#include "EmberCommonPch.h" #include "EmberRender.h" #include "JpegUtils.h" using namespace EmberCommon; /// /// The core of the EmberRender.exe program. /// Template argument expected to be float or double. /// /// A populated EmberOptions object which specifies all program options to be used /// True if success, else false. template bool EmberRender(EmberOptions& opt) { auto info = EmberCLns::OpenCLInfo::Instance(); std::cout.imbue(std::locale("")); if (opt.DumpArgs()) cout << opt.GetValues(eOptionUse::OPT_USE_RENDER) << "\n"; if (opt.OpenCLInfo()) { cout << "\nOpenCL Info: \n"; cout << info->DumpInfo(); return true; } VerbosePrint("Using " << (sizeof(T) == sizeof(float) ? "single" : "double") << " precision."); Timing t; uint padding; size_t i; size_t strips; size_t iterCount; string inputPath = GetPath(opt.Input()); ostringstream os; pair p; vector> embers; vector finalImage; EmberStats stats; EmberReport emberReport; EmberImageComments comments; XmlToEmber parser; EmberToXml emberToXml; vector> randVec; const vector> devices = Devices(opt.Devices()); auto progress = make_unique>(); unique_ptr> renderer(CreateRenderer(opt.EmberCL() ? eRendererType::OPENCL_RENDERER : eRendererType::CPU_RENDERER, devices, false, 0, emberReport)); vector errorReport = emberReport.ErrorReport(); if (!errorReport.empty()) emberReport.DumpErrorReport(); if (!renderer.get()) { cout << "Renderer creation failed, exiting.\n" ; return false; } if (opt.EmberCL() && renderer->RendererType() != eRendererType::OPENCL_RENDERER)//OpenCL init failed, so fall back to CPU. opt.EmberCL(false); if (!InitPaletteList(opt.PalettePath()))//For any modern flames, the palette isn't used. This is for legacy purposes and should be removed. return false; if (!ParseEmberFile(parser, opt.Input(), embers)) return false; if (!opt.EmberCL()) { if (opt.ThreadCount() == 0) { cout << "Using " << Timing::ProcessorCount() << " automatically detected threads.\n"; opt.ThreadCount(Timing::ProcessorCount()); } else { cout << "Using " << opt.ThreadCount() << " manually specified threads.\n"; } renderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr); } else { cout << "Using OpenCL to render.\n"; if (opt.Verbose()) { for (auto& device : devices) { cout << "Platform: " << info->PlatformName(device.first) << "\n"; cout << "Device: " << info->DeviceName(device.first, device.second) << "\n"; } } if (opt.ThreadCount() > 1) cout << "Cannot specify threads with OpenCL, using 1 thread.\n"; opt.ThreadCount(1); renderer->ThreadCount(opt.ThreadCount(), opt.IsaacSeed() != "" ? opt.IsaacSeed().c_str() : nullptr); if (opt.InsertPalette()) { cout << "Inserting palette not supported with OpenCL, insertion will not take place.\n"; opt.InsertPalette(false); } } if (!Find(opt.Format(), "jpg") && !Find(opt.Format(), "png") && #ifdef _WIN32 !Find(opt.Format(), "bmp") && #endif !Find(opt.Format(), "exr")) { #ifdef _WIN32 cout << "Format must be bmp, jpg, png, png16 or exr, not " << opt.Format() << ". Setting to png.\n"; #else cout << "Format must be jpg, png, png16 or exr, not " << opt.Format() << ". Setting to png.\n"; #endif opt.Format("png"); } if (opt.AspectRatio() < 0) { cout << "Invalid pixel aspect ratio " << opt.AspectRatio() << "\n. Must be positive, setting to 1.\n"; opt.AspectRatio(1); } if (!opt.Out().empty() && (embers.size() > 1)) { cout << "Single output file " << opt.Out() << " specified for multiple images. Changing to use prefix of badname-changethis instead. Always specify prefixes when reading a file with multiple embers.\n"; opt.Out(""); opt.Prefix("badname-changethis"); } //Final setup steps before running. os.imbue(std::locale("")); padding = uint(std::log10(double(embers.size()))) + 1; renderer->EarlyClip(opt.EarlyClip()); renderer->YAxisUp(opt.YAxisUp()); renderer->LockAccum(opt.LockAccum()); renderer->InsertPalette(opt.InsertPalette()); renderer->PixelAspectRatio(T(opt.AspectRatio())); renderer->Priority(eThreadPriority(Clamp(intmax_t(opt.Priority()), intmax_t(eThreadPriority::LOWEST), intmax_t(eThreadPriority::HIGHEST)))); renderer->Callback(opt.DoProgress() ? progress.get() : nullptr); for (i = 0; i < embers.size(); i++) { auto& ember = embers[i]; if (opt.Verbose() && embers.size() > 1) cout << "\nFlame = " << i + 1 << "/" << embers.size() << "\n"; else if (embers.size() > 1) VerbosePrint("\n"); if (opt.Supersample() > 0) ember.m_Supersample = opt.Supersample(); if (opt.Quality() > 0) ember.m_Quality = T(opt.Quality()); if (opt.DeMin() > -1) ember.m_MinRadDE = T(opt.DeMin()); if (opt.DeMax() > -1) ember.m_MaxRadDE = T(opt.DeMax()); ember.m_TemporalSamples = 1;//Force temporal samples to 1 for render. ember.m_Quality *= T(opt.QualityScale()); if (opt.SizeScale() != 1.0) { ember.m_FinalRasW = size_t(T(ember.m_FinalRasW) * opt.SizeScale()); ember.m_FinalRasH = size_t(T(ember.m_FinalRasH) * opt.SizeScale()); ember.m_PixelsPerUnit *= T(opt.SizeScale()); } else if (opt.WidthScale() != 1.0 || opt.HeightScale() != 1.0) { auto scaleType = eScaleType::SCALE_NONE; if (ToLower(opt.ScaleType()) == "width") scaleType = eScaleType::SCALE_WIDTH; else if (ToLower(opt.ScaleType()) == "height") scaleType = eScaleType::SCALE_HEIGHT; else if (ToLower(opt.ScaleType()) != "none") cout << "Scale type must be width height or none. Setting to none.\n"; auto w = std::max(size_t(ember.m_OrigFinalRasW * opt.WidthScale()), 10); auto h = std::max(size_t(ember.m_OrigFinalRasH * opt.HeightScale()), 10); ember.SetSizeAndAdjustScale(w, h, false, scaleType); } if (ember.m_FinalRasW == 0 || ember.m_FinalRasH == 0) { cout << "Output image " << i << " has dimension 0: " << ember.m_FinalRasW << ", " << ember.m_FinalRasH << ". Setting to 1920 x 1080.\n"; ember.m_FinalRasW = 1920; ember.m_FinalRasH = 1080; } //Cast to double in case the value exceeds 2^32. double imageMem = double(renderer->NumChannels()) * double(ember.m_FinalRasW) * double(ember.m_FinalRasH) * double(renderer->BytesPerChannel()); double maxMem = pow(2.0, double((sizeof(void*) * 8) - 1)); if (imageMem > maxMem)//Ensure the max amount of memory for a process is not exceeded. { cout << "Image " << i << " size > " << maxMem << ". Setting to 1920 x 1080.\n"; ember.m_FinalRasW = 1920; ember.m_FinalRasH = 1080; } stats.Clear(); renderer->SetEmber(ember); renderer->PrepFinalAccumVector(finalImage);//Must manually call this first because it could be erroneously made smaller due to strips if called inside Renderer::Run(). if (opt.Strips() > 1) { strips = opt.Strips(); } else { p = renderer->MemoryRequired(1, true, false);//No threaded write for render, only for animate. strips = CalcStrips(double(p.second), double(renderer->MemoryAvailable()), opt.UseMem()); if (strips > 1) VerbosePrint("Setting strips to " << strips << " with specified memory usage of " << opt.UseMem()); } strips = VerifyStrips(ember.m_FinalRasH, strips, [&](const string & s) { cout << s << "\n"; }, //Greater than height. [&](const string & s) { cout << s << "\n"; }, //Mod height != 0. [&](const string & s) { cout << s << "\n"; }); //Final strips value to be set. //For testing incremental renderer. //int sb = 1; //bool resume = false, success = false; //do //{ // success = renderer->Run(finalImage, 0, sb, false/*resume == false*/) == RENDER_OK; // sb++; // resume = true; //} //while (success && renderer->ProcessState() != ACCUM_DONE); StripsRender(renderer.get(), ember, finalImage, 0, strips, opt.YAxisUp(), [&](size_t strip)//Pre strip. { if (opt.Verbose() && (strips > 1) && strip > 0) cout << "\n"; if (strips > 1) VerbosePrint("Strip = " << (strip + 1) << "/" << strips); }, [&](size_t strip)//Post strip. { progress->Clear(); stats += renderer->Stats(); }, [&](size_t strip)//Error. { cout << "Error: image rendering failed, skipping to next image.\n"; renderer->DumpErrorReport();//Something went wrong, print errors. }, //Final strip. //Original wrote every strip as a full image which could be very slow with many large images. //Only write once all strips for this image are finished. [&](Ember& finalEmber) { //TotalIterCount() is actually using ScaledQuality() which does not get reset upon ember assignment, //so it ends up using the correct value for quality * strips. iterCount = renderer->TotalIterCount(1); comments = renderer->ImageComments(stats, opt.PrintEditDepth(), true); os.str(""); os << comments.m_NumIters << " / " << iterCount << " (" << std::fixed << std::setprecision(2) << ((double(stats.m_Iters) / double(iterCount)) * 100) << "%)"; VerbosePrint("\nIters ran/requested: " + os.str()); if (!opt.EmberCL()) VerbosePrint("Bad values: " << stats.m_Badvals); VerbosePrint("Render time: " + t.Format(stats.m_RenderMs)); VerbosePrint("Pure iter time: " + t.Format(stats.m_IterMs)); VerbosePrint("Iters/sec: " << size_t(stats.m_Iters / (stats.m_IterMs / 1000.0)) << "\n"); bool useName = opt.NameEnable() && !finalEmber.m_Name.empty(); auto finalImagep = finalImage.data(); auto size = finalEmber.m_FinalRasW * finalEmber.m_FinalRasH; bool doBmp = Find(opt.Format(), "bmp"); bool doJpg = Find(opt.Format(), "jpg"); bool doExr = Find(opt.Format(), "exr"); bool doPng8 = Find(opt.Format(), "png"); bool doPng16 = Find(opt.Format(), "png16"); bool doOnlyPng8 = doPng8 && !doPng16; vector rgb8Image; vector writeFileThreads; writeFileThreads.reserve(5); if (doBmp || doJpg) { rgb8Image.resize(size * 3); Rgba32ToRgb8(finalImagep, rgb8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH); if (doBmp) { writeFileThreads.push_back(std::thread([&]() { auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "bmp", padding, i, useName); VerbosePrint("Writing " + filename); auto writeSuccess = WriteBmp(filename.c_str(), rgb8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH); if (!writeSuccess) cout << "Error writing " << filename << "\n"; })); } if (doJpg) { writeFileThreads.push_back(std::thread([&]() { auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "jpg", padding, i, useName); VerbosePrint("Writing " + filename); auto writeSuccess = WriteJpeg(filename.c_str(), rgb8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, int(opt.JpegQuality()), opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << filename << "\n"; })); } } if (doPng8) { bool doBothPng = doPng16 && (opt.Format().find("png") != opt.Format().rfind("png")); if (doBothPng || doOnlyPng8)//8-bit PNG { writeFileThreads.push_back(std::thread([&]() { auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "png", padding, i, useName); VerbosePrint("Writing " + filename); vector rgba8Image(size * 4); Rgba32ToRgba8(finalImagep, rgba8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.Transparency()); auto writeSuccess = WritePng(filename.c_str(), rgba8Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, 1, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << filename << "\n"; })); } if (doPng16) { writeFileThreads.push_back(std::thread([&]() { auto suffix = opt.Suffix(); if (doBothPng)//Add suffix if they specified both PNG. { VerbosePrint("Doing both PNG formats, so adding suffix _p16 to avoid overwriting the same file."); suffix += "_p16"; } auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), suffix, "png", padding, i, useName); VerbosePrint("Writing " + filename); vector rgba16Image(size * 4); Rgba32ToRgba16(finalImagep, rgba16Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.Transparency()); auto writeSuccess = WritePng(filename.c_str(), (byte*)rgba16Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, 2, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << filename << "\n"; })); } } if (doExr) { writeFileThreads.push_back(std::thread([&]() { auto filename = MakeSingleFilename(inputPath, opt.Out(), finalEmber.m_Name, opt.Prefix(), opt.Suffix(), "exr", padding, i, useName); VerbosePrint("Writing " + filename); vector rgba32Image(size); Rgba32ToRgbaExr(finalImagep, rgba32Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.Transparency()); auto writeSuccess = WriteExr(filename.c_str(), rgba32Image.data(), finalEmber.m_FinalRasW, finalEmber.m_FinalRasH, opt.EnableComments(), comments, opt.Id(), opt.Url(), opt.Nick()); if (!writeSuccess) cout << "Error writing " << filename << "\n"; })); } Join(writeFileThreads); }); if (opt.EmberCL() && opt.DumpKernel()) { if (auto rendererCL = dynamic_cast*>(renderer.get())) { cout << "Iteration kernel:\n" << rendererCL->IterKernel() << "\n\n" << "Density filter kernel:\n" << rendererCL->DEKernel() << "\n\n" << "Final accumulation kernel:\n" << rendererCL->FinalAccumKernel() << "\n"; } } VerbosePrint("Done."); } t.Toc("\nFinished in: ", true); return true; } /// /// Main program entry point for EmberRender.exe. /// /// The number of command line arguments passed /// The command line arguments passed /// 0 if successful, else 1. int _tmain(int argc, _TCHAR* argv[]) { bool b = false; EmberOptions opt; //Required for large allocs, else GPU memory usage will be severely limited to small sizes. //This must be done in the application and not in the EmberCL DLL. #ifdef _WIN32 _putenv_s("GPU_MAX_ALLOC_PERCENT", "100"); //_putenv_s("GPU_FORCE_64BIT_PTR", "1"); #else putenv(const_cast("GPU_MAX_ALLOC_PERCENT=100")); #endif _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); if (!opt.Populate(argc, argv, eOptionUse::OPT_USE_RENDER)) { auto palf = PaletteList::Instance(); #ifdef DO_DOUBLE if (!opt.Sp()) b = EmberRender(opt); else #endif b = EmberRender(opt); } return b ? 0 : 1; }