fractorium/Source/Ember/Affine2D.cpp
Person 1dfbd4eff2 --User changes
-Add new preset dimensions to the right click menu of the width and height fields in the editor.
-Change QSS stylesheets to properly handle tabs.
-Make tabs rectangular by default. For some reason, they had always been triangular.

--Bug fixes
 -Incremental rendering times in the editor were wrong.

--Code changes
 -Migrate to Qt6. There is probably more work to be done here.
-Migrate to VS2022.
-Migrate to Wix 4 installer.
-Change installer to install to program files for all users.
-Fix many VS2022 code analysis warnings.
-No longer use byte typedef, because std::byte is now a type. Revert all back to unsigned char.
-Upgrade OpenCL headers to version 3.0 and keep locally now rather than trying to look for system files.
-No longer link to Nvidia or AMD specific OpenCL libraries. Use the generic installer located at OCL_ROOT too.
-Add the ability to change OpenCL grid dimensions. This was attempted for investigating possible performance improvments, but made no difference.

This has not been verified on Linux or Mac yet.
2023-04-25 17:59:54 -06:00

453 lines
13 KiB
C++

#include "EmberPch.h"
#include "Affine2D.h"
namespace EmberNs
{
/// <summary>
/// Default constructor which sets the matrix to the identity.
/// </summary>
template <typename T>
Affine2D<T>::Affine2D()
{
MakeID();
}
/// <summary>
/// Default copy constructor.
/// </summary>
/// <param name="affine">The Affine2D object to copy</param>
template <typename T>
Affine2D<T>::Affine2D(const Affine2D<T>& affine)
{
Affine2D<T>::operator=<T>(affine);
}
/// <summary>
/// Constructor which takes each column of the affine as a separate parameter.
/// </summary>
/// <param name="x">A and D</param>
/// <param name="y">B and E</param>
/// <param name="t">C and F</param>
template <typename T>
Affine2D<T>::Affine2D(v2T& x, v2T& y, v2T& t)
{
X(x);
Y(y);
O(t);
}
/// <summary>
/// Constructor which takes all six of the affine values as parameters.
/// </summary>
/// <param name="xx">A</param>
/// <param name="xy">D</param>
/// <param name="yx">B</param>
/// <param name="yy">E</param>
/// <param name="tx">C</param>
/// <param name="ty">F</param>
template <typename T>
Affine2D<T>::Affine2D(T xx, T xy, T yx, T yy, T tx, T ty)
{
A(xx);
D(xy);
B(yx);
E(yy);
C(tx);
F(ty);
}
/// <summary>
/// Constructor which takes a 4x4 matrix and assigns the
/// corresponding values in the 2x3 affine matrix.
/// </summary>
/// <param name="mat">The 4x4 affine matrix to read from</param>
template <typename T>
Affine2D<T>::Affine2D(m4T& mat)
{
A(mat[0][0]);
B(mat[0][1]);
C(mat[0][3]);
D(mat[1][0]);
E(mat[1][1]);
F(mat[1][3]);
}
/// <summary>
/// Default assignment operator.
/// </summary>
/// <param name="affine">The Affine2D object to copy</param>
template <typename T>
Affine2D<T>& Affine2D<T>::operator = (const Affine2D<T>& affine)
{
if (this != &affine)
Affine2D<T>::operator=<T>(affine);
return *this;
}
/// <summary>
/// == operator which tests if all fields are equal with another Affine2D.
/// </summary>
/// <param name="affine">The Affine2D to compare to</param>
/// <returns>True if all fields are equal, else false</returns>
template <typename T>
bool Affine2D<T>::operator == (const Affine2D<T>& affine) const
{
return IsClose(A(), affine.A()) &&
IsClose(B(), affine.B()) &&
IsClose(C(), affine.C()) &&
IsClose(D(), affine.D()) &&
IsClose(E(), affine.E()) &&
IsClose(F(), affine.F());
}
/// <summary>
/// * operator to multiply this affine transform by a vec2 and return the result as a vec2.
/// </summary>
/// <param name="v">The vec2 to multiply by</param>
/// <returns>A new vec2 which is the product of the multiplication</returns>
template <typename T>
typename v2T Affine2D<T>::operator * (const v2T& v) const
{
return TransformVector(v);
}
/// <summary>
/// Return a copy of the object with all values A-F scaled by the specified amount.
/// </summary>
/// <param name="amount">The amount to scale by</param>
/// <returns>A new Affine2D which a scaled copy of this instance</returns>
template <typename T>
Affine2D<T> Affine2D<T>:: operator * (T t) const
{
return Affine2D<T>(A() * t,
D() * t,
B() * t,
E() * t,
C() * t,
F() * t);
}
/// <summary>
/// Make this affine transform the identity matrix.
/// A and E = 1, all else 0.
/// </summary>
template <typename T>
void Affine2D<T>::MakeID()
{
A(1);
B(0);
C(0);
D(0);
E(1);
F(0);
}
/// <summary>
/// Determine whether this affine transform is the identity matrix.
/// </summary>
/// <returns>True if A and E are equal to 1 and all others are 0, else false.</returns>
template <typename T>
bool Affine2D<T>::IsID() const
{
return (A() == 1) &&
(B() == 0) &&
(C() == 0) &&
(D() == 0) &&
(E() == 1) &&
(F() == 0);
}
/// <summary>
/// Determine whether this affine transform is all zeroes.
/// </summary>
/// <returns>True if all 6 elements equal zero, else false.</returns>
template <typename T>
bool Affine2D<T>::IsZero() const
{
return (A() == 0) &&
(B() == 0) &&
(C() == 0) &&
(D() == 0) &&
(E() == 0) &&
(F() == 0);
}
/// <summary>
/// Determine whether this affine transform was deliberately set to all empty values.
/// </summary>
/// <returns>True if all 6 elements equal zero, else false.</returns>
template <typename T>
bool Affine2D<T>::IsEmpty() const
{
return (IsClose<T>(A(), EMPTYFIELD)) &&
(IsClose<T>(B(), EMPTYFIELD)) &&
(IsClose<T>(C(), EMPTYFIELD)) &&
(IsClose<T>(D(), EMPTYFIELD)) &&
(IsClose<T>(E(), EMPTYFIELD)) &&
(IsClose<T>(F(), EMPTYFIELD));
}
/// <summary>
/// Scales all values A-F by the specified amount.
/// </summary>
/// <param name="amount">The amount to scale by</param>
template <typename T>
void Affine2D<T>::Scale(T amount)
{
A(A() * amount);
B(B() * amount);
C(C() * amount);
D(D() * amount);
E(E() * amount);
F(F() * amount);
}
/// <summary>
/// Scales all values A,B,D,E by the specified amount.
/// </summary>
/// <param name="amount">The amount to scale by</param>
template <typename T>
void Affine2D<T>::ScaleXY(T amount)
{
A(A() * amount);
B(B() * amount);
D(D() * amount);
E(E() * amount);
}
/// <summary>
/// Rotate this affine transform around its origin by the specified angle in degrees.
/// </summary>
/// <param name="angle">The angle to rotate by</param>
template <typename T>
void Affine2D<T>::Rotate(T rad)
{
const m4T origMat4 = ToMat4ColMajor(true);//Must center and use column major for glm to work.
const m4T newMat4 = glm::rotate(origMat4, rad, v3T(0, 0, 1));//Assuming only rotating around z.
A(newMat4[0][0]);//Use direct assignments instead of constructor to skip assigning C and F.
B(newMat4[0][1]);
D(newMat4[1][0]);
E(newMat4[1][1]);
}
template <typename T>
void Affine2D<T>::RotateTrans(T rad)
{
const m4T origMat4 = TransToMat4ColMajor();//Only put translation in this matrix.
const m4T newMat4 = glm::rotate(origMat4, rad, v3T(0, 0, 1));//Assuming only rotating around z.
C(newMat4[0][3]);//Use direct assignments instead of constructor to skip assigning A, B, D, E.
F(newMat4[1][3]);
}
/// <summary>
/// Move by v.
/// </summary>
/// <param name="v">The vec2 describing how far to move in the x and y directions</param>
template <typename T>
void Affine2D<T>::Translate(const v2T& v)
{
O(O() + v);
}
/// <summary>
/// Rotate and scale the X and Y components by a certain amount based on X.
/// </summary>
/// <param name="v">The vec2 describing how much to rotate and scale the X and Y components</param>
template <typename T>
void Affine2D<T>::RotateScaleXTo(const v2T& v)
{
const Affine2D<T> rs = CalcRotateScale(X(), v);
X(rs.TransformNormal(X()));
Y(rs.TransformNormal(Y()));
}
/// <summary>
/// Rotate and scale the X and Y components by a certain amount based on Y.
/// </summary>
/// <param name="v">The vec2 describing how much to rotate and scale the X and Y components</param>
template <typename T>
void Affine2D<T>::RotateScaleYTo(const v2T& v)
{
const Affine2D<T> rs = CalcRotateScale(Y(), v);
X(rs.TransformNormal(X()));
Y(rs.TransformNormal(Y()));
}
/// <summary>
/// Return the inverse of the 2x3 affine matrix.
/// </summary>
/// <returns>The inverse of this affine transform</returns>
template <typename T>
Affine2D<T> Affine2D<T>::Inverse() const
{
const T det = A() * E() - D() * B();
return Affine2D<T>(E() / det, -D() / det,
-B() / det, A() / det,
(F() * B() - C() * E()) / det, (C() * D() - F() * A()) / det);
}
/// <summary>
/// Return a vec2 gotten from transforming this affine transform
/// by the vec2 passed in, but with a T component of 0, 0.
/// </summary>
/// <param name="v">The vec2 describing how much to transform by</param>
/// <returns>The centered, transformed vec2</returns>
template <typename T>
typename v2T Affine2D<T>::TransformNormal(const v2T& v) const
{
return v2T(A() * v.x + B() * v.y, D() * v.x + E() * v.y);
}
/// <summary>
/// Return a vec2 gotten from transforming this affine transform
/// by the vec2 passed in, and applying T translation.
/// </summary>
/// <param name="v">The vec2 describing how much to transform by</param>
/// <returns>The translated, transformed vec2</returns>
template <typename T>
typename v2T Affine2D<T>::TransformVector(const v2T& v) const
{
return v2T(A() * v.x + B() * v.y + C(), D() * v.x + E() * v.y + F());
}
/// <summary>
/// Return the X and Y components as a 2x2 matrix in column major order.
/// </summary>
/// <returns>The 2x2 matrix</returns>
template <typename T>
typename m2T Affine2D<T>::ToMat2ColMajor() const
{
return m2T(A(), B(),//Col0...
D(), E());//1
}
/// <summary>
/// Return the X and Y components as a 2x2 matrix in row major order.
/// </summary>
/// <returns>The 2x2 matrix</returns>
template <typename T>
typename m2T Affine2D<T>::ToMat2RowMajor() const
{
return m2T(A(), D(),//Col0...
B(), E());//1
}
/// <summary>
/// Return the 2x3 affine transform matrix as a 4x4 matrix in column major order.
/// </summary>
/// <param name="center">Whether to use T translation value or just 0 for center</param>
/// <returns>The 4x4 matrix</returns>
template <typename T>
typename m4T Affine2D<T>::ToMat4ColMajor(bool center) const
{
const m4T mat(A(), B(), 0, center ? 0 : C(), //Col0...
D(), E(), 0, center ? 0 : F(), //1
0, 0, 1, 0, //2
0, 0, 0, 1);//3
return mat;
}
/// <summary>
/// Return the 2x3 affine transform matrix as a 4x4 matrix in row major order.
/// </summary>
/// <param name="center">Whether to use T translation value or just 0 for center</param>
/// <returns>The 4x4 matrix</returns>
template <typename T>
typename m4T Affine2D<T>::ToMat4RowMajor(bool center) const
{
const m4T mat(A(), D(), 0, 0,
B(), E(), 0, 0,
0, 0, 1, 0,
center ? 0 : C(), center ? 0 : F(), 0, 1);
return mat;
}
template <typename T>
typename m4T Affine2D<T>::TransToMat4ColMajor() const
{
const m4T mat(1, 0, 0, C(), //Col0...
0, 1, 0, F(), //1
0, 0, 1, 0, //2
0, 0, 0, 1);//3
return mat;
}
/// <summary>
/// Accessors.
/// </summary>
template <typename T> T Affine2D<T>::A() const { return m_Mat[0][0]; }//[0][0]//flam3
template <typename T> T Affine2D<T>::B() const { return m_Mat[0][1]; }//[1][0]
template <typename T> T Affine2D<T>::C() const { return m_Mat[0][2]; }//[2][0]
template <typename T> T Affine2D<T>::D() const { return m_Mat[1][0]; }//[0][1]
template <typename T> T Affine2D<T>::E() const { return m_Mat[1][1]; }//[1][1]
template <typename T> T Affine2D<T>::F() const { return m_Mat[1][2]; }//[2][1]
template <typename T> void Affine2D<T>::A(T a) { m_Mat[0][0] = a; }
template <typename T> void Affine2D<T>::B(T b) { m_Mat[0][1] = b; }
template <typename T> void Affine2D<T>::C(T c) { m_Mat[0][2] = c; }
template <typename T> void Affine2D<T>::D(T d) { m_Mat[1][0] = d; }
template <typename T> void Affine2D<T>::E(T e) { m_Mat[1][1] = e; }
template <typename T> void Affine2D<T>::F(T f) { m_Mat[1][2] = f; }
template <typename T> typename v2T Affine2D<T>::X() const { return v2T(A(), D()); }//X Axis.
template <typename T> typename v2T Affine2D<T>::Y() const { return v2T(B(), E()); }//Y Axis.
template <typename T> typename v2T Affine2D<T>::O() const { return v2T(C(), F()); }//Translation.
template <typename T> void Affine2D<T>::X(const v2T& x) { A(x.x); D(x.y); }//X Axis.
template <typename T> void Affine2D<T>::Y(const v2T& y) { B(y.x); E(y.y); }//Y Axis.
template <typename T> void Affine2D<T>::O(const v2T& t) { C(t.x); F(t.y); }//Translation.
template <typename T>
string Affine2D<T>::ToString() const
{
ostringstream ss;
ss << "A: " << A() << " "
<< "B: " << B() << " "
<< "C: " << C()
<< "\nD: " << D() << " "
<< "E: " << E() << " "
<< "F: " << F();
return ss.str();
}
/// <summary>
/// Rotate and scale this affine transform and return as a copy. Orginal is unchanged.
/// </summary>
/// <param name="from">The starting point to rotate and scale from</param>
/// <param name="to">The ending point to rotate and scale to</param>
/// <returns>The newly rotated and scalled Affine2D</returns>
template <typename T>
Affine2D<T> Affine2D<T>::CalcRotateScale(const v2T& from, const v2T& to)
{
T a, c;
CalcRSAC(from, to, a, c);
return Affine2D<T>(a, c, -c, a, 0, 0);
}
/// <summary>
/// Never fully understood what this did or why it's named what it is.
/// But it seems to handle some rotating and scaling.
/// </summary>
/// <param name="from">The starting point to rotate and scale from</param>
/// <param name="to">The ending point to rotate and scale to</param>
/// <param name="a">a</param>
/// <param name="c">c</param>
template <typename T>
void Affine2D<T>::CalcRSAC(const v2T& from, const v2T& to, T& a, T& c)
{
const T lsq = from.x * from.x + from.y * from.y;
a = (from.y * to.y + from.x * to.x) / lsq;
c = (from.x * to.y - from.y * to.x) / lsq;
}
//This class had to be implemented in a cpp file because the compiler was breaking.
//So the explicit instantiation must be declared here rather than in Ember.cpp where
//all of the other classes are done.
template EMBER_API class Affine2D<float>;
#ifdef DO_DOUBLE
template EMBER_API class Affine2D<double>;
#endif
}