#pragma once
#include "Variation.h"
namespace EmberNs
{
///
/// DC Bubble.
/// This accesses the summed output point in a rare and different way.
///
template
class DCBubbleVariation : public ParametricVariation
{
public:
DCBubbleVariation(T weight = 1.0) : ParametricVariation("dc_bubble", eVariationId::VAR_DC_BUBBLE, weight, true)
{
Init();
}
PARVARCOPY(DCBubbleVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
T r = helper.m_PrecalcSumSquares;
T r4_1 = Zeps(r / 4 + 1);
r4_1 = m_Weight / r4_1;
helper.Out.x = r4_1 * helper.In.x;
helper.Out.y = r4_1 * helper.In.y;
helper.Out.z = m_Weight * (2 / r4_1 - 1);
T sumX, sumY;
if (m_VarType == eVariationType::VARTYPE_PRE)
{
sumX = helper.In.x;
sumY = helper.In.y;
}
else
{
sumX = outPoint.m_X;
sumY = outPoint.m_Y;
}
T tempX = helper.Out.x + sumX;
T tempY = helper.Out.y + sumY;
outPoint.m_ColorX = fmod(std::abs(m_Bdcs * (Sqr(tempX + m_CenterX) + Sqr(tempY + m_CenterY))), T(1.0));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Params.
string centerX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centerY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string bdcs = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
ss << "\t{\n"
<< "\t\treal_t r = precalcSumSquares;\n"
<< "\t\treal_t r4_1 = Zeps(r / 4 + 1);\n"
<< "\t\tr4_1 = " << weight << " / r4_1;\n"
<< "\n"
<< "\t\tvOut.x = r4_1 * vIn.x;\n"
<< "\t\tvOut.y = r4_1 * vIn.y;\n"
<< "\t\tvOut.z = " << weight << " * (2 / r4_1 - 1);\n"
<< "\n"
<< "\t\treal_t sumX, sumY;\n\n";
if (m_VarType == eVariationType::VARTYPE_PRE)
{
ss
<< "\t\tsumX = vIn.x;\n"
<< "\t\tsumY = vIn.y;\n";
}
else
{
ss
<< "\t\tsumX = outPoint->m_X;\n"
<< "\t\tsumY = outPoint->m_Y;\n";
}
ss
<< "\t\treal_t tempX = vOut.x + sumX;\n"
<< "\t\treal_t tempY = vOut.y + sumY;\n"
<< "\n"
<< "\t\toutPoint->m_ColorX = fmod(fabs(" << bdcs << " * (Sqr(tempX + " << centerX << ") + Sqr(tempY + " << centerY << "))), (real_t)(1.0));\n"
<< "\t}\n";
return ss.str();
}
virtual vector OpenCLGlobalFuncNames() const override
{
return vector { "Sqr", "Zeps" };
}
virtual void Precalc() override
{
m_Bdcs = 1 / (m_Scale == 0 ? T(10E-6) : m_Scale);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_CenterX, prefix + "dc_bubble_centerx"));//Params.
m_Params.push_back(ParamWithName(&m_CenterY, prefix + "dc_bubble_centery"));
m_Params.push_back(ParamWithName(&m_Scale, prefix + "dc_bubble_scale", 1));
m_Params.push_back(ParamWithName(true, &m_Bdcs, prefix + "dc_bubble_bdcs"));//Precalc.
}
private:
T m_CenterX;//Params.
T m_CenterY;
T m_Scale;
T m_Bdcs;//Precalc.
};
///
/// DC Carpet.
///
template
class DCCarpetVariation : public ParametricVariation
{
public:
DCCarpetVariation(T weight = 1.0) : ParametricVariation("dc_carpet", eVariationId::VAR_DC_CARPET, weight)
{
Init();
}
PARVARCOPY(DCCarpetVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
int x0 = rand.RandBit() ? -1 : 1;
int y0 = rand.RandBit() ? -1 : 1;
T x = helper.In.x + x0;
T y = helper.In.y + y0;
T x0_xor_y0 = T(x0 ^ y0);
T h = -m_H + (1 - x0_xor_y0) * m_H;
helper.Out.x = m_Weight * (m_Xform->m_Affine.A() * x + m_Xform->m_Affine.B() * y + m_Xform->m_Affine.E());
helper.Out.y = m_Weight * (m_Xform->m_Affine.C() * x + m_Xform->m_Affine.D() * y + m_Xform->m_Affine.F());
helper.Out.z = DefaultZ(helper);
outPoint.m_ColorX = fmod(std::abs(outPoint.m_ColorX * T(0.5) * (1 + h) + x0_xor_y0 * (1 - h) * T(0.5)), T(1.0));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string origin = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Params.
string h = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
ss << "\t{\n"
<< "\t\tint x0 = (MwcNext(mwc) & 1) ? -1 : 1;\n"
<< "\t\tint y0 = (MwcNext(mwc) & 1) ? -1 : 1;\n"
<< "\t\treal_t x = vIn.x + x0;\n"
<< "\t\treal_t y = vIn.y + y0;\n"
<< "\t\treal_t x0_xor_y0 = (real_t)(x0 ^ y0);\n"
<< "\t\treal_t h = -" << h << " + (1 - x0_xor_y0) * " << h << ";\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (xform->m_A * x + xform->m_B * y + xform->m_E);\n"
<< "\t\tvOut.y = " << weight << " * (xform->m_C * x + xform->m_D * y + xform->m_F);\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t\toutPoint->m_ColorX = fmod(fabs(outPoint->m_ColorX * (real_t)(0.5) * (1 + h) + x0_xor_y0 * (1 - h) * (real_t)(0.5)), (real_t)(1.0));\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_H = T(0.1) * m_Origin;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_Origin, prefix + "dc_carpet_origin"));//Params.
m_Params.push_back(ParamWithName(true, &m_H, prefix + "dc_carpet_h"));//Precalc.
}
private:
T m_Origin;//Params.
T m_H;//Precalc.
};
///
/// DC Cube.
///
template
class DCCubeVariation : public ParametricVariation
{
public:
DCCubeVariation(T weight = 1.0) : ParametricVariation("dc_cube", eVariationId::VAR_DC_CUBE, weight)
{
Init();
}
PARVARCOPY(DCCubeVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
T x, y, z;
T p = 2 * rand.Frand01() - 1;
T q = 2 * rand.Frand01() - 1;
uint i = rand.Rand(3);
uint j = rand.RandBit();
switch (i)
{
case 0:
x = m_Weight * (j ? -1 : 1);
y = m_Weight * p;
z = m_Weight * q;
if (j)
outPoint.m_ColorX = m_ClampC1;
else
outPoint.m_ColorX = m_ClampC2;
break;
case 1:
x = m_Weight * p;
y = m_Weight * (j ? -1 : 1);
z = m_Weight * q;
if (j)
outPoint.m_ColorX = m_ClampC3;
else
outPoint.m_ColorX = m_ClampC4;
break;
case 2:
default:
x = m_Weight * p;
y = m_Weight * q;
z = m_Weight * (j ? -1 : 1);
if (j)
outPoint.m_ColorX = m_ClampC5;
else
outPoint.m_ColorX = m_ClampC6;
break;
}
helper.Out.x = x * m_DcCubeX;
helper.Out.y = y * m_DcCubeY;
helper.Out.z = z * m_DcCubeZ;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string cubeC1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Params.
string cubeC2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cubeC3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cubeC4 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cubeC5 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cubeC6 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cubeX = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cubeY = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cubeZ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string clampC1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
string clampC2 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string clampC3 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string clampC4 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string clampC5 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string clampC6 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t x, y, z;\n"
<< "\t\treal_t p = 2 * MwcNext01(mwc) - 1;\n"
<< "\t\treal_t q = 2 * MwcNext01(mwc) - 1;\n"
<< "\t\tuint i = MwcNextRange(mwc, 3);\n"
<< "\t\tuint j = MwcNext(mwc) & 1;\n"
<< "\n"
<< "\t\tswitch (i)\n"
<< "\t\t{\n"
<< "\t\t case 0:\n"
<< "\t\t x = " << weight << " * (j ? -1 : 1);\n"
<< "\t\t y = " << weight << " * p;\n"
<< "\t\t z = " << weight << " * q;\n"
<< "\n"
<< "\t\t if (j)\n"
<< "\t\t outPoint->m_ColorX = " << clampC1 << ";\n"
<< "\t\t else\n"
<< "\t\t outPoint->m_ColorX = " << clampC2 << ";\n"
<< "\n"
<< "\t\t break;\n"
<< "\t\t case 1:\n"
<< "\t\t x =" << weight << " * p;\n"
<< "\t\t y =" << weight << " * (j ? -1 : 1);\n"
<< "\t\t z =" << weight << " * q;\n"
<< "\n"
<< "\t\t if (j)\n"
<< "\t\t outPoint->m_ColorX = " << clampC3 << ";\n"
<< "\t\t else\n"
<< "\t\t outPoint->m_ColorX = " << clampC4 << ";\n"
<< "\n"
<< "\t\t break;\n"
<< "\t\t case 2:\n"
<< "\t\t x = " << weight << " * p;\n"
<< "\t\t y = " << weight << " * q;\n"
<< "\t\t z = " << weight << " * (j ? -1 : 1);\n"
<< "\n"
<< "\t\t if (j)\n"
<< "\t\t outPoint->m_ColorX = " << clampC5 << ";\n"
<< "\t\t else\n"
<< "\t\t outPoint->m_ColorX = " << clampC6 << ";\n"
<< "\n"
<< "\t\t break;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = x * " << cubeX << ";\n"
<< "\t\tvOut.y = y * " << cubeY << ";\n"
<< "\t\tvOut.z = z * " << cubeZ << ";\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_ClampC1 = Clamp(m_DcCubeC1, 0, 1);
m_ClampC2 = Clamp(m_DcCubeC2, 0, 1);
m_ClampC3 = Clamp(m_DcCubeC3, 0, 1);
m_ClampC4 = Clamp(m_DcCubeC4, 0, 1);
m_ClampC5 = Clamp(m_DcCubeC5, 0, 1);
m_ClampC6 = Clamp(m_DcCubeC6, 0, 1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_DcCubeC1, prefix + "dc_cube_c1"));//Params.
m_Params.push_back(ParamWithName(&m_DcCubeC2, prefix + "dc_cube_c2"));
m_Params.push_back(ParamWithName(&m_DcCubeC3, prefix + "dc_cube_c3"));
m_Params.push_back(ParamWithName(&m_DcCubeC4, prefix + "dc_cube_c4"));
m_Params.push_back(ParamWithName(&m_DcCubeC5, prefix + "dc_cube_c5"));
m_Params.push_back(ParamWithName(&m_DcCubeC6, prefix + "dc_cube_c6"));
m_Params.push_back(ParamWithName(&m_DcCubeX, prefix + "dc_cube_x", 1));
m_Params.push_back(ParamWithName(&m_DcCubeY, prefix + "dc_cube_y", 1));
m_Params.push_back(ParamWithName(&m_DcCubeZ, prefix + "dc_cube_z", 1));
m_Params.push_back(ParamWithName(true, &m_ClampC1, prefix + "dc_cube_clamp_c1"));//Precalc.
m_Params.push_back(ParamWithName(true, &m_ClampC2, prefix + "dc_cube_clamp_c2"));
m_Params.push_back(ParamWithName(true, &m_ClampC3, prefix + "dc_cube_clamp_c3"));
m_Params.push_back(ParamWithName(true, &m_ClampC4, prefix + "dc_cube_clamp_c4"));
m_Params.push_back(ParamWithName(true, &m_ClampC5, prefix + "dc_cube_clamp_c5"));
m_Params.push_back(ParamWithName(true, &m_ClampC6, prefix + "dc_cube_clamp_c6"));
}
private:
T m_DcCubeC1;//Params.
T m_DcCubeC2;
T m_DcCubeC3;
T m_DcCubeC4;
T m_DcCubeC5;
T m_DcCubeC6;
T m_DcCubeX;
T m_DcCubeY;
T m_DcCubeZ;
T m_ClampC1;//Precalc.
T m_ClampC2;
T m_ClampC3;
T m_ClampC4;
T m_ClampC5;
T m_ClampC6;
};
///
/// DC Cylinder.
/// This accesses the summed output point in a rare and different way.
///
template
class DCCylinderVariation : public ParametricVariation
{
public:
DCCylinderVariation(T weight = 1.0) : ParametricVariation("dc_cylinder", eVariationId::VAR_DC_CYLINDER, weight)
{
Init();
}
PARVARCOPY(DCCylinderVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
T temp = rand.Frand01() * M_2PI;
T sr = std::sin(temp);
T cr = std::cos(temp);
T r = m_Blur * (rand.Frand01() + rand.Frand01() + rand.Frand01() + rand.Frand01() - 2);
helper.Out.x = m_Weight * std::sin(helper.In.x + r * sr) * m_X;
helper.Out.y = r + helper.In.y * m_Y;
helper.Out.z = m_Weight * std::cos(helper.In.x + r * cr);
T sumX, sumY;
if (m_VarType == eVariationType::VARTYPE_PRE)
{
sumX = helper.In.x;
sumY = helper.In.y;
}
else
{
sumX = outPoint.m_X;
sumY = outPoint.m_Y;
}
T tempX = helper.Out.x + sumX;
T tempY = helper.Out.y + sumY;
outPoint.m_ColorX = fmod(std::abs(T(0.5) * (m_Ldcs * ((m_Cosa * tempX + m_Sina * tempY + m_Offset)) + 1)), T(1.0));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string offset = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Params.
string angle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string y = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blur = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sina = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
string cosa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ldcs = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ldca = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t temp = MwcNext(mwc) * M_2PI;\n"
<< "\t\treal_t sr = sin(temp);\n"
<< "\t\treal_t cr = cos(temp);\n"
<< "\t\treal_t r = " << blur << " * (MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) + MwcNext01(mwc) - 2);\n"
<< "\t\tvOut.x = " << weight << " * sin(vIn.x + r * sr)* " << x << ";\n"
<< "\t\tvOut.y = r + vIn.y * " << y << ";\n"
<< "\t\tvOut.z = " << weight << " * cos(vIn.x + r * cr);\n"
<< "\n"
<< "\t\treal_t sumX, sumY;\n\n";
if (m_VarType == eVariationType::VARTYPE_PRE)
{
ss
<< "\t\tsumX = vIn.x;\n"
<< "\t\tsumY = vIn.y;\n";
}
else
{
ss
<< "\t\tsumX = outPoint->m_X;\n"
<< "\t\tsumY = outPoint->m_Y;\n";
}
ss
<< "\t\treal_t tempX = vOut.x + sumX;\n"
<< "\t\treal_t tempY = vOut.y + sumY;\n"
<< "\n"
<< "\t\toutPoint->m_ColorX = fmod(fabs((real_t)(0.5) * (" << ldcs << " * ((" << cosa << " * tempX + " << sina << " * tempY + " << offset << ")) + (real_t)(1.0))), (real_t)(1.0));\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
sincos(m_Angle, &m_Sina, &m_Cosa);
m_Ldcs = 1 / (m_Scale == 0.0 ? T(10E-6) : m_Scale);
m_Ldca = m_Offset * T(M_PI);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_Offset, prefix + "dc_cylinder_offset"));//Params.
m_Params.push_back(ParamWithName(&m_Angle, prefix + "dc_cylinder_angle"));//Original used a prefix of dc_cyl_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName(&m_Scale, prefix + "dc_cylinder_scale", T(0.5)));
m_Params.push_back(ParamWithName(&m_X, prefix + "dc_cylinder_x", T(0.125)));//Original used a prefix of cyl_, which is incompatible with Ember's design.
m_Params.push_back(ParamWithName(&m_Y, prefix + "dc_cylinder_y", T(0.125)));
m_Params.push_back(ParamWithName(&m_Blur, prefix + "dc_cylinder_blur", 1));
m_Params.push_back(ParamWithName(true, &m_Sina, prefix + "dc_cylinder_sina"));//Precalc.
m_Params.push_back(ParamWithName(true, &m_Cosa, prefix + "dc_cylinder_cosa"));
m_Params.push_back(ParamWithName(true, &m_Ldcs, prefix + "dc_cylinder_ldcs"));
m_Params.push_back(ParamWithName(true, &m_Ldca, prefix + "dc_cylinder_ldca"));
}
private:
T m_Offset;//Params.
T m_Angle;
T m_Scale;
T m_X;
T m_Y;
T m_Blur;
T m_Sina;//Precalc.
T m_Cosa;
T m_Ldcs;
T m_Ldca;
};
///
/// DC GridOut.
///
template
class DCGridOutVariation : public Variation
{
public:
DCGridOutVariation(T weight = 1.0) : Variation("dc_gridout", eVariationId::VAR_DC_GRIDOUT, weight) { }
VARCOPY(DCGridOutVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
T x = VarFuncs::LRint(helper.In.x);
T y = VarFuncs::LRint(helper.In.y);
T c = outPoint.m_ColorX;
if (y <= 0)
{
if (x > 0)
{
if (-y >= x)
{
helper.Out.x = m_Weight * (helper.In.x + 1);
helper.Out.y = m_Weight * helper.In.y;
c += T(0.25);
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y + 1);
c += T(0.75);
}
}
else
{
if (y <= x)
{
helper.Out.x = m_Weight * (helper.In.x + 1);
helper.Out.y = m_Weight * helper.In.y;
c += T(0.25);
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y - 1);
c += T(0.75);
}
}
}
else
{
if (x > 0)
{
if (y >= x)
{
helper.Out.x = m_Weight * (helper.In.x - 1);
helper.Out.y = m_Weight * helper.In.y;
c += T(0.25);
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y + 1);
c += T(0.75);
}
}
else
{
if (y > -x)
{
helper.Out.x = m_Weight * (helper.In.x - 1);
helper.Out.y = m_Weight * helper.In.y;
c += T(0.25);
}
else
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * (helper.In.y - 1);
c += T(0.75);
}
}
}
helper.Out.z = DefaultZ(helper);
outPoint.m_ColorX = fmod(c, T(1.0));
}
virtual string OpenCLString() const override
{
ostringstream ss;
intmax_t varIndex = IndexInXform();
string weight = WeightDefineString();
ss << "\t{\n"
<< "\t\treal_t x = LRint(vIn.x);\n"
<< "\t\treal_t y = LRint(vIn.y);\n"
<< "\t\treal_t c = outPoint->m_ColorX;\n"
<< "\n"
<< "\t\tif (y <= 0)\n"
<< "\t\t{\n"
<< "\t\t if (x > 0)\n"
<< "\t\t {\n"
<< "\t\t if (-y >= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x + 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t c += (real_t)(0.25);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y + 1);\n"
<< "\t\t c += (real_t)(0.75);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (y <= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x + 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t c += (real_t)(0.25);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y - 1);\n"
<< "\t\t c += (real_t)(0.75);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t if (x > 0)\n"
<< "\t\t {\n"
<< "\t\t if (y >= x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x - 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t c += (real_t)(0.25);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y + 1);\n"
<< "\t\t c += (real_t)(0.75);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t if (y > -x)\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * (vIn.x - 1);\n"
<< "\t\t vOut.y = " << weight << " * vIn.y;\n"
<< "\t\t c += (real_t)(0.25);\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t vOut.x = " << weight << " * vIn.x;\n"
<< "\t\t vOut.y = " << weight << " * (vIn.y - 1);\n"
<< "\t\t c += (real_t)(0.75);\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t\toutPoint->m_ColorX = fmod(c, (real_t)(1.0));\n"
<< "\t}\n";
return ss.str();
}
virtual vector OpenCLGlobalFuncNames() const override
{
return vector { "LRint" };
}
};
///
/// DC Linear.
/// This accesses the summed output point in a rare and different way.
///
template
class DCLinearVariation : public ParametricVariation
{
public:
DCLinearVariation(T weight = 1.0) : ParametricVariation("dc_linear", eVariationId::VAR_DC_LINEAR, weight)
{
Init();
}
PARVARCOPY(DCLinearVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
helper.Out.z = m_Weight * helper.In.z;
T sumX, sumY;
if (m_VarType == eVariationType::VARTYPE_PRE)
{
sumX = helper.In.x;
sumY = helper.In.y;
}
else
{
sumX = outPoint.m_X;
sumY = outPoint.m_Y;
}
T tempX = helper.Out.x + sumX;
T tempY = helper.Out.y + sumY;
outPoint.m_ColorX = fmod(std::abs(T(0.5) * (m_Ldcs * ((m_Cosa * tempX + m_Sina * tempY + m_Offset)) + T(1.0))), T(1.0));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string offset = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Params.
string angle = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string ldcs = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
string ldca = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string sina = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string cosa = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\tvOut.x = " << weight << " * vIn.x;\n"
<< "\t\tvOut.y = " << weight << " * vIn.y;\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\n"
<< "\t\treal_t sumX, sumY;\n\n";
if (m_VarType == eVariationType::VARTYPE_PRE)
{
ss
<< "\t\tsumX = vIn.x;\n"
<< "\t\tsumY = vIn.y;\n";
}
else
{
ss
<< "\t\tsumX = outPoint->m_X;\n"
<< "\t\tsumY = outPoint->m_Y;\n";
}
ss
<< "\t\treal_t tempX = vOut.x + sumX;\n"
<< "\t\treal_t tempY = vOut.y + sumY;\n"
<< "\n"
<< "\t\toutPoint->m_ColorX = fmod(fabs((real_t)(0.5) * (" << ldcs << " * ((" << cosa << " * tempX + " << sina << " * tempY + " << offset << ")) + (real_t)(1.0))), (real_t)(1.0));\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_Ldcs = 1 / (m_Scale == 0 ? T(10E-6) : m_Scale);
m_Ldca = m_Offset * T(M_PI);
sincos(m_Angle, &m_Sina, &m_Cosa);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_Offset, prefix + "dc_linear_offset"));//Params.
m_Params.push_back(ParamWithName(&m_Angle, prefix + "dc_linear_angle"));
m_Params.push_back(ParamWithName(&m_Scale, prefix + "dc_linear_scale", 1));
m_Params.push_back(ParamWithName(true, &m_Ldcs, prefix + "dc_linear_ldcs"));//Precalc.
m_Params.push_back(ParamWithName(true, &m_Ldca, prefix + "dc_linear_ldca"));
m_Params.push_back(ParamWithName(true, &m_Sina, prefix + "dc_linear_sina"));
m_Params.push_back(ParamWithName(true, &m_Cosa, prefix + "dc_linear_cosa"));
}
private:
T m_Offset;//Params.
T m_Angle;
T m_Scale;
T m_Ldcs;//Precalc.
T m_Ldca;
T m_Sina;
T m_Cosa;
};
///
/// DC Triangle.
///
template
class DCTriangleVariation : public ParametricVariation
{
public:
DCTriangleVariation(T weight = 1.0) : ParametricVariation("dc_triangle", eVariationId::VAR_DC_TRIANGLE, weight)
{
Init();
}
PARVARCOPY(DCTriangleVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
// set up triangle
const T
xx = m_Xform->m_Affine.A(), xy = m_Xform->m_Affine.B(), // X
yx = m_Xform->m_Affine.C() * -1, yy = m_Xform->m_Affine.D() * -1, // Y
ox = m_Xform->m_Affine.E(), oy = m_Xform->m_Affine.F(), // O
px = helper.In.x - ox, py = helper.In.y - oy; // P
// calculate dot products
const T dot00 = xx * xx + xy * xy; // X * X
const T dot01 = xx * yx + xy * yy; // X * Y
const T dot02 = xx * px + xy * py; // X * P
const T dot11 = yx * yx + yy * yy; // Y * Y
const T dot12 = yx * px + yy * py; // Y * P
// calculate barycentric coordinates
const T denom = (dot00 * dot11 - dot01 * dot01);
const T num_u = (dot11 * dot02 - dot01 * dot12);
const T num_v = (dot00 * dot12 - dot01 * dot02);
// u, v must not be constant
T u = num_u / denom;
T v = num_v / denom;
int inside = 0, f = 1;
// case A - point escapes edge XY
if (u + v > 1)
{
f = -1;
if (u > v)
{
ClampLteRef(u, 1);
v = 1 - u;
}
else
{
ClampLteRef(v, 1);
u = 1 - v;
}
}
else if ((u < 0) || (v < 0))// case B - point escapes either edge OX or OY
{
ClampRef(u, 0, 1);
ClampRef(v, 0, 1);
}
else
{
inside = 1;// case C - point is in triangle
}
// handle outside points
if (m_ZeroEdges && !inside)
{
u = v = 0;
}
else if (!inside)
{
u = (u + rand.Frand01() * m_A * f);
v = (v + rand.Frand01() * m_A * f);
ClampRef(u, -1, 1);
ClampRef(v, -1, 1);
if ((u + v > 1) && (m_A > 0))
{
if (u > v)
{
ClampLteRef(u, 1);
v = 1 - u;
}
else
{
ClampLteRef(v, 1);
u = 1 - v;
}
}
}
// set output
helper.Out.x = m_Weight * (ox + u * xx + v * yx);
helper.Out.y = m_Weight * (oy + u * xy + v * yy);
helper.Out.z = m_Weight * helper.In.z;
outPoint.m_ColorX = fmod(std::abs(u + v), T(1.0));
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string scatterArea = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Params.
string zeroEdges = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string a = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
ss << "\t{\n"
<< "\t\tconst real_t\n"
<< "\t\txx = xform->m_A, xy = xform->m_B,\n"
<< "\t\tyx = xform->m_C * -1, yy = xform->m_D * -1,\n"
<< "\t\tox = xform->m_E, oy = xform->m_F,\n"
<< "\t\tpx = vIn.x - ox, py = vIn.y - oy;\n"
<< "\n"
<< "\t\tconst real_t dot00 = xx * xx + xy * xy;\n"
<< "\t\tconst real_t dot01 = xx * yx + xy * yy;\n"
<< "\t\tconst real_t dot02 = xx * px + xy * py;\n"
<< "\t\tconst real_t dot11 = yx * yx + yy * yy;\n"
<< "\t\tconst real_t dot12 = yx * px + yy * py;\n"
<< "\n"
<< "\t\tconst real_t denom = (dot00 * dot11 - dot01 * dot01);\n"
<< "\t\tconst real_t num_u = (dot11 * dot02 - dot01 * dot12);\n"
<< "\t\tconst real_t num_v = (dot00 * dot12 - dot01 * dot02);\n"
<< "\n"
<< "\t\treal_t u = num_u / denom;\n"
<< "\t\treal_t v = num_v / denom;\n"
<< "\t\tint inside = 0, f = 1;\n"
<< "\n"
<< "\t\tif (u + v > 1)\n"
<< "\t\t{\n"
<< "\t\t f = -1;\n"
<< "\n"
<< "\t\t if (u > v)\n"
<< "\t\t {\n"
<< "\t\t u = u > 1 ? 1 : u;\n"
<< "\t\t v = 1 - u;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t v = v > 1 ? 1 : v;\n"
<< "\t\t u = 1 - v;\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\t\telse if ((u < 0) || (v < 0))\n"
<< "\t\t{\n"
<< "\t\t u = u < 0 ? 0 : u > 1 ? 1 : u;\n"
<< "\t\t v = v < 0 ? 0 : v > 1 ? 1 : v;\n"
<< "\t\t}\n"
<< "\t\telse\n"
<< "\t\t{\n"
<< "\t\t inside = 1;\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tif (" << zeroEdges << " != 0.0 && !inside)\n"
<< "\t\t{\n"
<< "\t\t u = v = 0;\n"
<< "\t\t}\n"
<< "\t\telse if (!inside)\n"
<< "\t\t{\n"
<< "\t\t u = (u + MwcNext01(mwc) * " << a << " * f);\n"
<< "\t\t v = (v + MwcNext01(mwc) * " << a << " * f);\n"
<< "\t\t u = u < -1 ? -1 : u > 1 ? 1 : u;\n"
<< "\t\t v = v < -1 ? -1 : v > 1 ? 1 : v;\n"
<< "\n"
<< "\t\t if ((u + v > 1) && (" << a << " > 0))\n"
<< "\t\t {\n"
<< "\t\t if (u > v)\n"
<< "\t\t {\n"
<< "\t\t u = u > 1 ? 1 : u;\n"
<< "\t\t v = 1 - u;\n"
<< "\t\t }\n"
<< "\t\t else\n"
<< "\t\t {\n"
<< "\t\t v = v > 1 ? 1 : v;\n"
<< "\t\t u = 1 - v;\n"
<< "\t\t }\n"
<< "\t\t }\n"
<< "\t\t}\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * (ox + u * xx + v * yx);\n"
<< "\t\tvOut.y = " << weight << " * (oy + u * xy + v * yy);\n"
<< "\t\tvOut.z = " << weight << " * vIn.z;\n"
<< "\t\toutPoint->m_ColorX = fmod(fabs(u + v), (real_t)(1.0));\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_A = Clamp(m_ScatterArea, -1, 1);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_ScatterArea, prefix + "dc_triangle_scatter_area", 0, eParamType::REAL, -1, 1));//Params.
m_Params.push_back(ParamWithName(&m_ZeroEdges, prefix + "dc_triangle_zero_edges", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName(true, &m_A, prefix + "dc_triangle_a"));//Precalc.
}
private:
T m_ScatterArea;//Params.
T m_ZeroEdges;
T m_A;//Precalc.
};
///
/// DC Transl.
/// The original used dc_ztransl and post_dcztransl incompatible with Ember's design.
/// These will follow the same naming convention as all other variations.
///
template
class DCZTranslVariation : public ParametricVariation
{
public:
DCZTranslVariation(T weight = 1.0) : ParametricVariation("dc_ztransl", eVariationId::VAR_DC_ZTRANSL, weight)
{
Init();
}
PARVARCOPY(DCZTranslVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
T zf = m_Factor * (outPoint.m_ColorX - m_X0_) / m_X1_m_x0;
if (m_Clamp != 0)
ClampRef(zf, 0, 1);
helper.Out.x = m_Weight * helper.In.x;
helper.Out.y = m_Weight * helper.In.y;
if (m_Overwrite == 0)
helper.Out.z = m_Weight * helper.In.z * zf;
else
helper.Out.z = m_Weight * zf;
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string x0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Params.
string x1 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string factor = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string overwrite = "parVars[" + ToUpper(m_Params[i++].Name()) + index;//Precalc.
string clamp = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x0_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x1_ = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string x1_m_x0 = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t zf = " << factor << " * (outPoint->m_ColorX - " << x0_ << ") / " << x1_m_x0 << ";\n"
<< "\n"
<< "\t\tif (" << clamp << " != 0)\n"
<< "\t\t zf = zf < 0 ? 0 : zf > 1 ? 1 : zf;\n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * vIn.x;\n"
<< "\t\tvOut.y = " << weight << " * vIn.y;\n"
<< "\n"
<< "\t\tif (" << overwrite << " == 0)\n"
<< "\t\t vOut.z = " << weight << " * vIn.z * zf;\n"
<< "\t\telse\n"
<< "\t\t vOut.z = " << weight << " * zf;\n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_X0_ = m_X0 < m_X1 ? m_X0 : m_X1;
m_X1_ = m_X0 > m_X1 ? m_X0 : m_X1;
m_X1_m_x0 = Zeps(m_X1_ - m_X0_);
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_X0, prefix + "dc_ztransl_x0", 0, eParamType::REAL, 0, 1));//Params.
m_Params.push_back(ParamWithName(&m_X1, prefix + "dc_ztransl_x1", 1, eParamType::REAL, 0, 1));
m_Params.push_back(ParamWithName(&m_Factor, prefix + "dc_ztransl_factor", 1));
m_Params.push_back(ParamWithName(&m_Overwrite, prefix + "dc_ztransl_overwrite", 1, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName(&m_Clamp, prefix + "dc_ztransl_clamp", 0, eParamType::INTEGER, 0, 1));
m_Params.push_back(ParamWithName(true, &m_X0_, prefix + "dc_ztransl_x0_"));//Precalc.
m_Params.push_back(ParamWithName(true, &m_X1_, prefix + "dc_ztransl_x1_"));
m_Params.push_back(ParamWithName(true, &m_X1_m_x0, prefix + "dc_ztransl_x1_m_x0"));
}
private:
T m_X0;//Params.
T m_X1;
T m_Factor;
T m_Overwrite;
T m_Clamp;
T m_X0_;//Precalc.
T m_X1_;
T m_X1_m_x0;
};
#define SHAPE_SQUARE 0
#define SHAPE_DISC 1
#define SHAPE_BLUR 2
#define MAP_FLAT 0
#define MAP_SPHERICAL 1
#define MAP_HSPHERE 2
#define MAP_QSPHERE 3
#define MAP_BUBBLE 4
#define MAP_BUBBLE2 5
///
/// dc_perlin.
///
template
class DCPerlinVariation : public ParametricVariation
{
public:
DCPerlinVariation(T weight = 1.0) : ParametricVariation("dc_perlin", eVariationId::VAR_DC_PERLIN, weight)
{
Init();
}
PARVARCOPY(DCPerlinVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
v3T v;
T vx, vy, col, r, theta, s, c, p, e;
int t = 0, iShape = int(m_Shape), iMap = int(m_Map), iOctaves = int(m_Octaves), iBailout = int(m_SelectBailout);
do
{
// Default edge value
e = 0;
// Assign vx, vy according to shape
switch (iShape)
{
case SHAPE_SQUARE:
vx = (1 + m_Edge) * (rand.Frand01() - T(0.5));
vy = (1 + m_Edge) * (rand.Frand01() - T(0.5));
r = SQR(vx) > SQR(vy) ? std::sqrt(SQR(vx)) : std::sqrt(SQR(vy));
if (r > 1 - m_Edge)
e = T(0.5) * (r - 1 + m_Edge) / m_Edge;
break;
case SHAPE_DISC:
r = rand.Frand01() + rand.Frand01();
r = (r > 1) ? 2 - r : r;
r *= (1 + m_Edge);
if (r > 1 - m_Edge)
e = T(0.5) * (r - 1 + m_Edge) / m_Edge;
theta = rand.Frand01() * M_2PI;
sincos(theta, &s, &c);
vx = T(0.5) * r * s;
vy = T(0.5) * r * c;
break;
case SHAPE_BLUR:
default:
r = (1 + m_Edge) * rand.Frand01();
if (r > 1 - m_Edge)
e = T(0.5) * (r - 1 + m_Edge) / m_Edge;
theta = rand.Frand01() * M_2PI;
sincos(theta, &s, &c);
vx = T(0.5) * r * s;
vy = T(0.5) * r * c;
break;
}
// Assign V for noise vector position according to map
switch (iMap)
{
case MAP_FLAT:
v.x = m_Scale * vx;
v.y = m_Scale * vy;
v.z = m_Scale * m_Z;
break;
case MAP_SPHERICAL:
r = 1 / Zeps(SQR(vx) + SQR(vy));
v.x = m_Scale * vx * r;
v.y = m_Scale * vy * r;
v.z = m_Scale * m_Z;
break;
case MAP_HSPHERE:
r = 1 / (SQR(vx) + SQR(vy) + T(0.5));
v.x = m_Scale * vx * r;
v.y = m_Scale * vy * r;
v.z = m_Scale * m_Z;
break;
case MAP_QSPHERE:
r = 1 / (SQR(vx) + SQR(vy) + T(0.25));
v.x = m_Scale * vx * r;
v.y = m_Scale * vy * r;
v.z = m_Scale * m_Z;
break;
case MAP_BUBBLE:
r = T(0.25) - (SQR(vx) + SQR(vy));
if (r < 0)
r = std::sqrt(-r);
else
r = std::sqrt(r);
v.x = m_Scale * vx;
v.y = m_Scale * vy;
v.z = m_Scale * (r + m_Z);
break;
case MAP_BUBBLE2:
default:
r = T(0.25) - (SQR(vx) + SQR(vy));
if (r < 0)
r = std::sqrt(-r);
else
r = std::sqrt(r);
v.x = m_Scale * vx;
v.y = m_Scale * vy;
v.z = m_Scale * (2 * r + m_Z);
break;
}
p = m_VarFuncs->PerlinNoise3D(v, m_Amps, m_Freqs, iOctaves);
// Add edge effects
if (p > 0)
e = p * (1 + e * e * 20) + 2 * e;
else
e = p * (1 + e * e * 20) - 2 * e;
}
while ((e < m_NotchBottom || e > m_NotchTop) && t++ < iBailout);
// Add blur effect to transform
helper.Out.x = m_Weight * vx;
helper.Out.y = m_Weight * vy;
helper.Out.z = DefaultZ(helper);
col = m_Centre + m_Range * p;
outPoint.m_ColorX = col - Floor(col);
}
virtual vector OpenCLGlobalFuncNames() const override
{
return vector { "Zeps", "Sqr", "SimplexNoise3D", "PerlinNoise3D" };
}
virtual vector OpenCLGlobalDataNames() const override
{
return vector { "NOISE_INDEX", "NOISE_POINTS" };
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber();
string weight = WeightDefineString();
string index = ss2.str() + "]";
string shape = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string map = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string selectCentre = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string selectRange = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string centre = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string range = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string edge = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string scale = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string octaves = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string amps = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string freqs = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string z = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string selectBailout = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string notchBottom = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string notchTop = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal4 v;\n"
<< "\t\treal_t vx, vy, col, r, theta, s, c, p, e;\n"
<< "\t\tint t = 0, iShape = (int)" << shape << ", iMap = (int)" << map << ", iOctaves = (int)" << octaves << ", iBailout = (int)" << selectBailout << ";\n"
<< "\n"
<< "\t\tdo\n"
<< "\t\t{\n"
<< "\t\t e = 0;\n"
<< "\n"
<< "\t\t switch (iShape)\n"
<< "\t\t {\n"
<< "\t\t case " << SHAPE_SQUARE << ": \n"
<< "\t\t vx = (1 + " << edge << ") * (MwcNext01(mwc) - 0.5); \n"
<< "\t\t vy = (1 + " << edge << ") * (MwcNext01(mwc) - 0.5); \n"
<< "\t\t r = SQR(vx) > SQR(vy) ? sqrt(SQR(vx)) : sqrt(SQR(vy)); \n"
<< "\n"
<< "\t\t if (r > 1 - " << edge << ")\n"
<< "\t\t e = 0.5 * (r - 1 + " << edge << ") / " << edge << "; \n"
<< "\n"
<< "\t\t break; \n"
<< "\n"
<< "\t\t case " << SHAPE_DISC << ": \n"
<< "\t\t r = MwcNext01(mwc) + MwcNext01(mwc); \n"
<< "\t\t r = (r > 1) ? 2 - r : r; \n"
<< "\t\t r *= (1 + " << edge << "); \n"
<< "\n"
<< "\t\t if (r > 1 - " << edge << ")\n"
<< "\t\t e = 0.5 * (r - 1 + " << edge << ") / " << edge << "; \n"
<< "\n"
<< "\t\t theta = MwcNext01(mwc) * M_2PI; \n"
<< "\t\t s = sincos(theta, &c); \n"
<< "\t\t vx = 0.5 * r * s; \n"
<< "\t\t vy = 0.5 * r * c; \n"
<< "\t\t break; \n"
<< "\n"
<< "\t\t case " << SHAPE_BLUR << ": \n"
<< "\t\t default: \n"
<< "\t\t r = (1 + " << edge << ") * MwcNext01(mwc); \n"
<< "\n"
<< "\t\t if (r > 1 - " << edge << ")\n"
<< "\t\t e = 0.5 * (r - 1 + " << edge << ") / " << edge << "; \n"
<< "\n"
<< "\t\t theta = MwcNext01(mwc) * M_2PI; \n"
<< "\t\t s = sincos(theta, &c); \n"
<< "\t\t vx = 0.5 * r * s; \n"
<< "\t\t vy = 0.5 * r * c; \n"
<< "\t\t break; \n"
<< "\t\t }\n"
<< "\n"
<< "\t\t switch (iMap)\n"
<< "\t\t {\n"
<< "\t\t case " << MAP_FLAT << ": \n"
<< "\t\t v.x = " << scale << " * vx; \n"
<< "\t\t v.y = " << scale << " * vy; \n"
<< "\t\t v.z = " << scale << " * " << z << "; \n"
<< "\t\t break; \n"
<< "\n"
<< "\t\t case " << MAP_SPHERICAL << ": \n"
<< "\t\t r = 1 / Zeps(SQR(vx) + SQR(vy)); \n"
<< "\t\t v.x = " << scale << " * vx * r; \n"
<< "\t\t v.y = " << scale << " * vy * r; \n"
<< "\t\t v.z = " << scale << " * " << z << "; \n"
<< "\t\t break; \n"
<< "\n"
<< "\t\t case " << MAP_HSPHERE << ": \n"
<< "\t\t r = 1 / (SQR(vx) + SQR(vy) + 0.5); \n"
<< "\t\t v.x = " << scale << " * vx * r; \n"
<< "\t\t v.y = " << scale << " * vy * r; \n"
<< "\t\t v.z = " << scale << " * " << z << "; \n"
<< "\t\t break; \n"
<< "\n"
<< "\t\t case " << MAP_QSPHERE << ": \n"
<< "\t\t r = 1 / (SQR(vx) + SQR(vy) + 0.25); \n"
<< "\t\t v.x = " << scale << " * vx * r; \n"
<< "\t\t v.y = " << scale << " * vy * r; \n"
<< "\t\t v.z = " << scale << " * " << z << "; \n"
<< "\t\t break; \n"
<< "\n"
<< "\t\t case " << MAP_BUBBLE << ": \n"
<< "\t\t r = 0.25 - (SQR(vx) + SQR(vy)); \n"
<< "\n"
<< "\t\t if (r < 0)\n"
<< "\t\t r = sqrt(-r); \n"
<< "\t\t else\n"
<< "\t\t r = sqrt(r); \n"
<< "\n"
<< "\t\t v.x = " << scale << " * vx; \n"
<< "\t\t v.y = " << scale << " * vy; \n"
<< "\t\t v.z = " << scale << " * (r + " << z << "); \n"
<< "\t\t break; \n"
<< "\n"
<< "\t\t case " << MAP_BUBBLE2 << ": \n"
<< "\t\t default: \n"
<< "\t\t r = 0.25 - (SQR(vx) + SQR(vy)); \n"
<< "\n"
<< "\t\t if (r < 0)\n"
<< "\t\t r = sqrt(-r); \n"
<< "\t\t else\n"
<< "\t\t r = sqrt(r); \n"
<< "\n"
<< "\t\t v.x = " << scale << " * vx; \n"
<< "\t\t v.y = " << scale << " * vy; \n"
<< "\t\t v.z = " << scale << " * (2 * r + " << z << "); \n"
<< "\t\t break; \n"
<< "\t\t }\n"
<< "\n"
<< "\t\t p = PerlinNoise3D(&v, globalShared + NOISE_INDEX, globalShared + NOISE_POINTS, " << amps << ", " << freqs << ", iOctaves); \n"
<< "\n"
<< "\t\t if (p > 0)\n"
<< "\t\t e = p * (1 + e * e * 20) + 2 * e; \n"
<< "\t\t else\n"
<< "\t\t e = p * (1 + e * e * 20) - 2 * e; \n"
<< "\t\t}\n"
<< "\t\twhile ((e < " << notchBottom << " || e > " << notchTop << ") && t++ < iBailout); \n"
<< "\n"
<< "\t\tvOut.x = " << weight << " * vx; \n"
<< "\t\tvOut.y = " << weight << " * vy; \n"
<< "\t\tvOut.z = " << DefaultZCl()
<< "\t\tcol = " << centre << " + " << range << " * p; \n"
<< "\t\toutPoint->m_ColorX = col - floor(col); \n"
<< "\t}\n";
return ss.str();
}
virtual void Precalc() override
{
m_NotchBottom = m_SelectCentre - m_SelectRange;
m_NotchBottom = (m_NotchBottom > T(0.75)) ? T(0.75) : m_NotchBottom;
m_NotchBottom = (m_NotchBottom < -2) ? -3 : m_NotchBottom;
m_NotchTop = m_SelectCentre + m_SelectRange;
m_NotchTop = (m_NotchTop < T(-0.75)) ? T(-0.75) : m_NotchTop;
m_NotchTop = (m_NotchTop > 3) ? 3 : m_NotchTop;
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.reserve(15);
m_Params.push_back(ParamWithName(&m_Shape, prefix + "dc_perlin_shape", 0, eParamType::INTEGER, 0, 2));//Params.
m_Params.push_back(ParamWithName(&m_Map, prefix + "dc_perlin_map", 0, eParamType::INTEGER, 0, 5));
m_Params.push_back(ParamWithName(&m_SelectCentre, prefix + "dc_perlin_select_centre", 0, eParamType::REAL, -1, 1));
m_Params.push_back(ParamWithName(&m_SelectRange, prefix + "dc_perlin_select_range", 1, eParamType::REAL, T(0.1), 2));
m_Params.push_back(ParamWithName(&m_Centre, prefix + "dc_perlin_centre", T(0.25)));
m_Params.push_back(ParamWithName(&m_Range, prefix + "dc_perlin_range", T(0.25)));
m_Params.push_back(ParamWithName(&m_Edge, prefix + "dc_perlin_edge"));
m_Params.push_back(ParamWithName(&m_Scale, prefix + "dc_perlin_scale", 1));
m_Params.push_back(ParamWithName(&m_Octaves, prefix + "dc_perlin_octaves", 2, eParamType::INTEGER, 1, 5));
m_Params.push_back(ParamWithName(&m_Amps, prefix + "dc_perlin_amps", 2));
m_Params.push_back(ParamWithName(&m_Freqs, prefix + "dc_perlin_freqs", 2));
m_Params.push_back(ParamWithName(&m_Z, prefix + "dc_perlin_z"));
m_Params.push_back(ParamWithName(&m_SelectBailout, prefix + "dc_perlin_select_bailout", 10, eParamType::INTEGER, 2, 1000));
m_Params.push_back(ParamWithName(true, &m_NotchBottom, prefix + "dc_perlin_notch_bottom"));
m_Params.push_back(ParamWithName(true, &m_NotchTop, prefix + "dc_perlin_notch_top"));
}
private:
T m_Shape;//Params.
T m_Map;
T m_SelectCentre;
T m_SelectRange;
T m_Centre;
T m_Range;
T m_Edge;
T m_Scale;
T m_Octaves;
T m_Amps;
T m_Freqs;
T m_Z;
T m_SelectBailout;
T m_NotchBottom;//Precalc.
T m_NotchTop;
shared_ptr> m_VarFuncs = VarFuncs::Instance();
};
///
/// randCubes.
///
template
class RandCubesVariation : public ParametricVariation
{
public:
RandCubesVariation(T weight = 1.0) : ParametricVariation("randCubes", eVariationId::VAR_RAND_CUBES, weight)
{
Init();
}
PARVARCOPY(RandCubesVariation)
virtual void Func(IteratorHelper& helper, Point& outPoint, QTIsaac& rand) override
{
auto blockx = Floor(std::log(rand.Frand01()) * (rand.RandBit() ? m_Spread : -m_Spread));
auto blocky = Floor(std::log(rand.Frand01()) * (rand.RandBit() ? m_Spread : -m_Spread));
T z = VarFuncs::Hash(int(blockx * m_Seed)) + VarFuncs::Hash(int(blockx + blocky * m_Seed)); //random height for each block
if (m_VarType == eVariationType::VARTYPE_REG)
{
outPoint.m_X = 0;//This variation intentionally assigns instead of summing.
outPoint.m_Y = 0;
outPoint.m_Z = 0;
}
helper.Out.x = (blockx * m_Density + rand.Frand01()) * m_BlockSize;
helper.Out.y = (blocky * m_Density + rand.Frand01()) * m_BlockSize;
helper.Out.z = m_BlockHeight * z * std::pow(rand.Frand01(), T(0.125)); //fade out down
outPoint.m_ColorX = z / 2;//block height -> palette location
}
virtual string OpenCLString() const override
{
ostringstream ss, ss2;
intmax_t i = 0, varIndex = IndexInXform();
ss2 << "_" << XformIndexInEmber() << "]";
string index = ss2.str();
string weight = WeightDefineString();
string blocksize = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string blockheight = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string spread = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string seed = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
string density = "parVars[" + ToUpper(m_Params[i++].Name()) + index;
ss << "\t{\n"
<< "\t\treal_t blockx = floor(log(MwcNext01(mwc)) * ((MwcNext(mwc) & 1) ? " << spread << " : -" << spread << "));\n"
<< "\t\treal_t blocky = floor(log(MwcNext01(mwc)) * ((MwcNext(mwc) & 1) ? " << spread << " : -" << spread << "));\n"
<< "\t\treal_t z = Hash(blockx * " << seed << ") + Hash(blockx + blocky * " << seed << ");\n";
if (m_VarType == eVariationType::VARTYPE_REG)
{
ss << "\t\toutPoint->m_X = 0;\n"
<< "\t\toutPoint->m_Y = 0;\n"
<< "\t\toutPoint->m_Z = 0;\n";
}
ss << "\t\tvOut.x = (blockx * " << density << " + MwcNext01(mwc)) * " << blocksize << ";\n"
<< "\t\tvOut.y = (blocky * " << density << " + MwcNext01(mwc)) * " << blocksize << ";\n"
<< "\t\tvOut.z = " << blockheight << " * z * pow(MwcNext01(mwc), 0.125);\n"
<< "\t\toutPoint->m_ColorX = z / 2;\n"
<< "\t}\n";
return ss.str();
}
virtual vector OpenCLGlobalFuncNames() const override
{
return vector { "Hash" };
}
protected:
void Init()
{
string prefix = Prefix();
m_Params.clear();
m_Params.push_back(ParamWithName(&m_BlockSize, prefix + "randCubes_blockSize", 1));
m_Params.push_back(ParamWithName(&m_BlockHeight, prefix + "randCubes_blockHeight", 1));
m_Params.push_back(ParamWithName(&m_Spread, prefix + "randCubes_spread", 3));
m_Params.push_back(ParamWithName(&m_Seed, prefix + "randCubes_seed", 1, eParamType::INTEGER));
m_Params.push_back(ParamWithName(&m_Density, prefix + "randCubes_density", 1));
}
private:
T m_BlockSize;
T m_BlockHeight;
T m_Spread;
T m_Seed;
T m_Density;
};
MAKEPREPOSTPARVAR(DCBubble, dc_bubble, DC_BUBBLE)
MAKEPREPOSTPARVAR(DCCarpet, dc_carpet, DC_CARPET)
MAKEPREPOSTPARVARASSIGN(DCCube, dc_cube, DC_CUBE, eVariationAssignType::ASSIGNTYPE_SUM)
MAKEPREPOSTPARVAR(DCCylinder, dc_cylinder, DC_CYLINDER)
MAKEPREPOSTVAR(DCGridOut, dc_gridout, DC_GRIDOUT)
MAKEPREPOSTPARVAR(DCLinear, dc_linear, DC_LINEAR)
MAKEPREPOSTPARVAR(DCTriangle, dc_triangle, DC_TRIANGLE)
MAKEPREPOSTPARVAR(DCZTransl, dc_ztransl, DC_ZTRANSL)
MAKEPREPOSTPARVAR(DCPerlin, dc_perlin, DC_PERLIN)
MAKEPREPOSTPARVAR(RandCubes, randCubes, RAND_CUBES)
}