#include "EmberCLPch.h"
#include "RendererCL.h"
namespace EmberCLns
{
///
/// Constructor that inintializes various buffer names, block dimensions, image formats
/// and finally initializes OpenCL using the passed in parameters.
///
/// The index platform of the platform to use. Default: 0.
/// The index device of the device to use. Default: 0.
/// True if shared with OpenGL, else false. Default: false.
/// The texture ID of the shared OpenGL texture if shared. Default: 0.
template
RendererCL::RendererCL(uint platform, uint device, bool shared, GLuint outputTexID)
{
m_Init = false;
m_NVidia = false;
m_DoublePrecision = typeid(T) == typeid(double);
m_NumChannels = 4;
m_Calls = 0;
//Buffer names.
m_EmberBufferName = "Ember";
m_XformsBufferName = "Xforms";
m_ParVarsBufferName = "ParVars";
m_SeedsBufferName = "Seeds";
m_DistBufferName = "Dist";
m_CarToRasBufferName = "CarToRas";
m_DEFilterParamsBufferName = "DEFilterParams";
m_SpatialFilterParamsBufferName = "SpatialFilterParams";
m_DECoefsBufferName = "DECoefs";
m_DEWidthsBufferName = "DEWidths";
m_DECoefIndicesBufferName = "DECoefIndices";
m_SpatialFilterCoefsBufferName = "SpatialFilterCoefs";
m_CurvesCsaName = "CurvesCsa";
m_HistBufferName = "Hist";
m_AccumBufferName = "Accum";
m_FinalImageName = "Final";
m_PointsBufferName = "Points";
//It's critical that these numbers never change. They are
//based on the cuburn model of each kernel launch containing
//256 threads. 32 wide by 8 high. Everything done in the OpenCL
//iteraion kernel depends on these dimensions.
m_IterCountPerKernel = 256;
m_IterBlockWidth = 32;
m_IterBlockHeight = 8;
m_IterBlocksWide = 64;
m_IterBlocksHigh = 2;
m_PaletteFormat.image_channel_order = CL_RGBA;
m_PaletteFormat.image_channel_data_type = CL_FLOAT;
m_FinalFormat.image_channel_order = CL_RGBA;
m_FinalFormat.image_channel_data_type = CL_UNORM_INT8;//Change if this ever supports 2BPC outputs for PNG.
FillSeeds();
Init(platform, device, shared, outputTexID);//Init OpenCL upon construction and create programs that will not change.
}
///
/// Virtual destructor.
///
template
RendererCL::~RendererCL()
{
}
///
/// Non-virtual member functions for OpenCL specific tasks.
///
///
/// Initialize OpenCL.
/// In addition to initializing, this function will create the zeroization program,
/// as well as the basic log scale filtering programs. This is done to ensure basic
/// compilation works. Further compilation will be done later for iteration, density filtering,
/// and final accumulation.
///
/// The index platform of the platform to use
/// The index device of the device to use
/// True if shared with OpenGL, else false.
/// The texture ID of the shared OpenGL texture if shared
/// True if success, else false.
template
bool RendererCL::Init(uint platform, uint device, bool shared, GLuint outputTexID)
{
//Timing t;
bool b = true;
m_OutputTexID = outputTexID;
const char* loc = __FUNCTION__;
if (!m_Wrapper.Ok() || PlatformIndex() != platform || DeviceIndex() != device)
{
m_Init = false;
b = m_Wrapper.Init(platform, device, shared);
}
if (b && m_Wrapper.Ok() && !m_Init)
{
m_NVidia = ToLower(m_Wrapper.DeviceAndPlatformNames()).find_first_of("nvidia") != string::npos && m_Wrapper.LocalMemSize() > (32 * 1024);
m_WarpSize = m_NVidia ? 32 : 64;
m_IterOpenCLKernelCreator = IterOpenCLKernelCreator(m_NVidia);
m_DEOpenCLKernelCreator = DEOpenCLKernelCreator(m_NVidia);
string zeroizeProgram = m_IterOpenCLKernelCreator.ZeroizeKernel();
string logAssignProgram = m_DEOpenCLKernelCreator.LogScaleAssignDEKernel();//Build a couple of simple programs to ensure OpenCL is working right.
if (b && !(b = m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), zeroizeProgram, m_IterOpenCLKernelCreator.ZeroizeEntryPoint(), m_DoublePrecision))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddProgram(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), logAssignProgram, m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint(), m_DoublePrecision))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, 256, 1, 0, nullptr))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast(m_Seeds.data()), SizeOf(m_Seeds)))) { m_ErrorReport.push_back(loc); }
//This is the maximum box dimension for density filtering which consists of (blockSize * blockSize) + (2 * filterWidth).
//These blocks must be square, and ideally, 32x32.
//Sadly, at the moment, Fermi runs out of resources at that block size because the DE filter function is so complex.
//The next best block size seems to be 24x24.
//AMD is further limited because of less local memory so these have to be 16 on AMD.
m_MaxDEBlockSizeW = m_NVidia ? 32 : 16;//These *must* both be divisible by 16 or else pixels will go missing.
m_MaxDEBlockSizeH = m_NVidia ? 32 : 16;
m_Init = true;
//t.Toc(loc);
}
return b;
}
///
/// Set the shared output texture where final accumulation will be written to.
///
/// The texture ID of the shared OpenGL texture if shared
/// True if success, else false.
template
bool RendererCL::SetOutputTexture(GLuint outputTexID)
{
bool success = true;
const char* loc = __FUNCTION__;
if (!m_Wrapper.Ok())
return false;
m_OutputTexID = outputTexID;
EnterResize();
if (!m_Wrapper.AddAndWriteImage(m_FinalImageName, CL_MEM_WRITE_ONLY, m_FinalFormat, FinalRasW(), FinalRasH(), 0, nullptr, m_Wrapper.Shared(), m_OutputTexID))
{
m_ErrorReport.push_back(loc);
success = false;
}
LeaveResize();
return success;
}
///
/// OpenCL property accessors, getters only.
///
//Iters per kernel/block/grid.
template uint RendererCL::IterCountPerKernel() const { return m_IterCountPerKernel; }
template uint RendererCL::IterCountPerBlock() const { return IterCountPerKernel() * IterBlockKernelCount(); }
template uint RendererCL::IterCountPerGrid() const { return IterCountPerKernel() * IterGridKernelCount(); }
//Kernels per block.
template uint RendererCL::IterBlockKernelWidth() const { return m_IterBlockWidth; }
template uint RendererCL::IterBlockKernelHeight() const { return m_IterBlockHeight; }
template uint RendererCL::IterBlockKernelCount() const { return IterBlockKernelWidth() * IterBlockKernelHeight(); }
//Kernels per grid.
template uint RendererCL::IterGridKernelWidth() const { return IterGridBlockWidth() * IterBlockKernelWidth(); }
template uint RendererCL::IterGridKernelHeight() const { return IterGridBlockHeight() * IterBlockKernelHeight(); }
template uint RendererCL::IterGridKernelCount() const { return IterGridKernelWidth() * IterGridKernelHeight(); }
//Blocks per grid.
template uint RendererCL::IterGridBlockWidth() const { return m_IterBlocksWide; }
template uint RendererCL::IterGridBlockHeight() const { return m_IterBlocksHigh; }
template uint RendererCL::IterGridBlockCount() const { return IterGridBlockWidth() * IterGridBlockHeight(); }
template uint RendererCL::PlatformIndex() { return m_Wrapper.PlatformIndex(); }
template uint RendererCL::DeviceIndex() { return m_Wrapper.DeviceIndex(); }
///
/// Read the histogram into the host side CPU buffer.
/// Used for debugging.
///
/// True if success, else false.
template
bool RendererCL::ReadHist()
{
if (Renderer::Alloc())//Allocate the memory to read into.
return m_Wrapper.ReadBuffer(m_HistBufferName, reinterpret_cast(HistBuckets()), SuperSize() * sizeof(v4T));
return false;
}
///
/// Read the density filtering buffer into the host side CPU buffer.
/// Used for debugging.
///
/// True if success, else false.
template
bool RendererCL::ReadAccum()
{
if (Renderer::Alloc())//Allocate the memory to read into.
return m_Wrapper.ReadBuffer(m_AccumBufferName, reinterpret_cast(AccumulatorBuckets()), SuperSize() * sizeof(v4T));
return false;
}
///
/// Read the temporary points buffer into a host side CPU buffer.
/// Used for debugging.
///
/// The host side buffer to read into
/// True if success, else false.
template
bool RendererCL::ReadPoints(vector>& vec)
{
vec.resize(IterGridKernelCount());//Allocate the memory to read into.
if (vec.size() >= IterGridKernelCount())
return m_Wrapper.ReadBuffer(m_PointsBufferName, reinterpret_cast(vec.data()), IterGridKernelCount() * sizeof(PointCL));
return false;
}
///
/// Clear the histogram buffer with all zeroes.
///
/// True if success, else false.
template
bool RendererCL::ClearHist()
{
return ClearBuffer(m_HistBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4T));
}
///
/// Clear the desnity filtering buffer with all zeroes.
///
/// True if success, else false.
template
bool RendererCL::ClearAccum()
{
return ClearBuffer(m_AccumBufferName, uint(SuperRasW()), uint(SuperRasH()), sizeof(v4T));
}
///
/// Write values from a host side CPU buffer into the temporary points buffer.
/// Used for debugging.
///
/// The host side buffer whose values to write
/// True if success, else false.
template
bool RendererCL::WritePoints(vector>& vec)
{
return m_Wrapper.WriteBuffer(m_PointsBufferName, reinterpret_cast(vec.data()), SizeOf(vec));
}
#ifdef TEST_CL
template
bool RendererCL::WriteRandomPoints()
{
size_t size = IterGridKernelCount();
vector> vec(size);
for (int i = 0; i < size; i++)
{
vec[i].m_X = m_Rand[0].Frand11();
vec[i].m_Y = m_Rand[0].Frand11();
vec[i].m_Z = 0;
vec[i].m_ColorX = m_Rand[0].Frand01();
vec[i].m_LastXfUsed = 0;
}
return WritePoints(vec);
}
#endif
///
/// Get the kernel string for the last built iter program.
///
/// The string representation of the kernel for the last built iter program.
template
string RendererCL::IterKernel() { return m_IterKernel; }
///
/// Get the kernel string for the last built density filtering program.
///
/// The string representation of the kernel for the last built density filtering program.
template
string RendererCL::DEKernel() { return m_DEOpenCLKernelCreator.GaussianDEKernel(Supersample(), m_DensityFilterCL.m_FilterWidth); }
///
/// Get the kernel string for the last built final accumulation program.
///
/// The string representation of the kernel for the last built final accumulation program.
template
string RendererCL::FinalAccumKernel() { return m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer::NumChannels(), Transparency()); }
///
/// Virtual functions overridden from RendererCLBase.
///
///
/// Read the final image buffer buffer into the host side CPU buffer.
/// This must be called before saving the final output image to file.
///
/// The host side buffer to read into
/// True if success, else false.
template
bool RendererCL::ReadFinal(byte* pixels)
{
if (pixels)
return m_Wrapper.ReadImage(m_FinalImageName, FinalRasW(), FinalRasH(), 0, m_Wrapper.Shared(), pixels);
return false;
}
///
/// Clear the final image output buffer with all zeroes by copying a host side buffer.
/// Slow, but never used because the final output image is always completely overwritten.
///
/// True if success, else false.
template
bool RendererCL::ClearFinal()
{
vector v;
uint index = m_Wrapper.FindImageIndex(m_FinalImageName, m_Wrapper.Shared());
if (this->PrepFinalAccumVector(v))
{
bool b = m_Wrapper.WriteImage2D(index, m_Wrapper.Shared(), FinalRasW(), FinalRasH(), 0, v.data());
if (!b)
m_ErrorReport.push_back(__FUNCTION__);
return b;
}
else
return false;
}
///
/// Public virtual functions overridden from Renderer or RendererBase.
///
///
/// The amount of video RAM available on the GPU to render with.
///
/// An unsigned 64-bit integer specifying how much video memory is available
template
size_t RendererCL::MemoryAvailable()
{
return Ok() ? m_Wrapper.GlobalMemSize() : 0ULL;
}
///
/// Return whether OpenCL has been properly initialized.
///
/// True if OpenCL has been properly initialized, else false.
template
bool RendererCL::Ok() const
{
return m_Init;
}
///
/// Override to force num channels to be 4 because RGBA is always used for OpenCL
/// since the output is actually an image rather than just a buffer.
///
/// The number of channels, ignored.
template
void RendererCL::NumChannels(size_t numChannels)
{
m_NumChannels = 4;
}
///
/// Dump the error report for this class as well as the OpenCLWrapper member.
///
template
void RendererCL::DumpErrorReport()
{
EmberReport::DumpErrorReport();
m_Wrapper.DumpErrorReport();
}
///
/// Clear the error report for this class as well as the OpenCLWrapper member.
///
template
void RendererCL::ClearErrorReport()
{
EmberReport::ClearErrorReport();
m_Wrapper.ClearErrorReport();
}
///
/// The sub batch size for OpenCL will always be how many
/// iterations are ran per kernel call. The caller can't
/// change this.
///
/// The number of iterations ran in a single kernel call
template
size_t RendererCL::SubBatchSize() const
{
return IterCountPerGrid();
}
///
/// The thread count for OpenCL is always considered to be 1, however
/// the kernel internally runs many threads.
///
/// 1
template
size_t RendererCL::ThreadCount() const
{
return 1;
}
///
/// Create the density filter in the base class and copy the filter values
/// to the corresponding OpenCL buffers.
///
/// True if a new filter instance was created, else false.
/// True if success, else false.
template
bool RendererCL::CreateDEFilter(bool& newAlloc)
{
bool b = true;
if (Renderer::CreateDEFilter(newAlloc))
{
//Copy coefs and widths here. Convert and copy the other filter params right before calling the filtering kernel.
if (newAlloc)
{
const char* loc = __FUNCTION__;
DensityFilter* filter = dynamic_cast*>(GetDensityFilter());
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DECoefsBufferName, reinterpret_cast(const_cast(filter->Coefs())), filter->CoefsSizeBytes()))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DEWidthsBufferName, reinterpret_cast(const_cast(filter->Widths())), filter->WidthsSizeBytes()))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DECoefIndicesBufferName, reinterpret_cast(const_cast(filter->CoefIndices())), filter->CoefsIndicesSizeBytes()))) { m_ErrorReport.push_back(loc); }
}
}
else
b = false;
return b;
}
///
/// Create the spatial filter in the base class and copy the filter values
/// to the corresponding OpenCL buffers.
///
/// True if a new filter instance was created, else false.
/// True if success, else false.
template
bool RendererCL::CreateSpatialFilter(bool& newAlloc)
{
bool b = true;
if (Renderer::CreateSpatialFilter(newAlloc))
{
if (newAlloc)
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SpatialFilterCoefsBufferName, reinterpret_cast(GetSpatialFilter()->Filter()), GetSpatialFilter()->BufferSizeBytes()))) { m_ErrorReport.push_back(__FUNCTION__); }
}
else
b = false;
return b;
}
///
/// Get the renderer type enum.
///
/// OPENCL_RENDERER
template
eRendererType RendererCL::RendererType() const
{
return OPENCL_RENDERER;
}
///
/// Concatenate and return the error report for this class and the
/// OpenCLWrapper member as a single string.
///
/// The concatenated error report string
template
string RendererCL::ErrorReportString()
{
return EmberReport::ErrorReportString() + m_Wrapper.ErrorReportString();
}
///
/// Concatenate and return the error report for this class and the
/// OpenCLWrapper member as a vector of strings.
///
/// The concatenated error report vector of strings
template
vector RendererCL::ErrorReport()
{
auto ours = EmberReport::ErrorReport();
auto wrappers = m_Wrapper.ErrorReport();
ours.insert(ours.end(), wrappers.begin(), wrappers.end());
return ours;
}
///
/// Set the vector of random contexts.
/// Call the base, and reset the seeds vector.
///
/// The vector of random contexts to assign
/// True if the size of the vector matched the number of threads used for rendering and writing seeds to OpenCL succeeded, else false.
template
bool RendererCL::RandVec(vector>& randVec)
{
bool b = Renderer::RandVec(randVec);
const char* loc = __FUNCTION__;
if (m_Wrapper.Ok())
{
FillSeeds();
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SeedsBufferName, reinterpret_cast(m_Seeds.data()), SizeOf(m_Seeds)))) { m_ErrorReport.push_back(loc); }
}
return b;
}
///
/// Protected virtual functions overridden from Renderer.
///
///
/// Make the final palette used for iteration.
/// This override differs from the base in that it does not use
/// bucketT as the output palette type. This is because OpenCL
/// only supports floats for texture images.
///
/// The color scalar to multiply the ember's palette by
template
void RendererCL::MakeDmap(T colorScalar)
{
//m_Ember.m_Palette.MakeDmap(m_DmapCL, colorScalar);
m_Ember.m_Palette.MakeDmap(m_DmapCL, colorScalar);
}
///
/// Allocate all buffers required for running as well as the final
/// 2D image.
///
/// True if success, else false.
template
bool RendererCL::Alloc()
{
if (!m_Wrapper.Ok())
return false;
EnterResize();
m_XformsCL.resize(m_Ember.TotalXformCount());
bool b = true;
size_t histLength = SuperSize() * sizeof(v4T);
size_t accumLength = SuperSize() * sizeof(v4T);
const char* loc = __FUNCTION__;
if (b && !(b = m_Wrapper.AddBuffer(m_EmberBufferName, sizeof(m_EmberCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_XformsBufferName, SizeOf(m_XformsCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_ParVarsBufferName, 128 * sizeof(T)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_DistBufferName, CHOOSE_XFORM_GRAIN))) { m_ErrorReport.push_back(loc); }//Will be resized for xaos.
if (b && !(b = m_Wrapper.AddBuffer(m_CarToRasBufferName, sizeof(m_CarToRasCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_DEFilterParamsBufferName, sizeof(m_DensityFilterCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_SpatialFilterParamsBufferName, sizeof(m_SpatialFilterCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_CurvesCsaName, SizeOf(m_Csa.m_Entries)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddBuffer(m_HistBufferName, histLength))) { m_ErrorReport.push_back(loc); }//Histogram. Will memset to zero later.
if (b && !(b = m_Wrapper.AddBuffer(m_AccumBufferName, accumLength))) { m_ErrorReport.push_back(loc); }//Accum buffer.
if (b && !(b = m_Wrapper.AddBuffer(m_PointsBufferName, IterGridKernelCount() * sizeof(PointCL)))) { m_ErrorReport.push_back(loc); }//Points between iter calls.
LeaveResize();
if (b && !(b = SetOutputTexture(m_OutputTexID))) { m_ErrorReport.push_back(loc); }
return b;
}
///
/// Clear OpenCL histogram and/or density filtering buffers to all zeroes.
///
/// Clear histogram if true, else don't.
/// Clear density filtering buffer if true, else don't.
/// True if success, else false.
template
bool RendererCL::ResetBuckets(bool resetHist, bool resetAccum)
{
bool b = true;
if (resetHist)
b &= ClearHist();
if (resetAccum)
b &= ClearAccum();
return b;
}
///
/// Perform log scale density filtering.
///
/// True if success and not aborted, else false.
template
eRenderStatus RendererCL::LogScaleDensityFilter()
{
return RunLogScaleFilter();
}
///
/// Run gaussian density estimation filtering.
///
/// True if success and not aborted, else false.
template
eRenderStatus RendererCL::GaussianDensityFilter()
{
//This commented section is for debugging density filtering by making it run on the CPU
//then copying the results back to the GPU.
//if (ReadHist())
//{
// uint accumLength = SuperSize() * sizeof(glm::detail::tvec4);
// const char* loc = __FUNCTION__;
//
// Renderer::ResetBuckets(false, true);
// Renderer::GaussianDensityFilter();
//
// if (!m_Wrapper.WriteBuffer(m_AccumBufferName, AccumulatorBuckets(), accumLength)) { m_ErrorReport.push_back(loc); return RENDER_ERROR; }
// return RENDER_OK;
//}
//else
// return RENDER_ERROR;
//Timing t(4);
eRenderStatus status = RunDensityFilter();
//t.Toc(__FUNCTION__ " RunKernel()");
return status;
}
///
/// Run final accumulation.
/// If pixels is nullptr, the output will remain in the OpenCL 2D image.
/// However, if pixels is not nullptr, the output will be copied. This is
/// useful when rendering in OpenCL, but saving the output to a file.
///
/// The pixels to copy the final image to if not nullptr
/// Offset in the buffer to store the pixels to
/// True if success and not aborted, else false.
template
eRenderStatus RendererCL::AccumulatorToFinalImage(byte* pixels, size_t finalOffset)
{
eRenderStatus status = RunFinalAccum();
if (status == RENDER_OK && pixels != nullptr && !m_Wrapper.Shared())
{
pixels += finalOffset;
if (!ReadFinal(pixels))
status = RENDER_ERROR;
}
return status;
}
///
/// Run the iteration algorithm for the specified number of iterations.
/// This is only called after all other setup has been done.
/// This will recompile the OpenCL program if this ember differs significantly
/// from the previous run.
/// Note that the bad value count is not recorded when running with OpenCL. If it's
/// needed, run on the CPU.
///
/// The number of iterations to run
/// The temporal sample within the current pass this is running for
/// Rendering statistics
template
EmberStats RendererCL::Iterate(size_t iterCount, size_t temporalSample)
{
bool b = true;
EmberStats stats;//Do not record bad vals with with GPU. If the user needs to investigate bad vals, use the CPU.
const char* loc = __FUNCTION__;
IterOpenCLKernelCreator::ParVarIndexDefines(m_Ember, m_Params, true, false);//Always do this to get the values (but no string), regardless of whether a rebuild is necessary.
//Don't know the size of the parametric varations parameters buffer until the ember is examined.
//So set it up right before the run.
if (!m_Params.second.empty())
{
if (!m_Wrapper.AddAndWriteBuffer(m_ParVarsBufferName, m_Params.second.data(), m_Params.second.size() * sizeof(m_Params.second[0])))
{
m_Abort = true;
m_ErrorReport.push_back(loc);
return stats;
}
}
//Rebuilding is expensive, so only do it if it's required.
if (IterOpenCLKernelCreator::IsBuildRequired(m_Ember, m_LastBuiltEmber))
b = BuildIterProgramForEmber(true);
if (b)
{
m_IterTimer.Tic();//Tic() here to avoid including build time in iter time measurement.
if (m_Stats.m_Iters == 0)//Only reset the call count on the beginning of a new render. Do not reset on KEEP_ITERATING.
m_Calls = 0;
b = RunIter(iterCount, temporalSample, stats.m_Iters);
if (!b || stats.m_Iters == 0)//If no iters were executed, something went catastrophically wrong.
m_Abort = true;
stats.m_IterMs = m_IterTimer.Toc();
}
else
{
m_Abort = true;
m_ErrorReport.push_back(loc);
}
return stats;
}
///
/// Private functions for making and running OpenCL programs.
///
///
/// Build the iteration program for the current ember.
///
/// Whether to build in accumulation, only for debugging. Default: true.
/// True if success, else false.
template
bool RendererCL::BuildIterProgramForEmber(bool doAccum)
{
//Timing t;
const char* loc = __FUNCTION__;
IterOpenCLKernelCreator::ParVarIndexDefines(m_Ember, m_Params, false, true);//Do with string and no vals.
m_IterKernel = m_IterOpenCLKernelCreator.CreateIterKernelString(m_Ember, m_Params.first, m_LockAccum, doAccum);
//cout << "Building: " << endl << iterProgram << endl;
//A program build is roughly .66s which will detract from the user experience.
//Need to experiment with launching this in a thread/task and returning once it's done.//TODO
if (m_Wrapper.AddProgram(m_IterOpenCLKernelCreator.IterEntryPoint(), m_IterKernel, m_IterOpenCLKernelCreator.IterEntryPoint(), m_DoublePrecision))
{
//t.Toc(__FUNCTION__ " program build");
//cout << string(loc) << "():\nBuilding the following program succeeded: \n" << iterProgram << endl;
m_LastBuiltEmber = m_Ember;
}
else
{
m_ErrorReport.push_back(string(loc) + "():\nBuilding the following program failed: \n" + m_IterKernel + "\n");
return false;
}
return true;
}
///
/// Run the iteration kernel.
/// Fusing on the CPU is done once per sub batch, usually 10,000 iters, however
/// determining when to do it in OpenCL is much more difficult.
/// Currently it's done once every 4 kernel calls which seems to be a good balance
/// between quality of the final image and performance.
///
/// The number of iterations to run
/// The temporal sample this is running for
/// The storage for the number of iterations ran
/// True if success, else false.
template
bool RendererCL::RunIter(size_t iterCount, size_t temporalSample, size_t& itersRan)
{
Timing t;//, t2(4);
bool b = true;
uint fuse, argIndex;
uint iterCountPerKernel = IterCountPerKernel();
uint iterCountPerBlock = IterCountPerBlock();
uint supersize = uint(SuperSize());
int kernelIndex = m_Wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.IterEntryPoint());
size_t fuseFreq = Renderer::SubBatchSize() / m_IterCountPerKernel;//Use the base sbs to determine when to fuse.
size_t itersRemaining;
double percent, etaMs;
const char* loc = __FUNCTION__;
itersRan = 0;
#ifdef TEST_CL
m_Abort = false;
#endif
if (kernelIndex != -1)
{
ConvertEmber(m_Ember, m_EmberCL, m_XformsCL);
m_CarToRasCL = ConvertCarToRas(*CoordMap());
if (b && !(b = m_Wrapper.WriteBuffer (m_EmberBufferName, reinterpret_cast(&m_EmberCL), sizeof(m_EmberCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.WriteBuffer (m_XformsBufferName, reinterpret_cast(m_XformsCL.data()), sizeof(m_XformsCL[0]) * m_XformsCL.size()))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DistBufferName, reinterpret_cast(const_cast(XformDistributions())), XformDistributionsSize()))) { m_ErrorReport.push_back(loc); }//Will be resized for xaos.
if (b && !(b = m_Wrapper.WriteBuffer (m_CarToRasBufferName, reinterpret_cast(&m_CarToRasCL), sizeof(m_CarToRasCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteImage("Palette", CL_MEM_READ_ONLY, m_PaletteFormat, m_DmapCL.m_Entries.size(), 1, 0, m_DmapCL.m_Entries.data()))) { m_ErrorReport.push_back(loc); }
//If animating, treat each temporal sample as a newly started render for fusing purposes.
if (temporalSample > 0)
m_Calls = 0;
while (b && itersRan < iterCount && !m_Abort)
{
argIndex = 0;
#ifdef TEST_CL
fuse = 0;
#else
//fuse = 100;
//fuse = ((m_Calls % fuseFreq) == 0 ? (EarlyClip() ? 100u : 15u) : 0u);
fuse = uint((m_Calls % fuseFreq) == 0u ? FuseCount() : 0u);
//fuse = ((m_Calls % 4) == 0 ? 100u : 0u);
#endif
itersRemaining = iterCount - itersRan;
uint gridW = uint(std::min(ceil(double(itersRemaining) / double(iterCountPerBlock)), double(IterGridBlockWidth())));
uint gridH = uint(std::min(ceil(double(itersRemaining) / double(gridW * iterCountPerBlock)), double(IterGridBlockHeight())));
uint iterCountThisLaunch = iterCountPerBlock * gridW * gridH;
//Similar to what's done in the base class.
//The number of iters per thread must be adjusted if they've requested less iters than is normally ran in a block (256 * 256).
if (iterCountThisLaunch > iterCount)
{
iterCountPerKernel = uint(ceil(double(iterCount) / double(gridW * gridH * IterBlockKernelCount())));
iterCountThisLaunch = iterCountPerKernel * (gridW * gridH * IterBlockKernelCount());
}
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, iterCountPerKernel))) { m_ErrorReport.push_back(loc); }//Number of iters for each thread to run.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, fuse))) { m_ErrorReport.push_back(loc); }//Number of iters to fuse.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_SeedsBufferName))) { m_ErrorReport.push_back(loc); }//Seeds.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_EmberBufferName))) { m_ErrorReport.push_back(loc); }//Ember.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_XformsBufferName))) { m_ErrorReport.push_back(loc); }//Xforms.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_ParVarsBufferName))) { m_ErrorReport.push_back(loc); }//Parametric variation parameters.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_DistBufferName))) { m_ErrorReport.push_back(loc); }//Xform distributions.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_CarToRasBufferName))) { m_ErrorReport.push_back(loc); }//Coordinate converter.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { m_ErrorReport.push_back(loc); }//Histogram.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, supersize))) { m_ErrorReport.push_back(loc); }//Histogram size.
if (b && !(b = m_Wrapper.SetImageArg (kernelIndex, argIndex++, false, "Palette"))) { m_ErrorReport.push_back(loc); }//Palette.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_PointsBufferName))) { m_ErrorReport.push_back(loc); }//Random start points.
if (b && !(b = m_Wrapper.RunKernel(kernelIndex,
gridW * IterBlockKernelWidth(),//Total grid dims.
gridH * IterBlockKernelHeight(),
1,
IterBlockKernelWidth(),//Individual block dims.
IterBlockKernelHeight(),
1)))
{
m_Abort = true;
m_ErrorReport.push_back(loc);
break;
}
itersRan += iterCountThisLaunch;
m_Calls++;
if (m_Callback)
{
percent = 100.0 *
double
(
double
(
double
(
double(m_LastIter + itersRan) / double(ItersPerTemporalSample())
) + temporalSample
) / double(TemporalSamples())
);
double percentDiff = percent - m_LastIterPercent;
double toc = m_ProgressTimer.Toc();
if (percentDiff >= 10 || (toc > 1000 && percentDiff >= 1))//Call callback function if either 10% has passed, or one second (and 1%).
{
etaMs = ((100.0 - percent) / percent) * m_RenderTimer.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 0, etaMs))
Abort();
m_LastIterPercent = percent;
m_ProgressTimer.Tic();
}
}
}
}
else
{
b = false;
m_ErrorReport.push_back(loc);
}
//t2.Toc(__FUNCTION__);
return b;
}
///
/// Run the log scale filter.
///
/// True if success, else false.
template
eRenderStatus RendererCL::RunLogScaleFilter()
{
//Timing t(4);
bool b = true;
int kernelIndex = m_Wrapper.FindKernelIndex(m_DEOpenCLKernelCreator.LogScaleAssignDEEntryPoint());
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
m_DensityFilterCL = ConvertDensityFilter();
uint argIndex = 0;
uint blockW = m_WarpSize;
uint blockH = 4;//A height of 4 seems to run the fastest.
uint gridW = m_DensityFilterCL.m_SuperRasW;
uint gridH = m_DensityFilterCL.m_SuperRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_HistBufferName))) { m_ErrorReport.push_back(loc); }//Histogram.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_AccumBufferName))) { m_ErrorReport.push_back(loc); }//Accumulator.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, m_DEFilterParamsBufferName))) { m_ErrorReport.push_back(loc); }//DensityFilterCL.
//t.Tic();
if (b && !(b = m_Wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { m_ErrorReport.push_back(loc); }
//t.Toc(loc);
}
else
{
b = false;
m_ErrorReport.push_back(loc);
}
if (b && m_Callback && m_LastIterPercent >= 99.0)//Only update progress if we've really reached the end, not via forced output.
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
return b ? RENDER_OK : RENDER_ERROR;
}
///
/// Run the Gaussian density filter.
/// Method 7: Each block processes a 32x32 block and exits. No column or row advancements happen.
///
/// True if success and not aborted, else false.
template
eRenderStatus RendererCL::RunDensityFilter()
{
bool b = true;
Timing t(4);// , t2(4);
m_DensityFilterCL = ConvertDensityFilter();
int kernelIndex = MakeAndGetDensityFilterProgram(Supersample(), m_DensityFilterCL.m_FilterWidth);
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
uint leftBound = m_DensityFilterCL.m_Supersample - 1;
uint rightBound = m_DensityFilterCL.m_SuperRasW - (m_DensityFilterCL.m_Supersample - 1);
uint topBound = leftBound;
uint botBound = m_DensityFilterCL.m_SuperRasH - (m_DensityFilterCL.m_Supersample - 1);
uint gridW = rightBound - leftBound;
uint gridH = botBound - topBound;
uint blockSizeW = m_MaxDEBlockSizeW;//These *must* both be divisible by 16 or else pixels will go missing.
uint blockSizeH = m_MaxDEBlockSizeH;
//OpenCL runs out of resources when using double or a supersample of 2.
//Remedy this by reducing the height of the block by 2.
if (m_DoublePrecision || m_DensityFilterCL.m_Supersample > 1)
blockSizeH -= 2;
//Can't just blindly pass in vals. Must adjust them first to evenly divide the block count
//into the total grid dimensions.
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
//t.Tic();
//The classic problem with performing DE on adjacent pixels is that the filter will overlap.
//This can be solved in 2 ways. One is to use atomics, which is unacceptably slow.
//The other is to proces the entire image in multiple passes, and each pass processes blocks of pixels
//that are far enough apart such that their filters do not overlap.
//Do the latter.
//Gap is in terms of blocks. How many blocks must separate two blocks running at the same time.
uint gapW = uint(ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / double(blockSizeW)));
uint chunkSizeW = gapW + 1;
uint gapH = uint(ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / double(blockSizeH)));
uint chunkSizeH = gapH + 1;
double totalChunks = chunkSizeW * chunkSizeH;
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_DEFilterParamsBufferName, reinterpret_cast(&m_DensityFilterCL), sizeof(m_DensityFilterCL)))) { m_ErrorReport.push_back(loc); }
#ifdef ROW_ONLY_DE
blockSizeW = 64;//These *must* both be divisible by 16 or else pixels will go missing.
blockSizeH = 1;
gapW = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)blockSizeW);
chunkSizeW = gapW + 1;
gapH = (uint)ceil((m_DensityFilterCL.m_FilterWidth * 2.0) / (double)32);//Block height is 1, but iterates over 32 rows.
chunkSizeH = gapH + 1;
totalChunks = chunkSizeW * chunkSizeH;
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
gridW /= chunkSizeW;
gridH /= chunkSizeH;
for (uint rowChunk = 0; b && !m_Abort && rowChunk < chunkSizeH; rowChunk++)
{
for (uint colChunk = 0; b && !m_Abort && colChunk < chunkSizeW; colChunk++)
{
//t2.Tic();
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunk, rowChunk))) { m_Abort = true; m_ErrorReport.push_back(loc); }
//t2.Toc(loc);
if (b && m_Callback)
{
double percent = (double((rowChunk * chunkSizeW) + (colChunk + 1)) / totalChunks) * 100.0;
double etaMs = ((100.0 - percent) / percent) * t.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
Abort();
}
}
}
#else
gridW /= chunkSizeW;
gridH /= chunkSizeH;
OpenCLWrapper::MakeEvenGridDims(blockSizeW, blockSizeH, gridW, gridH);
for (uint rowChunk = 0; b && !m_Abort && rowChunk < chunkSizeH; rowChunk++)
{
for (uint colChunk = 0; b && !m_Abort && colChunk < chunkSizeW; colChunk++)
{
//t2.Tic();
if (b && !(b = RunDensityFilterPrivate(kernelIndex, gridW, gridH, blockSizeW, blockSizeH, chunkSizeW, chunkSizeH, colChunk, rowChunk))) { m_Abort = true; m_ErrorReport.push_back(loc); }
//t2.Toc(loc);
if (b && m_Callback)
{
double percent = (double((rowChunk * chunkSizeW) + (colChunk + 1)) / totalChunks) * 100.0;
double etaMs = ((100.0 - percent) / percent) * t.Toc();
if (!m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, percent, 1, etaMs))
Abort();
}
}
}
#endif
if (b && m_Callback)
m_Callback->ProgressFunc(m_Ember, m_ProgressParameter, 100.0, 1, 0.0);
//t2.Toc(__FUNCTION__ " all passes");
}
else
{
b = false;
m_ErrorReport.push_back(loc);
}
return m_Abort ? RENDER_ABORT : (b ? RENDER_OK : RENDER_ERROR);
}
///
/// Run final accumulation to the 2D output image.
///
/// True if success and not aborted, else false.
template
eRenderStatus RendererCL::RunFinalAccum()
{
//Timing t(4);
bool b = true;
T alphaBase;
T alphaScale;
int accumKernelIndex = MakeAndGetFinalAccumProgram(alphaBase, alphaScale);
uint argIndex;
uint gridW;
uint gridH;
uint blockW;
uint blockH;
uint curvesSet = m_CurvesSet ? 1 : 0;
const char* loc = __FUNCTION__;
if (!m_Abort && accumKernelIndex != -1)
{
//This is needed with or without early clip.
m_SpatialFilterCL = ConvertSpatialFilter();
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_SpatialFilterParamsBufferName, reinterpret_cast(&m_SpatialFilterCL), sizeof(m_SpatialFilterCL)))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.AddAndWriteBuffer(m_CurvesCsaName, m_Csa.m_Entries.data(), SizeOf(m_Csa.m_Entries)))) { m_ErrorReport.push_back(loc); }
//Since early clip requires gamma correcting the entire accumulator first,
//it can't be done inside of the normal final accumulation kernel, so
//an additional kernel must be launched first.
if (b && EarlyClip())
{
int gammaCorrectKernelIndex = MakeAndGetGammaCorrectionProgram();
if (gammaCorrectKernelIndex != -1)
{
argIndex = 0;
blockW = m_WarpSize;
blockH = 4;//A height of 4 seems to run the fastest.
gridW = m_SpatialFilterCL.m_SuperRasW;//Using super dimensions because this processes the density filtering bufer.
gridH = m_SpatialFilterCL.m_SuperRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_AccumBufferName))) { m_ErrorReport.push_back(loc); }//Accumulator.
if (b && !(b = m_Wrapper.SetBufferArg(gammaCorrectKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { m_ErrorReport.push_back(loc); }//SpatialFilterCL.
if (b && !(b = m_Wrapper.RunKernel(gammaCorrectKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { m_ErrorReport.push_back(loc); }
}
else
{
b = false;
m_ErrorReport.push_back(loc);
}
}
argIndex = 0;
blockW = m_WarpSize;
blockH = 4;//A height of 4 seems to run the fastest.
gridW = m_SpatialFilterCL.m_FinalRasW;
gridH = m_SpatialFilterCL.m_FinalRasH;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_AccumBufferName))) { m_ErrorReport.push_back(loc); }//Accumulator.
if (b && !(b = m_Wrapper.SetImageArg (accumKernelIndex, argIndex++, m_Wrapper.Shared(), m_FinalImageName))) { m_ErrorReport.push_back(loc); }//Final image.
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterParamsBufferName))) { m_ErrorReport.push_back(loc); }//SpatialFilterCL.
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_SpatialFilterCoefsBufferName))) { m_ErrorReport.push_back(loc); }//Filter coefs.
if (b && !(b = m_Wrapper.SetBufferArg(accumKernelIndex, argIndex++, m_CurvesCsaName))) { m_ErrorReport.push_back(loc); }//Curve points.
if (b && !(b = m_Wrapper.SetArg (accumKernelIndex, argIndex++, curvesSet))) { m_ErrorReport.push_back(loc); }//Do curves.
if (b && !(b = m_Wrapper.SetArg (accumKernelIndex, argIndex++, alphaBase))) { m_ErrorReport.push_back(loc); }//Alpha base.
if (b && !(b = m_Wrapper.SetArg (accumKernelIndex, argIndex++, alphaScale))) { m_ErrorReport.push_back(loc); }//Alpha scale.
if (b && m_Wrapper.Shared())
if (b && !(b = m_Wrapper.EnqueueAcquireGLObjects(m_FinalImageName))) { m_ErrorReport.push_back(loc); }
if (b && !(b = m_Wrapper.RunKernel(accumKernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { m_ErrorReport.push_back(loc); }
if (b && m_Wrapper.Shared())
if (b && !(b = m_Wrapper.EnqueueReleaseGLObjects(m_FinalImageName))) { m_ErrorReport.push_back(loc); }
//t.Toc((char*)loc);
}
else
{
b = false;
m_ErrorReport.push_back(loc);
}
return b ? RENDER_OK : RENDER_ERROR;
}
///
/// Zeroize a buffer of the specified size.
///
/// Name of the buffer to clear
/// Width in elements
/// Height in elements
/// Size of each element
/// True if success, else false.
template
bool RendererCL::ClearBuffer(const string& bufferName, uint width, uint height, uint elementSize)
{
bool b = true;
int kernelIndex = m_Wrapper.FindKernelIndex(m_IterOpenCLKernelCreator.ZeroizeEntryPoint());
uint argIndex = 0;
const char* loc = __FUNCTION__;
if (kernelIndex != -1)
{
uint blockW = m_NVidia ? 32 : 16;//Max work group size is 256 on AMD, which means 16x16.
uint blockH = m_NVidia ? 32 : 16;
uint gridW = width * elementSize;
uint gridH = height;
OpenCLWrapper::MakeEvenGridDims(blockW, blockH, gridW, gridH);
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex++, bufferName))) { m_ErrorReport.push_back(loc); }//Buffer of byte.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, width * elementSize))) { m_ErrorReport.push_back(loc); }//Width.
if (b && !(b = m_Wrapper.SetArg (kernelIndex, argIndex++, height))) { m_ErrorReport.push_back(loc); }//Height.
if (b && !(b = m_Wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { m_ErrorReport.push_back(loc); }
}
else
{
b = false;
m_ErrorReport.push_back(loc);
}
return b;
}
///
/// Private wrapper around calling Gaussian density filtering kernel.
/// The parameters are very specific to how the kernel is internally implemented.
///
/// Index of the kernel to call
/// Grid width
/// Grid height
/// Block width
/// Block height
/// Chunk size width (gapW + 1)
/// Chunk size height (gapH + 1)
/// Row parity
/// Column parity
/// True if success, else false.
template
bool RendererCL::RunDensityFilterPrivate(uint kernelIndex, uint gridW, uint gridH, uint blockW, uint blockH, uint chunkSizeW, uint chunkSizeH, uint chunkW, uint chunkH)
{
//Timing t(4);
bool b = true;
uint argIndex = 0;
const char* loc = __FUNCTION__;
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_HistBufferName))) { m_ErrorReport.push_back(loc); } argIndex++;//Histogram.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_AccumBufferName))) { m_ErrorReport.push_back(loc); } argIndex++;//Accumulator.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DEFilterParamsBufferName))) { m_ErrorReport.push_back(loc); } argIndex++;//FlameDensityFilterCL.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefsBufferName))) { m_ErrorReport.push_back(loc); } argIndex++;//Coefs.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DEWidthsBufferName))) { m_ErrorReport.push_back(loc); } argIndex++;//Widths.
if (b && !(b = m_Wrapper.SetBufferArg(kernelIndex, argIndex, m_DECoefIndicesBufferName))) { m_ErrorReport.push_back(loc); } argIndex++;//Coef indices.
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkSizeW))) { m_ErrorReport.push_back(loc); } argIndex++;//Chunk size width (gapW + 1).
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkSizeH))) { m_ErrorReport.push_back(loc); } argIndex++;//Chunk size height (gapH + 1).
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkW))) { m_ErrorReport.push_back(loc); } argIndex++;//Column chunk.
if (b && !(b = m_Wrapper.SetArg( kernelIndex, argIndex, chunkH))) { m_ErrorReport.push_back(loc); } argIndex++;//Row chunk.
//t.Toc(__FUNCTION__ " set args");
//t.Tic();
if (b && !(b = m_Wrapper.RunKernel(kernelIndex, gridW, gridH, 1, blockW, blockH, 1))) { m_ErrorReport.push_back(loc); }//Method 7, accumulating to temp box area.
//t.Toc(__FUNCTION__ " RunKernel()");
return b;
}
///
/// Make the Gaussian density filter program and return its index.
///
/// The supersample being used for the current ember
/// Width of the gaussian filter
/// The kernel index if successful, else -1.
template
int RendererCL::MakeAndGetDensityFilterProgram(size_t ss, uint filterWidth)
{
string deEntryPoint = m_DEOpenCLKernelCreator.GaussianDEEntryPoint(ss, filterWidth);
int kernelIndex = m_Wrapper.FindKernelIndex(deEntryPoint);
const char* loc = __FUNCTION__;
if (kernelIndex == -1)//Has not been built yet.
{
string kernel = m_DEOpenCLKernelCreator.GaussianDEKernel(ss, filterWidth);
bool b = m_Wrapper.AddProgram(deEntryPoint, kernel, deEntryPoint, m_DoublePrecision);
if (b)
{
kernelIndex = m_Wrapper.FindKernelIndex(deEntryPoint);//Try to find it again, it will be present if successfully built.
}
else
{
m_ErrorReport.push_back(string(loc) + "():\nBuilding the following program failed: \n" + kernel + "\n");
}
}
return kernelIndex;
}
///
/// Make the final accumulation program and return its index.
/// There are many different kernels for final accum, depending on early clip, alpha channel, and transparency.
/// Loading all of these in the beginning is too much, so only load the one for the current case being worked with.
///
/// Storage for the alpha base value used in the kernel. 0 if transparency is true, else 255.
/// Storage for the alpha scale value used in the kernel. 255 if transparency is true, else 0.
/// The kernel index if successful, else -1.
template
int RendererCL::MakeAndGetFinalAccumProgram(T& alphaBase, T& alphaScale)
{
string finalAccumEntryPoint = m_FinalAccumOpenCLKernelCreator.FinalAccumEntryPoint(EarlyClip(), Renderer::NumChannels(), Transparency(), alphaBase, alphaScale);
int kernelIndex = m_Wrapper.FindKernelIndex(finalAccumEntryPoint);
const char* loc = __FUNCTION__;
if (kernelIndex == -1)//Has not been built yet.
{
string kernel = m_FinalAccumOpenCLKernelCreator.FinalAccumKernel(EarlyClip(), Renderer::NumChannels(), Transparency());
bool b = m_Wrapper.AddProgram(finalAccumEntryPoint, kernel, finalAccumEntryPoint, m_DoublePrecision);
if (b)
kernelIndex = m_Wrapper.FindKernelIndex(finalAccumEntryPoint);//Try to find it again, it will be present if successfully built.
else
m_ErrorReport.push_back(loc);
}
return kernelIndex;
}
///
/// Make the gamma correction program for early clipping and return its index.
///
/// The kernel index if successful, else -1.
template
int RendererCL::MakeAndGetGammaCorrectionProgram()
{
string gammaEntryPoint = m_FinalAccumOpenCLKernelCreator.GammaCorrectionEntryPoint(Renderer::NumChannels(), Transparency());
int kernelIndex = m_Wrapper.FindKernelIndex(gammaEntryPoint);
const char* loc = __FUNCTION__;
if (kernelIndex == -1)//Has not been built yet.
{
string kernel = m_FinalAccumOpenCLKernelCreator.GammaCorrectionKernel(Renderer::NumChannels(), Transparency());
bool b = m_Wrapper.AddProgram(gammaEntryPoint, kernel, gammaEntryPoint, m_DoublePrecision);
if (b)
kernelIndex = m_Wrapper.FindKernelIndex(gammaEntryPoint);//Try to find it again, it will be present if successfully built.
else
m_ErrorReport.push_back(loc);
}
return kernelIndex;
}
///
/// Private functions passing data to OpenCL programs.
///
///
/// Convert the currently used host side DensityFilter object into a DensityFilterCL object
/// for passing to OpenCL.
///
/// The DensityFilterCL object
template
DensityFilterCL RendererCL::ConvertDensityFilter()
{
DensityFilterCL filterCL;
DensityFilter* densityFilter = dynamic_cast*>(GetDensityFilter());
filterCL.m_Supersample = uint(Supersample());
filterCL.m_SuperRasW = uint(SuperRasW());
filterCL.m_SuperRasH = uint(SuperRasH());
filterCL.m_K1 = K1();
filterCL.m_K2 = K2();
if (densityFilter)
{
filterCL.m_Curve = densityFilter->Curve();
filterCL.m_KernelSize = uint(densityFilter->KernelSize());
filterCL.m_MaxFilterIndex = uint(densityFilter->MaxFilterIndex());
filterCL.m_MaxFilteredCounts = uint(densityFilter->MaxFilteredCounts());
filterCL.m_FilterWidth = uint(densityFilter->FilterWidth());
}
return filterCL;
}
///
/// Convert the currently used host side SpatialFilter object into a SpatialFilterCL object
/// for passing to OpenCL.
///
/// The SpatialFilterCL object
template
SpatialFilterCL RendererCL::ConvertSpatialFilter()
{
T g, linRange, vibrancy;
Color background;
SpatialFilterCL filterCL;
this->PrepFinalAccumVals(background, g, linRange, vibrancy);
filterCL.m_SuperRasW = uint(SuperRasW());
filterCL.m_SuperRasH = uint(SuperRasH());
filterCL.m_FinalRasW = uint(FinalRasW());
filterCL.m_FinalRasH = uint(FinalRasH());
filterCL.m_Supersample = uint(Supersample());
filterCL.m_FilterWidth = uint(GetSpatialFilter()->FinalFilterWidth());
filterCL.m_NumChannels = uint(Renderer::NumChannels());
filterCL.m_BytesPerChannel = uint(BytesPerChannel());
filterCL.m_DensityFilterOffset = uint(DensityFilterOffset());
filterCL.m_Transparency = Transparency();
filterCL.m_YAxisUp = uint(m_YAxisUp);
filterCL.m_Vibrancy = vibrancy;
filterCL.m_HighlightPower = HighlightPower();
filterCL.m_Gamma = g;
filterCL.m_LinRange = linRange;
filterCL.m_Background = background;
return filterCL;
}
///
/// Convert the host side Ember object into an EmberCL object
/// and a vector of XformCL for passing to OpenCL.
///
/// The Ember object to convert
/// The converted EmberCL
/// The converted vector of XformCL
template
void RendererCL::ConvertEmber(Ember& ember, EmberCL& emberCL, vector>& xformsCL)
{
memset(&emberCL, 0, sizeof(EmberCL));//Might not really be needed.
emberCL.m_RotA = m_RotMat.A();
emberCL.m_RotB = m_RotMat.B();
emberCL.m_RotD = m_RotMat.D();
emberCL.m_RotE = m_RotMat.E();
emberCL.m_CamMat = ember.m_CamMat;
emberCL.m_CenterX = CenterX();
emberCL.m_CenterY = ember.m_RotCenterY;
emberCL.m_CamZPos = ember.m_CamZPos;
emberCL.m_CamPerspective = ember.m_CamPerspective;
emberCL.m_CamYaw = ember.m_CamYaw;
emberCL.m_CamPitch = ember.m_CamPitch;
emberCL.m_CamDepthBlur = ember.m_CamDepthBlur;
emberCL.m_BlurCoef = ember.BlurCoef();
for (uint i = 0; i < ember.TotalXformCount() && i < xformsCL.size(); i++)
{
Xform* xform = ember.GetTotalXform(i);
xformsCL[i].m_A = xform->m_Affine.A();
xformsCL[i].m_B = xform->m_Affine.B();
xformsCL[i].m_C = xform->m_Affine.C();
xformsCL[i].m_D = xform->m_Affine.D();
xformsCL[i].m_E = xform->m_Affine.E();
xformsCL[i].m_F = xform->m_Affine.F();
xformsCL[i].m_PostA = xform->m_Post.A();
xformsCL[i].m_PostB = xform->m_Post.B();
xformsCL[i].m_PostC = xform->m_Post.C();
xformsCL[i].m_PostD = xform->m_Post.D();
xformsCL[i].m_PostE = xform->m_Post.E();
xformsCL[i].m_PostF = xform->m_Post.F();
xformsCL[i].m_DirectColor = xform->m_DirectColor;
xformsCL[i].m_ColorSpeedCache = xform->ColorSpeedCache();
xformsCL[i].m_OneMinusColorCache = xform->OneMinusColorCache();
xformsCL[i].m_Opacity = xform->m_Opacity;
xformsCL[i].m_VizAdjusted = xform->VizAdjusted();
for (uint varIndex = 0; varIndex < xform->TotalVariationCount() && varIndex < MAX_CL_VARS; varIndex++)//Assign all variation weights for this xform, with a max of MAX_CL_VARS.
xformsCL[i].m_VariationWeights[varIndex] = xform->GetVariation(varIndex)->m_Weight;
}
}
///
/// Convert the host side CarToRas object into a CarToRasCL object
/// for passing to OpenCL.
///
/// The CarToRas object to convert
/// The CarToRasCL object
template
CarToRasCL RendererCL::ConvertCarToRas(const CarToRas& carToRas)
{
CarToRasCL carToRasCL;
carToRasCL.m_RasWidth = uint(carToRas.RasWidth());
carToRasCL.m_PixPerImageUnitW = carToRas.PixPerImageUnitW();
carToRasCL.m_RasLlX = carToRas.RasLlX();
carToRasCL.m_PixPerImageUnitH = carToRas.PixPerImageUnitH();
carToRasCL.m_RasLlY = carToRas.RasLlY();
carToRasCL.m_CarLlX = carToRas.CarLlX();
carToRasCL.m_CarLlY = carToRas.CarLlY();
carToRasCL.m_CarUrX = carToRas.CarUrX();
carToRasCL.m_CarUrY = carToRas.CarUrY();
return carToRasCL;
}
///
/// Fill seeds buffer which gets passed to the iteration kernel.
/// The range of each seed will be spaced to ensure no duplicates are added.
/// Note, WriteBuffer() must be called after this to actually copy the
/// data from the host to the device.
///
template
void RendererCL::FillSeeds()
{
double start, delta = std::floor((double)std::numeric_limits::max() / (IterGridKernelCount() * 2));
m_Seeds.resize(IterGridKernelCount());
start = delta;
for (auto& seed : m_Seeds)
{
seed.x = (uint)m_Rand[0].template Frand(start, start + delta);
start += delta;
seed.y = (uint)m_Rand[0].template Frand(start, start + delta);
start += delta;
}
}
template EMBERCL_API class RendererCL;
#ifdef DO_DOUBLE
template EMBERCL_API class RendererCL;
#endif
}