floatType>(fMin, fMax);
return t;
}
/// <summary>
/// Thin wrapper around a call to Frand() with a range of 0-1.
/// Template argument expected to be float or double.
/// </summary>
/// <returns>A new random number in the range of 0-1, inclusive.</returns>
template<typename floatType>
inline floatType Frand01()
{
#ifdef ISAAC_FLAM3_DEBUG
return (Rand() & 0xfffffff) / (floatType)0xfffffff;
#else
return static_cast<floatType>(Rand()) / static_cast<floatType>(std::numeric_limits<T>::max());
#endif
}
/// <summary>
/// Locked version of Frand01().
/// </summary>
/// <returns>A new random number in the range of 0-1, inclusive.</returns>
template<typename floatType>
static inline floatType LockedFrand01()
{
rlg l(*s_CS.get());
floatType t = GlobalRand->template Frand01<floatType>();
return t;
}
/// <summary>
/// Thin wrapper around a call to Frand() with a range of -1-1.
/// Template argument expected to be float or double.
/// </summary>
/// <returns>A new random number in the range of -1-1, inclusive.</returns>
template<typename floatType>
inline floatType Frand11()
{
#ifdef ISAAC_FLAM3_DEBUG
return ((Rand() & 0xfffffff) - 0x7ffffff) / (floatType)0x7ffffff;
#else
return Frand<floatType>(floatType { -1 }, floatType { 1 });
#endif
}
/// <summary>
/// Locked version of Frand11().
/// </summary>
/// <returns>A new random number in the range of -1-1, inclusive.</returns>
template<typename floatType>
static inline floatType LockedFrand11()
{
rlg l(*s_CS.get());
floatType t = GlobalRand->template Frand11<floatType>();
return t;
}
/// <summary>
/// Not sure what this does.
/// </summary>
/// <returns>Something that is golden</returns>
template<typename floatType>
inline floatType GoldenBit()
{
return RandBit() ? floatType(0.38196) : floatType(0.61804);
}
/// <summary>
/// Locked version of GoldenBit().
/// </summary>
/// <returns>Something that is golden</returns>
template<typename floatType>
static inline floatType LockedGoldenBit()
{
rlg l(*s_CS.get());
floatType t = GlobalRand->template GoldenBit<floatType>();
return t;
}
/// <summary>
/// Returns a random 0 or 1.
/// </summary>
/// <returns>A random 0 or 1</returns>
inline uint RandBit()
{
return RandByte() & 1;
}
/// <summary>
/// Locked version of RandBit().
/// </summary>
/// <returns>A random 0 or 1</returns>
static inline uint LockedRandBit()
{
rlg l(*s_CS.get());
uint t = GlobalRand->RandBit();
return t;
}
/// <summary>
/// A different way of getting a floating point rand in the range -1-1.
/// Flam3 used this but it seems unnecessary now, keep around if it's ever needed.
/// </summary>
/// <returns>A new random number in the range of -1-1, inclusive.</returns>
//double drand11()
//{
// return (((int)Rand() & 0xfffffff) - 0x7ffffff) / (double) 0x7ffffff;
//}
/// <summary>
/// Initializes a random context.
/// Unsure exacly how this works, but it does.
/// </summary>
/// <param name="ctx">The random context to initialize</param>
/// <param name="useSeed">Whether to use the seeds passed in to the constructor, else zero.</param>
void RandInit(randctx* ctx, bool useSeed)
{
int i;
T a, b, c, d, e, f, g, h;
T* m = ctx->randmem;
T* r = ctx->randrsl;
a = b = c = d = e = f = g = h = GOLDEN_RATIO;
if (!useSeed)
{
ctx->randa = 0;
ctx->randb = 0;
ctx->randc = 0;
}
//Scramble it.
for (i = 0; i < 4; ++i)
{
Shuffle(a, b, c, d, e, f, g, h);
}
if (useSeed)
{
//Initialize using the contents of r[] as the seed.
for (i = 0; i < N; i += 8)
{
a += r[i ]; b += r[i + 1]; c += r[i + 2]; d += r[i + 3];
e += r[i + 4]; f += r[i + 5]; g += r[i + 6]; h += r[i + 7];
Shuffle(a, b, c, d, e, f, g, h);
m[i ] = a; m[i + 1] = b; m[i + 2] = c; m[i + 3] = d;
m[i + 4] = e; m[i + 5] = f; m[i + 6] = g; m[i + 7] = h;
}
//Do a second pass to make all of the seed affect all of m.
for (i = 0; i < N; i += 8)
{
a += m[i ]; b += m[i + 1]; c += m[i + 2]; d += m[i + 3];
e += m[i + 4]; f += m[i + 5]; g += m[i + 6]; h += m[i + 7];
Shuffle(a, b, c, d, e, f, g, h);
m[i ] = a; m[i + 1] = b; m[i + 2] = c; m[i + 3] = d;
m[i + 4] = e; m[i + 5] = f; m[i + 6] = g; m[i + 7] = h;
}
}
else
{
//Fill in mm[] with messy stuff.
Shuffle(a, b, c, d, e, f, g, h);
m[i ] = a; m[i + 1] = b; m[i + 2] = c; m[i + 3] = d;
m[i + 4] = e; m[i + 5] = f; m[i + 6] = g; m[i + 7] = h;
}
Isaac(ctx); //Fill in the first set of results.
ctx->randcnt = N;//0;//Prepare to use the first set of results.
}
/// <summary>
/// Initialize the seeds of the member random context using the specified seeds.
/// If s is null, time plus index up to 256 is used for the random buffer.
/// </summary>
/// <param name="a">First random seed. Default: 0.</param>
/// <param name="b">Second random seed. Default: 0.</param>
/// <param name="c">Third random seed. Default: 0.</param>
/// <param name="s">Pointer to a buffer of 256 random integer seeds. Default: nullptr.</param>
void Srand(T a = 0, T b = 0, T c = 0, T* s = nullptr)
{
if (s == nullptr)//Default to using time plus index as the seed if s was nullptr.
{
for (size_t i = 0; i < N; i++)
m_Rc.randrsl[i] = static_cast<T>(NowMs() + i);
}
else
{
for (size_t i = 0; i < N; i++)
m_Rc.randrsl[i] = s[i];
}
#ifndef ISAAC_FLAM3_DEBUG
if (a == 0 && b == 0 && c == 0)
{
m_Rc.randa = static_cast<T>(NowMs());
m_Rc.randb = static_cast<T>(NowMs()) * static_cast<T>(NowMs());
m_Rc.randc = static_cast<T>(NowMs()) * static_cast<T>(NowMs()) * static_cast<T>(NowMs());
}
else
#endif
{
m_Rc.randa = a;
m_Rc.randb = b;
m_Rc.randc = c;
}
RandInit(&m_Rc, true);
}
protected:
/// <summary>
/// Compute the next batch of random numbers for a random context.
/// </summary>
/// <param name="ctx">The context to populate.</param>
void Isaac(randctx* ctx)
{
T x, y;
T* mm = ctx->randmem;
T* r = ctx->randrsl;
T a = (ctx->randa);
T b = (ctx->randb + (++ctx->randc));
T* m = mm;
T* m2 = (m + (N / 2));
T* mend = m2;
for (; m < mend; )
{
#ifndef __ISAAC64
RngStep((a << 13), a, b, mm, m, m2, r, x, y);
RngStep((a >> 6), a, b, mm, m, m2, r, x, y);
RngStep((a << 2), a, b, mm, m, m2, r, x, y);
RngStep((a >> 16), a, b, mm, m, m2, r, x, y);
#else // __ISAAC64
RngStep(~(a ^ (a << 21)), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 5), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a << 12), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 33), a, b, mm, m, m2, r, x, y);
#endif // __ISAAC64
}
m2 = mm;
for (; m2 < mend;)
{
#ifndef __ISAAC64
RngStep((a << 13), a, b, mm, m, m2, r, x, y);
RngStep((a >> 6), a, b, mm, m, m2, r, x, y);
RngStep((a << 2), a, b, mm, m, m2, r, x, y);
RngStep((a >> 16), a, b, mm, m, m2, r, x, y);
#else // __ISAAC64
RngStep(~(a ^ (a << 21)), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 5), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a << 12), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 33), a, b, mm, m, m2, r, x, y);
#endif // __ISAAC64
}
ctx->randb = b;
ctx->randa = a;
}
/// <summary>
/// Retrieves a value using indirection.
/// </summary>
/// <param name="mm">The buffer.</param>
/// <param name="x">The offset.</param>
/// <returns>A new value</returns>
inline T Ind(T* mm, T x)
{
#ifndef __ISAAC64
return (*reinterpret_cast<T*>(reinterpret_cast<byte*>(mm) + ((x) & ((N - 1) << 2))));
#else // __ISAAC64
return (*reinterpret_cast<T*>(reinterpret_cast<byte*>(mm) + ((x) & ((N - 1) << 3))));
#endif // __ISAAC64
}
/// <summary>
/// Unsure what this does.
/// </summary>
void RngStep(T mix, T& a, T& b, T*& mm, T*& m, T*& m2, T*& r, T& x, T& y)
{
x = *m;
a = (a ^ (mix)) + *(m2++);
*(m++) = y = Ind(mm, x) + a + b;
*(r++) = b = Ind(mm, y >> ALPHA) + x;
}
/// <summary>
/// Unsure what this does.
/// </summary>
void Shuffle(T& a, T& b, T& c, T& d, T& e, T& f, T& g, T& h)
{
#ifndef __ISAAC64
a ^= b << 11; d += a; b += c;
b ^= c >> 2; e += b; c += d;
c ^= d << 8; f += c; d += e;
d ^= e >> 16; g += d; e += f;
e ^= f << 10; h += e; f += g;
f ^= g >> 4; a += f; g += h;
g ^= h << 8; b += g; h += a;
h ^= a >> 9; c += h; a += b;
#else // __ISAAC64
a -= e; f ^= h >> 9; h += a;
b -= f; g ^= a << 9; a += b;
c -= g; h ^= b >> 23; b += c;
d -= h; a ^= c << 15; c += d;
e -= a; b ^= d >> 14; d += e;
f -= b; c ^= e << 20; e += f;
g -= c; d ^= f >> 17; f += g;
h -= d; e ^= g << 14; g += h;
#endif // __ISAAC64
}
private:
randctx m_Rc;//The random context which holds all of the seed and state information as well as the random number values.
/// <summary>
/// Global ISAAC RNG to be used from anywhere. This is not thread safe, so take caution to only
/// use it when no other threads are.
/// </summary>
static unique_ptr<QTIsaac<ALPHA, ISAAC_INT>> GlobalRand;
static unique_ptr<recursive_mutex> s_CS;
};
}