#include "EmberCLPch.h" #include "FunctionMapper.h" namespace EmberCLns { std::unordered_map FunctionMapper::s_GlobalMap; FunctionMapper::FunctionMapper() { if (s_GlobalMap.empty()) { s_GlobalMap["LRint"] = "inline real_t LRint(real_t x)\n" "{\n" " intPrec temp = (x >= 0.0 ? (intPrec)(x + 0.5) : (intPrec)(x - 0.5));\n" " return (real_t)temp;\n" "}\n"; s_GlobalMap["Round"] = "inline real_t Round(real_t r)\n" "{\n" " return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);\n" "}\n"; s_GlobalMap["Sign"] = "inline real_t Sign(real_t v)\n" "{\n" " return (v < 0.0) ? -1 : (v > 0.0) ? 1 : 0.0;\n" "}\n"; s_GlobalMap["SignNz"] = "inline real_t SignNz(real_t v)\n" "{\n" " return (v < 0.0) ? -1.0 : 1.0;\n" "}\n"; s_GlobalMap["Sqr"] = "inline real_t Sqr(real_t v)\n" "{\n" " return v * v;\n" "}\n"; s_GlobalMap["SafeSqrt"] = "inline real_t SafeSqrt(real_t x)\n" "{\n" " if (x <= 0.0)\n" " return 0.0;\n" "\n" " return sqrt(x);\n" "}\n"; s_GlobalMap["SafeDivInv"] = "inline real_t SafeDivInv(real_t q, real_t r)\n" "{\n" " if (r < EPS)\n" " return 1 / r;\n" "\n" " return q / r;\n" "}\n"; s_GlobalMap["Cube"] = "inline real_t Cube(real_t v)\n" "{\n" " return v * v * v;\n" "}\n"; s_GlobalMap["Hypot"] = "inline real_t Hypot(real_t x, real_t y)\n" "{\n" " return sqrt(SQR(x) + SQR(y));\n" "}\n"; s_GlobalMap["Spread"] = "inline real_t Spread(real_t x, real_t y)\n" "{\n" " return Hypot(x, y) * ((x) > 0.0 ? 1.0 : -1.0);\n" "}\n"; s_GlobalMap["Powq4"] = "inline real_t Powq4(real_t x, real_t y)\n" "{\n" " return pow(fabs(x), y) * SignNz(x);\n" "}\n"; s_GlobalMap["Powq4c"] = "inline real_t Powq4c(real_t x, real_t y)\n" "{\n" " return y == 1.0 ? x : Powq4(x, y);\n" "}\n"; s_GlobalMap["Zeps"] = "inline real_t Zeps(real_t x)\n" "{\n" " return x == 0.0 ? EPS : x;\n" "}\n"; s_GlobalMap["Lerp"] = "inline real_t Lerp(real_t a, real_t b, real_t p)\n" "{\n" " return a + (b - a) * p;\n" "}\n"; s_GlobalMap["Fabsmod"] = "inline real_t Fabsmod(real_t v)\n" "{\n" " real_t dummy;\n" "\n" " return modf(v, &dummy);\n" "}\n"; s_GlobalMap["Fosc"] = "inline real_t Fosc(real_t p, real_t amp, real_t ph)\n" "{\n" " return 0.5 - cos(p * amp + ph) * 0.5;\n" "}\n"; s_GlobalMap["Foscn"] = "inline real_t Foscn(real_t p, real_t ph)\n" "{\n" " return 0.5 - cos(p + ph) * 0.5;\n" "}\n"; s_GlobalMap["LogScale"] = "inline real_t LogScale(real_t x)\n" "{\n" " return x == 0.0 ? 0.0 : log((fabs(x) + 1) * M_E) * SignNz(x) / M_E;\n" "}\n"; s_GlobalMap["LogMap"] = "inline real_t LogMap(real_t x)\n" "{\n" " return x == 0.0 ? 0.0 : (M_E + log(x * M_E)) * 0.25 * SignNz(x);\n" "}\n"; s_GlobalMap["ClampGte"] = "inline real_t ClampGte(real_t val, real_t gte)\n" "{\n" " return (val < gte) ? gte : val;\n" "}\n"; s_GlobalMap["Swap"] = "inline void Swap(real_t* val1, real_t* val2)\n" "{\n" " real_t tmp = *val1;\n" " *val1 = *val2;\n" " *val2 = tmp;\n" "}\n"; s_GlobalMap["Vratio"] = "inline real_t Vratio(real2* p, real2* q, real2* u)\n" "{\n" " real2 pmq = *p - *q;\n" "\n" " if (pmq.x == 0 && pmq.y == 0)\n" " return 1.0;\n" "\n" " return 2 * (((*u).x - (*q).x) * pmq.x + ((*u).y - (*q).y) * pmq.y) / Zeps(SQR(pmq.x) + SQR(pmq.y));\n" "}\n"; s_GlobalMap["Closest"] = "inline int Closest(real2* p, int n, real2* u)\n" "{\n" " real_t d2;\n" " real_t d2min = TMAX;\n" " int i, j = 0;\n" "\n" " for (i = 0; i < n; i++)\n" " {\n" " d2 = Sqr(p[i].x - (*u).x) + Sqr(p[i].y - (*u).y);\n" "\n" " if (d2 < d2min)\n" " {\n" " d2min = d2;\n" " j = i;\n" " }\n" " }\n" "\n" " return j;\n" "}\n"; s_GlobalMap["Voronoi"] = "inline real_t Voronoi(real2* p, int n, int q, real2* u)\n" "{\n" " real_t ratio;\n" " real_t ratiomax = TLOW;\n" " int i;\n" "\n" " for (i = 0; i < n; i++)\n" " {\n" " if (i != q)\n" " {\n" " ratio = Vratio(&p[i], &p[q], u);\n" "\n" " if (ratio > ratiomax)\n" " ratiomax = ratio;\n" " }\n" " }\n" "\n" " return ratiomax;\n" "}\n"; s_GlobalMap["SimplexNoise3D"] = "inline real_t SimplexNoise3D(real4* v, __global real_t* p, __global real_t* grad)\n" "{\n" " real4 c[4];\n" " real_t n = 0;\n" " int gi[4];\n" " real_t skewIn = ((*v).x + (*v).y + (*v).z) * 0.333333;\n" " int i = (int)floor((*v).x + skewIn);\n" " int j = (int)floor((*v).y + skewIn);\n" " int k = (int)floor((*v).z + skewIn);\n" " real_t t = (i + j + k) * 0.1666666;\n" " real_t x0 = i - t;\n" " real_t y0 = j - t;\n" " real_t z0 = k - t;\n" " c[0].x = (*v).x - x0;\n" " c[0].y = (*v).y - y0;\n" " c[0].z = (*v).z - z0;\n" " int i1, j1, k1;\n" " int i2, j2, k2;\n" " real4 u;\n" "\n" " if (c[0].x >= c[0].y)\n" " {\n" " if (c[0].y >= c[0].z)\n" " {\n" " i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n" " }\n" " else\n" " {\n" " if (c[0].x >= c[0].z)\n" " {\n" " i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;\n" " }\n" " else\n" " {\n" " i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;\n" " }\n" " }\n" " }\n" " else\n" " {\n" " if (c[0].y < c[0].z)\n" " {\n" " i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;\n" " }\n" " else\n" " {\n" " if (c[0].x < c[0].z)\n" " {\n" " i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;\n" " }\n" " else\n" " {\n" " i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;\n" " }\n" " }\n" " }\n" "\n" " c[1].x = c[0].x - i1 + 0.1666666;\n" " c[1].y = c[0].y - j1 + 0.1666666;\n" " c[1].z = c[0].z - k1 + 0.1666666;\n" " c[2].x = c[0].x - i2 + 2 * 0.1666666;\n" " c[2].y = c[0].y - j2 + 2 * 0.1666666;\n" " c[2].z = c[0].z - k2 + 2 * 0.1666666;\n" " c[3].x = c[0].x - 1 + 3 * 0.1666666;\n" " c[3].y = c[0].y - 1 + 3 * 0.1666666;\n" " c[3].z = c[0].z - 1 + 3 * 0.1666666;\n" " int ii = i & 0x3ff;\n" " int jj = j & 0x3ff;\n" " int kk = k & 0x3ff;\n" " gi[0] = (int)p[ii + (int)p[jj + (int)p[kk]]];\n" " gi[1] = (int)p[ii + i1 + (int)p[jj + j1 + (int)p[kk + k1]]];\n" " gi[2] = (int)p[ii + i2 + (int)p[jj + j2 + (int)p[kk + k2]]];\n" " gi[3] = (int)p[ii + 1 + (int)p[jj + 1 + (int)p[kk + 1]]];\n" "\n" " for (uint corner = 0; corner < 4; corner++)\n" " {\n" " t = 0.6 - Sqr(c[corner].x) - Sqr(c[corner].y) - Sqr(c[corner].z);\n" "\n" " if (t > 0)\n" " {\n" " int index = gi[corner] * 3;\n" " u.x = grad[index];\n" " u.y = grad[index + 1];\n" " u.z = grad[index + 2];\n" " t *= t;\n" " n += t * t * (u.x * c[corner].x + u.y * c[corner].y + u.z * c[corner].z);\n" " }\n" " }\n" "\n" " return 32.0 * n;\n" "}\n"; s_GlobalMap["PerlinNoise3D"] = "inline real_t PerlinNoise3D(real4* v, __global real_t* p, __global real_t* grad, real_t aScale, real_t fScale, int octaves)\n" "{\n" " int i;\n" " real_t n = 0.0, a = 1.0;\n" " real4 u = *v;\n" "\n" " for (i = 0; i < octaves; i++)\n" " {\n" " n += SimplexNoise3D(&u, p, grad) / Zeps(a);\n" " a *= aScale;\n" " u.x *= fScale;\n" " u.y *= fScale;\n" " u.x *= fScale;\n" " }\n" "\n" " return n;\n" "}\n"; s_GlobalMap["JacobiElliptic"] = "inline void JacobiElliptic(real_t uu, real_t emmc, real_t* sn, real_t* cn, real_t* dn)\n" "{\n" " real_t CA = 0.0003;\n" " real_t a, b, c, d = 1, em[13], en[13];\n" " int bo;\n" " int l;\n" " int ii;\n" " int i;\n" " real_t emc = emmc;\n" " real_t u = uu;\n" "\n" " if (emc != 0)\n" " {\n" " bo = 0;\n" "\n" " if (emc < 0)\n" " bo = 1;\n" "\n" " if (bo != 0)\n" " {\n" " d = 1 - emc;\n" " emc = -emc / d;\n" " d = sqrt(d);\n" " u = d * u;\n" " }\n" "\n" " a = 1;\n" " *dn = 1;\n" "\n" " for (i = 0; i < 8; i++)\n" " {\n" " l = i;\n" " em[i] = a;\n" " emc = sqrt(emc);\n" " en[i] = emc;\n" " c = 0.5 * (a + emc);\n" "\n" " if (fabs(a - emc) <= CA * a)\n" " break;\n" "\n" " emc = a * emc;\n" " a = c;\n" " }\n" "\n" " u = c * u;\n" " *sn = sincos(u, cn);\n" "\n" " if (*sn != 0)\n" " {\n" " a = *cn / *sn;\n" " c = a * c;\n" "\n" " for (ii = l; ii >= 0; --ii)\n" " {\n" " b = em[ii];\n" " a = c * a;\n" " c = *dn * c;\n" " *dn = (en[ii] + a) / (b + a);\n" " a = c / b;\n" " }\n" "\n" " a = 1 / sqrt(c * c + 1);\n" "\n" " if (*sn < 0)\n" " *sn = -a;\n" " else\n" " *sn = a;\n" "\n" " *cn = c * *sn;\n" " }\n" "\n" " if (bo != 0)\n" " {\n" " a = *dn;\n" " *dn = *cn;\n" " *cn = a;\n" " *sn = *sn / d;\n" " }\n" " }\n" " else\n" " {\n" " *cn = 1 / cosh(u);\n" " *dn = *cn;\n" " *sn = tanh(u);\n" " }\n" "}\n"; } } /// /// Get a pointer to the text of the global function whose name is the passed in string. /// /// The function name to retrieve /// A pointer to the function body string if found, else nullptr. const string* FunctionMapper::GetGlobalFunc(const string& func) { const auto& text = s_GlobalMap.find(func); if (text != s_GlobalMap.end()) return &text->second; else return nullptr; } /// /// Get a copy of the function map. /// This is useful only for debugging/testing. /// /// A copy of the function map const std::unordered_map FunctionMapper::GetGlobalMapCopy() { return s_GlobalMap; } }