#include "EmberCommonPch.h" #include "EmberAnimate.h" #include "JpegUtils.h" #include #include #include using namespace EmberCommon; /// /// The core of the EmberAnimate.exe program. /// Template argument expected to be float or double. /// /// A populated EmberOptions object which specifies all program options to be used /// True if success, else false. template bool EmberAnimate(int argc, _TCHAR* argv[], EmberOptions& opt) { auto info = OpenCLInfo::Instance(); std::cout.imbue(std::locale("")); if (opt.DumpArgs()) cout << opt.GetValues(eOptionUse::OPT_USE_ANIMATE) << "\n"; if (opt.OpenCLInfo()) { cout << "\nOpenCL Info: \n"; cout << info->DumpInfo(); return true; } VerbosePrint("Using " << (sizeof(T) == sizeof(float) ? "single" : "double") << " precision."); //Regular variables. Timing t; bool unsorted = false; uint padding; size_t i, firstUnsortedIndex = 0; string inputPath = GetPath(opt.Input()); vector> embers; XmlToEmber parser; EmberToXml emberToXml; Interpolater interpolater; EmberReport emberReport; const vector> devices = Devices(opt.Devices()); std::atomic atomfTime; vector threadVec; auto progress = make_unique>(); vector>> renderers; vector errorReport; std::recursive_mutex verboseCs; auto fullpath = GetExePath(argv[0]); Compat::m_Compat = opt.Flam3Compat(); if (opt.EmberCL()) { renderers = CreateRenderers(eRendererType::OPENCL_RENDERER, devices, false, 0, emberReport); errorReport = emberReport.ErrorReport(); if (!errorReport.empty()) emberReport.DumpErrorReport(); if (!renderers.size() || renderers.size() != devices.size()) { cout << "Only created " << renderers.size() << " renderers out of " << devices.size() << " requested, exiting.\n"; return false; } for (auto& renderer : renderers) if (auto rendererCL = dynamic_cast*>(renderer.get())) { rendererCL->OptAffine(true);//Optimize empty affines for final renderers, this is normally false for the interactive renderer. rendererCL->SubBatchPercentPerThread(float(opt.SBPctPerTh())); } if (opt.DoProgress()) renderers[0]->Callback(progress.get()); cout << "Using OpenCL to render.\n"; if (opt.Verbose()) { for (auto& device : devices) { cout << "Platform: " << info->PlatformName(device.first) << "\n"; cout << "Device: " << info->DeviceName(device.first, device.second) << "\n"; } } if (opt.ThreadCount() > 1) cout << "Cannot specify threads with OpenCL, using 1 thread.\n"; opt.ThreadCount(1); if (opt.IsaacSeed().empty()) { for (auto& r : renderers) r->ThreadCount(opt.ThreadCount(), nullptr); } else { for (i = 0; i < renderers.size(); i++) { string ns; auto& is = opt.IsaacSeed(); ns.reserve(is.size()); for (auto& c : is) ns.push_back(c + char(i * opt.ThreadCount())); renderers[i]->ThreadCount(opt.ThreadCount(), ns.c_str()); } } } else { unique_ptr> tempRenderer(CreateRenderer(eRendererType::CPU_RENDERER, devices, false, 0, emberReport)); errorReport = emberReport.ErrorReport(); if (!errorReport.empty()) emberReport.DumpErrorReport(); if (!tempRenderer.get()) { cout << "Renderer creation failed, exiting.\n"; return false; } if (opt.DoProgress()) tempRenderer->Callback(progress.get()); if (opt.ThreadCount() == 0) { cout << "Using " << Timing::ProcessorCount() << " automatically detected threads.\n"; opt.ThreadCount(Timing::ProcessorCount()); } else { cout << "Using " << opt.ThreadCount() << " manually specified threads.\n"; } tempRenderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr); renderers.push_back(std::move(tempRenderer)); } if (!InitPaletteList(fullpath, opt.PalettePath())) //For any modern flames, the palette isn't used. This is for legacy purposes and should be removed. return false; cout << "Parsing ember file " << opt.Input() << "\n"; if (!ParseEmberFile(parser, opt.Input(), embers)) return false; cout << "Finished parsing.\n"; if (embers.size() <= 1) { cout << "Read " << embers.size() << " embers from file. At least 2 required to animate, exiting.\n"; return false; } if (!Find(opt.Format(), "jpg") && !Find(opt.Format(), "png") && #ifdef _WIN32 !Find(opt.Format(), "bmp") && #endif !Find(opt.Format(), "exr")) { #ifdef _WIN32 cout << "Format must be bmp, jpg, png, png16 or exr, not " << opt.Format() << ". Setting to png.\n"; #else cout << "Format must be jpg, png, png16 or exr, not " << opt.Format() << ". Setting to png.\n"; #endif opt.Format("png"); } if (opt.AspectRatio() < 0) { cout << "Invalid pixel aspect ratio " << opt.AspectRatio() << "\n. Must be positive, setting to 1.\n"; opt.AspectRatio(1); } if (opt.Dtime() < 1) { cout << "Warning: dtime must be positive, not " << opt.Dtime() << ". Setting to 1.\n"; opt.Dtime(1); } if (opt.Frame() != UINT_MAX) { if (opt.FirstFrame() != UINT_MAX || opt.LastFrame() != UINT_MAX) { cout << "Cannot specify both frame and begin or end.\n"; return false; } if (opt.Frame()) opt.FirstFrame(opt.Frame() - 1); opt.LastFrame(opt.FirstFrame() + 1); } //Prep all embers, by ensuring they: //-Are sorted by time. //-Do not have a dimension of 0. //-Do not have a memory requirement greater than max uint. //-Have quality and size scales applied, if present. //-Have equal dimensions. for (i = 0; i < embers.size(); i++) { auto& ember = embers[i]; auto& emberm1 = embers[i - 1]; if (i > 0 && ember.m_Time <= emberm1.m_Time) { if (!unsorted) firstUnsortedIndex = i; unsorted = true; } if (i > 0 && ember.m_Time == emberm1.m_Time) { cout << "Image " << i << " time of " << ember.m_Time << " equaled previous image time of " << emberm1.m_Time << ". Adjusting up by 1.\n"; ember.m_Time++; } if (opt.Supersample() > 0) ember.m_Supersample = opt.Supersample(); if (opt.TemporalSamples() > 0) ember.m_TemporalSamples = opt.TemporalSamples(); if (opt.Quality() > 0) ember.m_Quality = T(opt.Quality()); if (opt.DeMin() > -1) ember.m_MinRadDE = T(opt.DeMin()); if (opt.DeMax() > -1) ember.m_MaxRadDE = T(opt.DeMax()); ember.m_Quality *= T(opt.QualityScale()); if (opt.SizeScale() != 1.0) { ember.m_FinalRasW = size_t(T(ember.m_FinalRasW) * opt.SizeScale()); ember.m_FinalRasH = size_t(T(ember.m_FinalRasH) * opt.SizeScale()); ember.m_PixelsPerUnit *= T(opt.SizeScale()); } else if (opt.WidthScale() != 1.0 || opt.HeightScale() != 1.0) { auto scaleType = eScaleType::SCALE_NONE; if (ToLower(opt.ScaleType()) == "width") scaleType = eScaleType::SCALE_WIDTH; else if (ToLower(opt.ScaleType()) == "height") scaleType = eScaleType::SCALE_HEIGHT; else if (ToLower(opt.ScaleType()) != "none") cout << "Scale type must be width height or none. Setting to none.\n"; const auto w = std::max(size_t(ember.m_OrigFinalRasW * opt.WidthScale()), 10); const auto h = std::max(size_t(ember.m_OrigFinalRasH * opt.HeightScale()), 10); ember.SetSizeAndAdjustScale(w, h, false, scaleType); } //Cast to double in case the value exceeds 2^32. const auto imageMem = 4 * static_cast(ember.m_FinalRasW) * static_cast(ember.m_FinalRasH) * static_cast(renderers[0]->BytesPerChannel()); const auto maxMem = pow(2.0, static_cast((sizeof(void*) * 8) - 1)); if (imageMem > maxMem)//Ensure the max amount of memory for a process isn't exceeded. { cout << "Image " << i << " size > " << maxMem << ". Setting to 1920 x 1080.\n"; ember.m_FinalRasW = 1920; ember.m_FinalRasH = 1080; } if (ember.m_FinalRasW == 0 || ember.m_FinalRasH == 0) { cout << "Warning: Output image " << i << " has dimension 0: " << ember.m_FinalRasW << ", " << ember.m_FinalRasH << ". Setting to 1920 x 1080.\n"; ember.m_FinalRasW = 1920; ember.m_FinalRasH = 1080; } if ((ember.m_FinalRasW != embers[0].m_FinalRasW) || (ember.m_FinalRasH != embers[0].m_FinalRasH)) { cout << "Warning: flame " << i << " at time " << ember.m_Time << " size mismatch. (" << ember.m_FinalRasW << ", " << ember.m_FinalRasH << ") should be (" << embers[0].m_FinalRasW << ", " << embers[0].m_FinalRasH << "). Setting to " << embers[0].m_FinalRasW << ", " << embers[0].m_FinalRasH << ".\n"; ember.m_FinalRasW = embers[0].m_FinalRasW; ember.m_FinalRasH = embers[0].m_FinalRasH; } } if (unsorted) { cout << "Embers were unsorted by time. First out of order index was " << firstUnsortedIndex << ". Sorting.\n"; std::sort(embers.begin(), embers.end(), &CompareEmbers); } if (opt.Frame() == UINT_MAX) { if (opt.FirstFrame() == UINT_MAX) opt.FirstFrame(size_t(embers[0].m_Time)); if (opt.LastFrame() == UINT_MAX) opt.LastFrame(ClampGte(size_t(embers.back().m_Time), opt.FirstFrame() + opt.Dtime()));//Make sure the final value is at least first frame + dtime. } //Final setup steps before running. padding = uint(std::log10(double(embers.size()))) + 1; for (auto& r : renderers) { r->SetExternalEmbersPointer(&embers);//All will share a pointer to the original vector to conserve memory with large files. Ok because the vec doesn't get modified. r->EarlyClip(opt.EarlyClip()); r->YAxisUp(opt.YAxisUp()); r->LockAccum(opt.LockAccum()); r->PixelAspectRatio(T(opt.AspectRatio())); r->Priority(eThreadPriority(Clamp(intmax_t(opt.Priority()), intmax_t(eThreadPriority::LOWEST), intmax_t(eThreadPriority::HIGHEST)))); } std::function&, string, EmberImageComments, size_t, size_t, size_t)> saveFunc = [&](vector& finalImage, string baseFilename,//These are copies because this will be launched in a thread. EmberImageComments comments, size_t w, size_t h, size_t chan) { const auto finalImagep = finalImage.data(); const auto size = w * h; const auto doBmp = Find(opt.Format(), "bmp"); const auto doJpg = Find(opt.Format(), "jpg"); const auto doExr16 = Find(opt.Format(), "exr"); const auto doExr32 = Find(opt.Format(), "exr32"); const auto doPng8 = Find(opt.Format(), "png"); const auto doPng16 = Find(opt.Format(), "png16"); const auto doOnlyPng8 = doPng8 && !doPng16; const auto doOnlyExr16 = doExr16 && !doExr32; vector rgb8Image; vector writeFileThreads; writeFileThreads.reserve(6); if (doBmp || doJpg) { rgb8Image.resize(size * 3); Rgba32ToRgb8(finalImagep, rgb8Image.data(), w, h); if (doBmp) { writeFileThreads.push_back(std::thread([&]() { const auto fn = baseFilename + ".bmp"; VerbosePrint("Writing " + fn); const auto writeSuccess = WriteBmp(fn.c_str(), rgb8Image.data(), w, h); if (!writeSuccess) cout << "Error writing " << fn << "\n"; })); } if (doJpg) { writeFileThreads.push_back(std::thread([&]() { const auto fn = baseFilename + ".jpg"; VerbosePrint("Writing " + fn); const auto writeSuccess = WriteJpeg(fn.c_str(), rgb8Image.data(), w, h, int(opt.JpegQuality()), opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << fn << "\n"; })); } } if (doPng8) { bool doBothPng = doPng16 && (opt.Format().find("png") != opt.Format().rfind("png")); if (doBothPng || doOnlyPng8)//8-bit PNG. { writeFileThreads.push_back(std::thread([&]() { const auto fn = baseFilename + ".png"; VerbosePrint("Writing " + fn); vector rgba8Image(size * 4); Rgba32ToRgba8(finalImagep, rgba8Image.data(), w, h, opt.Transparency()); const auto writeSuccess = WritePng(fn.c_str(), rgba8Image.data(), w, h, 1, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << fn << "\n"; })); } if (doPng16)//16-bit PNG. { writeFileThreads.push_back(std::thread([&]() { const auto suffix = opt.Suffix(); auto fn = baseFilename; if (doBothPng)//Add suffix if they specified both PNG. { VerbosePrint("Doing both PNG formats, so adding suffix _p16 to avoid overwriting the same file."); fn += "_p16"; } fn += ".png"; VerbosePrint("Writing " + fn); vector rgba16Image(size * 4); Rgba32ToRgba16(finalImagep, rgba16Image.data(), w, h, opt.Transparency()); const auto writeSuccess = WritePng(fn.c_str(), (byte*)rgba16Image.data(), w, h, 2, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << fn << "\n"; })); } } if (doExr16) { bool doBothExr = doExr32 && (opt.Format().find("exr") != opt.Format().rfind("exr")); if (doBothExr || doOnlyExr16)//16-bit EXR { writeFileThreads.push_back(std::thread([&]() { const auto fn = baseFilename + ".exr"; VerbosePrint("Writing " + fn); vector rgba32Image(size); Rgba32ToRgbaExr(finalImagep, rgba32Image.data(), w, h, opt.Transparency()); const auto writeSuccess = WriteExr16(fn.c_str(), rgba32Image.data(), w, h, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << fn << "\n"; })); } if (doExr32)//32-bit EXR. { writeFileThreads.push_back(std::thread([&]() { const auto suffix = opt.Suffix(); auto fn = baseFilename; if (doBothExr)//Add suffix if they specified both EXR. { VerbosePrint("Doing both EXR formats, so adding suffix _exr32 to avoid overwriting the same file."); fn += "_exr32"; } fn += ".exr"; VerbosePrint("Writing " + fn); vector r(size); vector g(size); vector b(size); vector a(size); Rgba32ToRgba32Exr(finalImagep, r.data(), g.data(), b.data(), a.data(), w, h, opt.Transparency()); const auto writeSuccess = WriteExr32(fn.c_str(), r.data(), g.data(), b.data(), a.data(), w, h, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << fn << "\n"; })); } } Join(writeFileThreads); }; atomfTime.store(opt.FirstFrame()); std::function iterFunc = [&](size_t index) { size_t ftime, finalImageIndex = 0; RendererBase* renderer = renderers[index].get(); ostringstream os; EmberStats stats; EmberImageComments comments; Ember centerEmber; vector finalImages[2]; std::thread writeThread; os.imbue(std::locale("")); //The conditions of this loop use atomics to synchronize when running on multiple GPUs. //The order is reversed from the usual loop: rather than compare and increment the counter, //it's incremented, then compared. This is done to ensure the GPU on this thread "claims" this //frame before working on it. //The mechanism for incrementing is: // Do an atomic add, which returns the previous value. // Add the time increment Dtime() to the return value to mimic what the new atomic value should be. // Assign the result to the ftime counter. // Do a <= comparison to LastFrame(). // If true, enter the loop and immediately decrement the counter by Dtime() to make up for the fact // that it was first incremented before comparing. while ((ftime = (atomfTime.fetch_add(opt.Dtime()) + opt.Dtime())) <= opt.LastFrame()) { const auto localTime = static_cast(ftime) - opt.Dtime(); if (opt.Verbose() && ((opt.LastFrame() - opt.FirstFrame()) / opt.Dtime() >= 1)) { rlg l(verboseCs); cout << "Time = " << ftime << " / " << opt.LastFrame() << " / " << opt.Dtime() << "\n"; } renderer->Reset(); if ((renderer->Run(finalImages[finalImageIndex], localTime) != eRenderStatus::RENDER_OK) || renderer->Aborted() || finalImages[finalImageIndex].empty()) { cout << "Error: image rendering failed, aborting.\n"; renderer->DumpErrorReport();//Something went wrong, print errors. atomfTime.store(opt.LastFrame() + 1);//Abort all threads if any of them encounter an error. break; } if (opt.WriteGenome()) { const auto flameName = MakeAnimFilename(inputPath, opt.Prefix(), opt.Suffix(), ".flame", padding, size_t(localTime)); if (opt.Verbose()) { rlg l(verboseCs); cout << "Writing " << flameName << "\n"; } interpolater.Interpolate(embers, localTime, 0, centerEmber);//Get center flame. emberToXml.Save(flameName, centerEmber, opt.PrintEditDepth(), true, opt.HexPalette(), true, false, false); centerEmber.Clear(); } stats = renderer->Stats(); comments = renderer->ImageComments(stats, opt.PrintEditDepth(), true); os.str(""); const auto iterCount = renderer->TotalIterCount(1); os << comments.m_NumIters << " / " << iterCount << " (" << std::fixed << std::setprecision(2) << ((static_cast(stats.m_Iters) / static_cast(iterCount)) * 100) << "%)"; if (opt.Verbose()) { rlg l(verboseCs); cout << "\nIters ran/requested: " + os.str() << "\n"; if (!opt.EmberCL()) cout << "Bad values: " << stats.m_Badvals << "\n"; cout << "Render time: " << t.Format(stats.m_RenderMs) << "\n"; cout << "Pure iter time: " << t.Format(stats.m_IterMs) << "\n"; cout << "Iters/sec: " << size_t(stats.m_Iters / (stats.m_IterMs / 1000.0)) << "\n"; } //Run image writing in a thread. Although doing it this way duplicates the final output memory, it saves a lot of time //when running with OpenCL. Call join() to ensure the previous thread call has completed. Join(writeThread); const auto threadVecIndex = finalImageIndex;//Cache before launching thread. const auto baseFilename = MakeAnimFilename(inputPath, opt.Prefix(), opt.Suffix(), "", padding, size_t(localTime)); if (opt.ThreadedWrite())//Copies of all but the first parameter are passed to saveFunc(), to avoid conflicting with those values changing when starting the render for the next image. { writeThread = std::thread(saveFunc, std::ref(finalImages[threadVecIndex]), baseFilename, comments, renderer->FinalRasW(), renderer->FinalRasH(), renderer->NumChannels()); finalImageIndex ^= 1;//Toggle the index. } else saveFunc(finalImages[threadVecIndex], baseFilename, comments, renderer->FinalRasW(), renderer->FinalRasH(), renderer->NumChannels());//Will always use the first index, thereby not requiring more memory. } Join(writeThread);//One final check to make sure all writing is done before exiting this thread. }; threadVec.reserve(renderers.size()); for (size_t r = 0; r < renderers.size(); r++) { threadVec.push_back(std::thread([&](size_t dev) { iterFunc(dev); }, r)); } Join(threadVec); t.Toc("\nFinished in: ", true); return true; } /// /// Main program entry point for EmberAnimate.exe. /// /// The number of command line arguments passed /// The command line arguments passed /// 0 if successful, else 1. int _tmain(int argc, _TCHAR* argv[]) { bool b = false; EmberOptions opt; //Required for large allocs, else GPU memory usage will be severely limited to small sizes. //This must be done in the application and not in the EmberCL DLL. #ifdef _WIN32 _putenv_s("GPU_MAX_ALLOC_PERCENT", "100"); #else putenv(const_cast("GPU_MAX_ALLOC_PERCENT=100")); #endif _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); if (!opt.Populate(argc, argv, eOptionUse::OPT_USE_ANIMATE)) { const auto palf = PaletteList::Instance(); #ifdef DO_DOUBLE if (!opt.Sp()) b = EmberAnimate(argc, argv, opt); else #endif b = EmberAnimate(argc, argv, opt); } return b ? 0 : 1; }