#pragma once #include "EmberCommonPch.h" #include "EmberOptions.h" /// /// Global utility classes and functions that are common to all programs that use /// Ember and its derivatives. /// namespace EmberCommon { enum class eXaosPasteStyle : int { NONE, ZERO_TO_ONE, ZERO_TO_VALS, ONE_TO_VALS, VALS_TO_ONE }; /// /// Derivation of the RenderCallback class to do custom printing action /// whenever the progress function is internally called inside of Ember /// and its derivatives. /// Template argument expected to be float or double. /// template class RenderProgress : public RenderCallback { public: /// /// Constructor that initializes the state to zero. /// RenderProgress() = default; RenderProgress(RenderProgress& progress) = delete; ~RenderProgress() = default; /// /// The progress function which will be called from inside the renderer. /// /// The ember currently being rendered /// An extra dummy parameter /// The progress fraction from 0-100 /// The stage of iteration. 1 is iterating, 2 is density filtering, 2 is final accumulation. /// The estimated milliseconds to completion of the current stage /// The value of m_Running, which is always true since this is intended to run in an environment where the render runs to completion, unlike interactive rendering. virtual int ProgressFunc(Ember& ember, void* foo, double fraction, int stage, double etaMs) { if (stage == 0 || stage == 1) { if (m_LastStage != stage) cout << "\n"; cout << "\r" << string(m_S.length() * 2, ' ');//Clear what was previously here, * 2 just to be safe because the end parts of previous strings might be longer. m_SS.str("");//Begin new output. m_SS << "\rStage = " << (stage ? "filtering" : "iterating"); m_SS << ", progress = " << int(fraction) << "%"; m_SS << ", eta = " << t.Format(etaMs); m_S = m_SS.str(); cout << m_S; } m_LastStage = stage; return m_Running; } /// /// Reset the state. /// void Clear() { m_Running = 1; m_LastStage = 0; m_LastLength = 0; m_SS.clear(); m_S.clear(); } /// /// Stop this instance. /// void Stop() { m_Running = 0; } private: int m_Running = 1; int m_LastStage = 0; int m_LastLength = 0; stringstream m_SS; string m_S; Timing t; }; /// /// Wrapper for parsing an ember Xml file, storing the embers in a vector and printing /// any errors that occurred. /// Template argument expected to be float or double. /// /// The parser to use /// The full path and name of the file /// Storage for the embers read from the file /// True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present. Default: true. /// True if success, else false. template static bool ParseEmberFile(XmlToEmber& parser, const string& filename, vector>& embers, bool useDefaults = true) { if (!parser.Parse(filename.c_str(), embers, useDefaults)) { cerr << "Error parsing flame file " << filename << ", returning without executing.\n"; return false; } if (embers.empty()) { cerr << "Error: No data present in file " << filename << ". Aborting.\n"; return false; } return true; } /// /// Cross platform wrapper for getting the full path of the current executable. /// /// The value of argv[0] passed into main() /// The full path of the executable as a string static string GetExePath(const char* argv0) { string fullpath; #ifdef _WIN32 fullpath = argv0; #else vector v; v.resize(2048); #if __APPLE__ uint32_t vs = uint32_t(v.size()); if (_NSGetExecutablePath(v.data(), &vs) == 0) fullpath = string(v.data()); else cerr << "Could not discern full path from executable.\n"; #else auto fullsize = readlink("/proc/self/exe", v.data(), v.size()); fullpath = string(v.data()); #endif #endif return GetPath(fullpath); } /// /// Wrapper for parsing palette Xml file and initializing it's private static members, /// and printing any errors that occurred. /// Template argument expected to be float or double. /// /// The full path of the folder the program is running in /// The full path and name of the file /// True if success, else false. template static bool InitPaletteList(const string& programPath, const string& filename) { auto paletteList = PaletteList::Instance(); static vector paths = { programPath #ifndef _WIN32 , "~/", "~/.config/fractorium/", "/usr/share/fractorium/", "/usr/local/share/fractorium/" #endif }; bool added = false; for (auto& p : paths) { auto fullpath = p + filename; //cout << "Trying: " << fullpath << endl; if (!added) { if (std::ifstream(fullpath)) added |= paletteList->Add(fullpath); } else break; } if (!added || !paletteList->Size()) { cerr << "Error parsing palette file " << filename << ". Reason: \n" << paletteList->ErrorReportString() << "\nReturning without executing.\n"; return false; } return true; } /// /// Formats a filename with digits using the passed in amount of 0 padding. /// /// The ember whose name will be set /// The ostringstream which will be used to format /// The amount of padding to use template void FormatName(Ember& result, ostringstream& os, streamsize padding) { os << std::setw(padding) << result.m_Time; result.m_Name = os.str(); os.str(""); } /// /// Convert an RGBA 32-bit float buffer to an RGB 8-bit buffer. /// The two buffers can point to the same memory location if needed. /// /// The RGBA 32-bit float buffer /// The RGB 8-bit buffer /// The width of the image in pixels /// The height of the image in pixels static void Rgba32ToRgb8(v4F* rgba, byte* rgb, size_t width, size_t height) { for (size_t i = 0, j = 0; i < (width * height); i++) { rgb[j++] = static_cast(Clamp(rgba[i].r * 255.0f, 0.0f, 255.0f)); rgb[j++] = static_cast(Clamp(rgba[i].g * 255.0f, 0.0f, 255.0f)); rgb[j++] = static_cast(Clamp(rgba[i].b * 255.0f, 0.0f, 255.0f)); } } /// /// Convert an RGBA 32-bit float buffer to an RGBA 8-bit buffer. /// The two buffers can point to the same memory location if needed. /// /// The RGBA 32-bit float buffer /// The RGBA 8-bit buffer /// The width of the image in pixels /// The height of the image in pixels /// True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible static void Rgba32ToRgba8(v4F* rgba, byte* rgb, size_t width, size_t height, bool doAlpha) { for (size_t i = 0, j = 0; i < (width * height); i++) { rgb[j++] = static_cast(Clamp(rgba[i].r * 255.0f, 0.0f, 255.0f)); rgb[j++] = static_cast(Clamp(rgba[i].g * 255.0f, 0.0f, 255.0f)); rgb[j++] = static_cast(Clamp(rgba[i].b * 255.0f, 0.0f, 255.0f)); rgb[j++] = doAlpha ? static_cast(Clamp(rgba[i].a * 255.0f, 0.0f, 255.0f)) : 255; } } /// /// Convert an RGBA 32-bit float buffer to an RGBA 16-bit buffer. /// The two buffers can point to the same memory location if needed. /// /// The RGBA 32-bit float buffer /// The RGBA 16-bit buffer /// The width of the image in pixels /// The height of the image in pixels /// True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible static void Rgba32ToRgba16(v4F* rgba, glm::uint16* rgb, size_t width, size_t height, bool doAlpha) { for (size_t i = 0, j = 0; i < (width * height); i++) { rgb[j++] = static_cast(Clamp(rgba[i].r * 65535.0f, 0.0f, 65535.0f)); rgb[j++] = static_cast(Clamp(rgba[i].g * 65535.0f, 0.0f, 65535.0f)); rgb[j++] = static_cast(Clamp(rgba[i].b * 65535.0f, 0.0f, 65535.0f)); rgb[j++] = doAlpha ? static_cast(Clamp(rgba[i].a * 65535.0f, 0.0f, 65535.0f)) : glm::uint16{ 65535 }; } } /// /// Convert an RGBA 32-bit float buffer to an EXR RGBA 16-bit float buffer. /// The two buffers can point to the same memory location if needed. /// Note that this squares the values coming in, for some reason EXR expects that. /// /// The RGBA 32-bit float buffer /// The EXR RGBA 16-bit float buffer /// The width of the image in pixels /// The height of the image in pixels /// True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible static void Rgba32ToRgbaExr(v4F* rgba, Rgba* ilmfRgba, size_t width, size_t height, bool doAlpha) { for (size_t i = 0; i < (width * height); i++) { ilmfRgba[i].r = Clamp(Sqr(rgba[i].r), 0.0f, 1.0f); ilmfRgba[i].g = Clamp(Sqr(rgba[i].g), 0.0f, 1.0f); ilmfRgba[i].b = Clamp(Sqr(rgba[i].b), 0.0f, 1.0f); ilmfRgba[i].a = doAlpha ? Clamp(rgba[i].a * 1.0f, 0.0f, 1.0f) : 1.0f; } } /// /// Convert an RGBA 32-bit float buffer to an EXR RGBA 32-bit float buffer. /// The two buffers can point to the same memory location if needed. /// Note that this squares the values coming in, for some reason EXR expects that. /// /// The RGBA 32-bit float buffer /// The EXR red 32-bit float buffer /// The EXR green 32-bit float buffer /// The EXR blue 32-bit float buffer /// The EXR alpha 32-bit float buffer /// The width of the image in pixels /// The height of the image in pixels /// True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible static void Rgba32ToRgba32Exr(v4F* rgba, float* r, float* g, float* b, float* a, size_t width, size_t height, bool doAlpha) { for (size_t i = 0; i < (width * height); i++) { r[i] = Clamp(Sqr(rgba[i].r), 0.0f, 1.0f); g[i] = Clamp(Sqr(rgba[i].g), 0.0f, 1.0f); b[i] = Clamp(Sqr(rgba[i].b), 0.0f, 1.0f); a[i] = doAlpha ? Clamp(rgba[i].a * 1.0f, 0.0f, 1.0f) : 1.0f; } } /// /// Returns a string with all illegal file path characters removed. /// /// The path to remove illegal characters from /// The cleaned full file path and name. static string CleanPath(const string& filename) { static string illegalChars = "\\/:*?\"<>|"; auto tempfilename = filename; for (auto& ch : illegalChars) tempfilename.erase(remove(tempfilename.begin(), tempfilename.end(), ch), tempfilename.end()); return tempfilename; } /// /// Make a filename for a single render. This is used in EmberRender. /// /// The path portion of where to save the file /// The full name and path to override everything else /// The name to use when useFinalName is true /// The prefix to prepend to the filename /// True suffix to append to the filename /// The format extention. This must not contain a period. /// The width padding to use, which will be zero filled. /// The numerical value to use for the filename when useFinalName is false and out is empty /// Whether to use the name included in the flame. The i parameter is ignored in this case. static string MakeSingleFilename(const string& path, const string& out, const string& finalName, const string& prefix, const string& suffix, const string& format, glm::uint padding, size_t i, bool useFinalName) { string filename; if (!out.empty()) { filename = out; } else if (useFinalName) { filename = path + prefix + CleanPath(finalName + suffix + "." + format); } else { ostringstream fnstream; fnstream << setfill('0') << setprecision(0) << fixed << setw(padding) << i << suffix << "." << format; filename = path + prefix + CleanPath(fnstream.str()); } return filename; } /// /// Make a filename for a frame of an animation render. This is used in EmberAnimate. /// /// The path portion of where to save the file /// The prefix to prepend to the filename /// True suffix to append to the filename /// The format extention. This must contain a period. /// The width padding to use, which will be zero filled. /// The numerical value to use for the filename static string MakeAnimFilename(const string& path, const string& prefix, const string& suffix, const string& format, glm::uint padding, size_t ftime) { ostringstream fnstream; fnstream << setfill('0') << setprecision(0) << fixed << setw(padding) << ftime << suffix << format; return path + prefix + CleanPath(fnstream.str()); } /// /// Calculate the number of strips required if the needed amount of memory /// is greater than the system memory, or greater than what the user wants to allow. /// /// Amount of memory required /// Amount of memory available on the system /// The maximum amount of memory to use. Use max if 0. /// The number of strips to use static uint CalcStrips(double memRequired, double memAvailable, double useMem) { if (useMem > 0) memAvailable = useMem; else memAvailable *= 0.8; if (memAvailable >= memRequired) return 1; return static_cast(ceil(memRequired / memAvailable)); } /// /// Given a numerator and a denominator, find the next highest denominator that divides /// evenly into the numerator. /// /// The numerator /// The denominator /// The next highest divisor if found, else 1. template static T NextHighestEvenDiv(T numerator, T denominator) { T result = 1; T numDiv2 = numerator / 2; do { denominator++; if (numerator % denominator == 0) { result = denominator; break; } } while (denominator <= numDiv2); return result; } /// /// Given a numerator and a denominator, find the next lowest denominator that divides /// evenly into the numerator. /// /// The numerator /// The denominator /// The next lowest divisor if found, else 1. template static T NextLowestEvenDiv(T numerator, T denominator) { T result = 1; T numDiv2 = numerator / 2; denominator--; if (denominator > numDiv2) denominator = numDiv2; while (denominator >= 1) { if (numerator % denominator == 0) { result = denominator; break; } denominator--; } return result; } /// /// Wrapper for converting a vector of absolute device indices to a vector /// of platform,device index pairs. /// /// The vector of absolute device indices to convert /// The converted vector of platform,device index pairs static vector> Devices(const vector& selectedDevices) { vector> vec; auto info = OpenCLInfo::Instance(); auto& devices = info->DeviceIndices(); vec.reserve(selectedDevices.size()); for (size_t i = 0; i < selectedDevices.size(); i++) { auto index = selectedDevices[i]; if (index < devices.size()) vec.push_back(devices[index]); } return vec; } /// /// Wrapper for creating a renderer of the specified type. /// /// Type of renderer to create /// The vector of platform/device indices to use /// True if shared with OpenGL, else false. /// The texture ID of the shared OpenGL texture if shared /// The error report for holding errors if anything goes wrong /// A pointer to the created renderer if successful, else false. template static Renderer* CreateRenderer(eRendererType renderType, const vector>& devices, bool shared, GLuint texId, EmberReport& errorReport) { string s; unique_ptr> renderer; try { if (renderType == eRendererType::OPENCL_RENDERER && !devices.empty()) { s = "OpenCL"; renderer = unique_ptr>(new RendererCL(devices, shared, texId));//Can't use make_unique here. if (!renderer.get() || !renderer->Ok()) { if (renderer.get()) errorReport.AddToReport(renderer->ErrorReport()); errorReport.AddToReport("Error initializing OpenCL renderer, using CPU renderer instead."); renderer = make_unique>(); } } else { s = "CPU"; renderer = make_unique>(); } } catch (const std::exception& e) { errorReport.AddToReport("Error creating " + s + " renderer: " + e.what() + "\n"); } catch (...) { errorReport.AddToReport("Error creating " + s + " renderer.\n"); } return renderer.release(); } /// /// Wrapper for creating a vector of renderers of the specified type for each passed in device. /// If shared is true, only the first renderer will be shared with OpenGL. /// Although a fallback GPU renderer will be created if a failure occurs, it doesn't really /// make sense since the concept of devices only applies to OpenCL renderers. /// /// Type of renderer to create /// The vector of platform/device indices to use /// True if shared with OpenGL, else false. /// The texture ID of the shared OpenGL texture if shared /// The error report for holding errors if anything goes wrong /// The vector of created renderers if successful, else false. template static vector>> CreateRenderers(eRendererType renderType, const vector>& devices, bool shared, GLuint texId, EmberReport& errorReport) { string s; vector>> v; try { if (renderType == eRendererType::OPENCL_RENDERER && !devices.empty()) { s = "OpenCL"; v.reserve(devices.size()); for (size_t i = 0; i < devices.size(); i++) { vector> tempDevices{ devices[i] }; auto renderer = unique_ptr>(new RendererCL(tempDevices, !i ? shared : false, texId));//Can't use make_unique here. if (!renderer.get() || !renderer->Ok()) { ostringstream os; if (renderer.get()) errorReport.AddToReport(renderer->ErrorReport()); os << "Error initializing OpenCL renderer for platform " << devices[i].first << ", " << devices[i].second; errorReport.AddToReport(os.str()); } else v.push_back(std::move(renderer)); } } else { s = "CPU"; v.push_back(std::move(unique_ptr>(EmberCommon::CreateRenderer(eRendererType::CPU_RENDERER, devices, shared, texId, errorReport)))); } } catch (const std::exception& e) { errorReport.AddToReport("Error creating " + s + " renderer: " + e.what() + "\n"); } catch (...) { errorReport.AddToReport("Error creating " + s + " renderer.\n"); } if (v.empty() && s != "CPU")//OpenCL creation failed and CPU creation has not been attempted, so just create one CPU renderer and place it in the vector. { try { s = "CPU"; v.push_back(std::move(unique_ptr>(EmberCommon::CreateRenderer(eRendererType::CPU_RENDERER, devices, shared, texId, errorReport)))); } catch (const std::exception& e) { errorReport.AddToReport("Error creating fallback" + s + " renderer: " + e.what() + "\n"); } catch (...) { errorReport.AddToReport("Error creating fallback " + s + " renderer.\n"); } } return v; } /// /// Perform a render which allows for using strips or not. /// If an error occurs while rendering any strip, the rendering process stops. /// Note this must be called after SetEmber(ember, eProcessAction::FULL_RENDER, true) is called on the renderer. /// The last parameter to SetEmber must be true to compute the camera, because is caches certain values that need to be /// retained between strips. /// /// The renderer to use /// The ember to render /// The vector to place the final output in /// The time position to use, only valid for animation /// The number of strips to use. This must be validated before calling this function. /// True to flip the Y axis, else false. /// Function called before the start of the rendering of each strip /// Function called after the end of the rendering of each strip /// Function called if there is an error rendering a strip /// Function called when all strips successfully finish rendering /// True if all rendering was successful, else false. template static bool StripsRender(RendererBase* renderer, Ember& ember, vector& finalImage, double time, size_t strips, bool yAxisUp, std::function perStripStart, std::function perStripFinish, std::function perStripError, std::function& finalEmber)> allStripsFinished) { bool success = false; size_t origHeight, realHeight = ember.m_FinalRasH; T centerY = ember.m_CenterY; T floatStripH = T(ember.m_FinalRasH) / T(strips); T zoomScale = pow(T(2), ember.m_Zoom); T centerBase = centerY - ((strips - 1) * floatStripH) / (2 * ember.m_PixelsPerUnit * zoomScale); vector> randVec; ember.m_Quality *= strips; ember.m_FinalRasH = size_t(ceil(floatStripH)); Memset(finalImage); if (strips > 1) randVec = renderer->RandVec(); for (size_t strip = 0; strip < strips; strip++) { size_t stripOffset; if (yAxisUp) stripOffset = ember.m_FinalRasH * ((strips - strip) - 1) * ember.m_FinalRasW; else stripOffset = ember.m_FinalRasH * strip * ember.m_FinalRasW; ember.m_CenterY = centerBase + ember.m_FinalRasH * T(strip) / (ember.m_PixelsPerUnit * zoomScale); if ((ember.m_FinalRasH * (strip + 1)) > realHeight) { origHeight = ember.m_FinalRasH; ember.m_FinalRasH = realHeight - origHeight * strip; ember.m_CenterY -= (origHeight - ember.m_FinalRasH) * T(0.5) / (ember.m_PixelsPerUnit * zoomScale); } perStripStart(strip); if (strips > 1) { renderer->RandVec(randVec);//Use the same vector of ISAAC rands for each strip. renderer->SetEmber(ember);//Set one final time after modifications for strips. } if ((renderer->Run(finalImage, time, 0, false, stripOffset) == eRenderStatus::RENDER_OK) && !renderer->Aborted() && !finalImage.empty()) { perStripFinish(strip); } else { perStripError(strip); break; } if (strip == strips - 1) success = true; } //Restore the ember values to their original values. ember.m_Quality /= strips; ember.m_FinalRasH = realHeight; ember.m_CenterY = centerY; if (strips > 1) renderer->SetEmber(ember);//Further processing will require the dimensions to match the original ember, so re-assign. if (success) allStripsFinished(ember); return success; } /// /// Verify that the specified number of strips is valid for the given height. /// The passed in error functions will be called if the number of strips needs /// to be modified for the given height. /// /// The height in pixels of the image to be rendered /// The number of strips to split the render into /// Function called if the number of strips exceeds the height of the image /// Function called if the number of strips does not divide evently into the height of the image /// Called if for any reason the number of strips used will differ from the value passed in /// The actual number of strips that will be used static size_t VerifyStrips(size_t height, size_t strips, std::function stripError1, std::function stripError2, std::function stripError3) { ostringstream os; if (strips > height) { os << "Cannot have more strips than rows: " << strips << " > " << height << ". Setting strips = rows."; stripError1(os.str()); os.str(""); strips = height; } if (height % strips != 0) { os << "A strips value of " << strips << " does not divide evenly into a height of " << height << "."; stripError2(os.str()); os.str(""); strips = NextHighestEvenDiv(height, strips); if (strips == 1)//No higher divisor, check for a lower one. strips = NextLowestEvenDiv(height, strips); os << "Setting strips to " << strips << "."; stripError3(os.str()); os.str(""); } return strips; } /// /// Search the variation's OpenCL string to determine whether it contains any of the search strings in stringVec. /// This is useful for finding variations with certain characteristics since it's not possible /// to query the CPU C++ code at runtime. /// /// The variation whose OpenCL string will be searched /// The vector of strings to search for /// True to find all variations which match any strings, false to break after the first match is found. /// True if there was at least one match, else false. template bool SearchVar(const Variation* var, const vector& stringVec, bool matchAll) { bool ret = false; size_t i; auto cl = var->OpenCLFuncsString() + "\n" + var->OpenCLString(); if (matchAll) { for (i = 0; i < stringVec.size(); i++) if (cl.find(stringVec[i]) == std::string::npos) break; ret = (i == stringVec.size()); } else { for (i = 0; i < stringVec.size(); i++) { if (cl.find(stringVec[i]) != std::string::npos) { ret = true; break; } } } return ret; } template bool SearchVarWWO(const Variation* var, const vector& withVec, const vector& withoutVec) { bool ret = false; size_t i, j, k; bool onegood = false; auto cl = var->OpenCLFuncsString() + "\n" + var->OpenCLString(); vector clsplits = Split(cl, '\n'); for (i = 0; i < clsplits.size(); i++) { for (j = 0; j < withVec.size(); j++) { if (clsplits[i].find(withVec[j]) != std::string::npos) { for (k = 0; k < withoutVec.size(); k++) { if (clsplits[i].find(withoutVec[k]) != std::string::npos) { return false; } } onegood = true; } } } return onegood; //return i == clsplits.size() && j == withVec.size() && k == withoutVec.size(); } /// /// Find all variations whose OpenCL string contains any of the search strings in stringVec. /// This is useful for finding variations with certain characteristics since it's not possible /// to query the CPU C++ code at runtime. /// /// The vector of variation pointers to search /// The vector of strings to search for /// True to find all variations which match any strings, false to break after the first match is found. /// True to find all variations which match all strings, false to stop searching a variation after the first match succeeds. /// A vector of pointers to variations whose OpenCL string matched at least one string in stringVec template static vector*> FindVarsWith(const vector*>& vars, const vector& stringVec, bool findAll = true, bool matchAll = false) { vector*> vec; auto vl = VariationList::Instance(); for (auto& v : vars) { if (SearchVar(v, stringVec, matchAll)) { vec.push_back(v); if (!findAll) break; } } return vec; } template static vector*> FindVarsWithWithout(const vector*>& vars, const vector& withVec, const vector& withoutVec) { vector*> vec; auto vl = VariationList::Instance(); for (auto& v : vars) { if (SearchVarWWO(v, withVec, withoutVec)) { vec.push_back(v); } } return vec; } /// /// Find all variations whose OpenCL string does not contain any of the search strings in stringVec. /// This is useful for finding variations without certain characteristics since it's not possible /// to query the CPU C++ code at runtime. /// /// The vector of variation pointers to search /// The vector of strings to search for /// True to find all variations which don't match any strings, false to break after the first non-match is found. /// A vector of pointers to variations whose OpenCL string did not match any string in stringVec template static vector*> FindVarsWithout(const vector*>& vars, const vector& stringVec, bool findAll = true) { vector*> vec; auto vl = VariationList::Instance(); for (auto& v : vars) { if (!SearchVar(v, stringVec, false)) { vec.push_back(v); if (!findAll) break; } } return vec; } } /// /// Simple macro to print a string if the --verbose options has been specified. /// #define VerbosePrint(s) if (opt.Verbose()) cout << s << "\n"