#pragma once
#include "EmberCommonPch.h"
#include "EmberOptions.h"
///
/// Global utility classes and functions that are common to all programs that use
/// Ember and its derivatives.
///
namespace EmberCommon
{
///
/// Derivation of the RenderCallback class to do custom printing action
/// whenever the progress function is internally called inside of Ember
/// and its derivatives.
/// Template argument expected to be float or double.
///
template
class RenderProgress : public RenderCallback
{
public:
///
/// Constructor that initializes the state to zero.
///
RenderProgress() = default;
RenderProgress(RenderProgress& progress) = delete;
~RenderProgress() = default;
///
/// The progress function which will be called from inside the renderer.
///
/// The ember currently being rendered
/// An extra dummy parameter
/// The progress fraction from 0-100
/// The stage of iteration. 1 is iterating, 2 is density filtering, 2 is final accumulation.
/// The estimated milliseconds to completion of the current stage
/// The value of m_Running, which is always true since this is intended to run in an environment where the render runs to completion, unlike interactive rendering.
virtual int ProgressFunc(Ember& ember, void* foo, double fraction, int stage, double etaMs)
{
if (stage == 0 || stage == 1)
{
if (m_LastStage != stage)
cout << "\n";
cout << "\r" << string(m_S.length() * 2, ' ');//Clear what was previously here, * 2 just to be safe because the end parts of previous strings might be longer.
m_SS.str("");//Begin new output.
m_SS << "\rStage = " << (stage ? "filtering" : "iterating");
m_SS << ", progress = " << int(fraction) << "%";
m_SS << ", eta = " << t.Format(etaMs);
m_S = m_SS.str();
cout << m_S;
}
m_LastStage = stage;
return m_Running;
}
///
/// Reset the state.
///
void Clear()
{
m_Running = 1;
m_LastStage = 0;
m_LastLength = 0;
m_SS.clear();
m_S.clear();
}
///
/// Stop this instance.
///
void Stop()
{
m_Running = 0;
}
private:
int m_Running = 1;
int m_LastStage = 0;
int m_LastLength = 0;
stringstream m_SS;
string m_S;
Timing t;
};
///
/// Wrapper for parsing an ember Xml file, storing the embers in a vector and printing
/// any errors that occurred.
/// Template argument expected to be float or double.
///
/// The parser to use
/// The full path and name of the file
/// Storage for the embers read from the file
/// True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present. Default: true.
/// True if success, else false.
template
static bool ParseEmberFile(XmlToEmber& parser, const string& filename, vector>& embers, bool useDefaults = true)
{
if (!parser.Parse(filename.c_str(), embers, useDefaults))
{
cerr << "Error parsing flame file " << filename << ", returning without executing.\n";
return false;
}
if (embers.empty())
{
cerr << "Error: No data present in file " << filename << ". Aborting.\n";
return false;
}
return true;
}
///
/// Cross platform wrapper for getting the full path of the current executable.
///
/// The value of argv[0] passed into main()
/// The full path of the executable as a string
static string GetExePath(const char* argv0)
{
string fullpath;
#ifdef _WIN32
fullpath = argv0;
#else
vector v;
v.resize(2048);
#if __APPLE__
uint32_t vs = uint32_t(v.size());
if (_NSGetExecutablePath(v.data(), &vs) == 0)
fullpath = string(v.data());
else
cerr << "Could not discern full path from executable.\n";
#else
auto fullsize = readlink("/proc/self/exe", v.data(), v.size());
fullpath = string(v.data());
#endif
#endif
return GetPath(fullpath);
}
///
/// Wrapper for parsing palette Xml file and initializing it's private static members,
/// and printing any errors that occurred.
/// Template argument expected to be float or double.
///
/// The full path of the folder the program is running in
/// The full path and name of the file
/// True if success, else false.
template
static bool InitPaletteList(const string& programPath, const string& filename)
{
auto paletteList = PaletteList::Instance();
static vector paths =
{
programPath
#ifndef _WIN32
, "~/",
"~/.config/fractorium/",
"/usr/share/fractorium/",
"/usr/local/share/fractorium/"
#endif
};
bool added = false;
for (auto& p : paths)
{
auto fullpath = p + filename;
//cout << "Trying: " << fullpath << endl;
if (!added)
{
if (std::ifstream(fullpath))
added |= paletteList->Add(fullpath);
}
else
break;
}
if (!added || !paletteList->Size())
{
cerr << "Error parsing palette file " << filename << ". Reason: \n"
<< paletteList->ErrorReportString() << "\nReturning without executing.\n";
return false;
}
return true;
}
///
/// Formats a filename with digits using the passed in amount of 0 padding.
///
/// The ember whose name will be set
/// The ostringstream which will be used to format
/// The amount of padding to use
template
void FormatName(Ember& result, ostringstream& os, streamsize padding)
{
os << std::setw(padding) << result.m_Time;
result.m_Name = os.str();
os.str("");
}
///
/// Convert an RGBA 32-bit float buffer to an RGB 8-bit buffer.
/// The two buffers can point to the same memory location if needed.
///
/// The RGBA 32-bit float buffer
/// The RGB 8-bit buffer
/// The width of the image in pixels
/// The height of the image in pixels
static void Rgba32ToRgb8(v4F* rgba, byte* rgb, size_t width, size_t height)
{
for (size_t i = 0, j = 0; i < (width * height); i++)
{
rgb[j++] = byte(Clamp(rgba[i].r * 255.0f, 0.0f, 255.0f));
rgb[j++] = byte(Clamp(rgba[i].g * 255.0f, 0.0f, 255.0f));
rgb[j++] = byte(Clamp(rgba[i].b * 255.0f, 0.0f, 255.0f));
}
}
///
/// Convert an RGBA 32-bit float buffer to an RGBA 8-bit buffer.
/// The two buffers can point to the same memory location if needed.
///
/// The RGBA 32-bit float buffer
/// The RGBA 8-bit buffer
/// The width of the image in pixels
/// The height of the image in pixels
/// True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible
static void Rgba32ToRgba8(v4F* rgba, byte* rgb, size_t width, size_t height, bool doAlpha)
{
for (size_t i = 0, j = 0; i < (width * height); i++)
{
rgb[j++] = byte(Clamp(rgba[i].r * 255.0f, 0.0f, 255.0f));
rgb[j++] = byte(Clamp(rgba[i].g * 255.0f, 0.0f, 255.0f));
rgb[j++] = byte(Clamp(rgba[i].b * 255.0f, 0.0f, 255.0f));
rgb[j++] = doAlpha ? byte(Clamp(rgba[i].a * 255.0f, 0.0f, 255.0f)) : 255;
}
}
///
/// Convert an RGBA 32-bit float buffer to an RGBA 16-bit buffer.
/// The two buffers can point to the same memory location if needed.
///
/// The RGBA 32-bit float buffer
/// The RGBA 16-bit buffer
/// The width of the image in pixels
/// The height of the image in pixels
/// True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible
static void Rgba32ToRgba16(v4F* rgba, glm::uint16* rgb, size_t width, size_t height, bool doAlpha)
{
for (size_t i = 0, j = 0; i < (width * height); i++)
{
rgb[j++] = glm::uint16(Clamp(rgba[i].r * 65535.0f, 0.0f, 65535.0f));
rgb[j++] = glm::uint16(Clamp(rgba[i].g * 65535.0f, 0.0f, 65535.0f));
rgb[j++] = glm::uint16(Clamp(rgba[i].b * 65535.0f, 0.0f, 65535.0f));
rgb[j++] = doAlpha ? glm::uint16(Clamp(rgba[i].a * 65535.0f, 0.0f, 65535.0f)) : glm::uint16(65535);
}
}
///
/// Convert an RGBA 32-bit float buffer to an EXR RGBA 32-bit float buffer.
/// The two buffers can point to the same memory location if needed.
/// Note that this squares the values coming in, for some reason EXR expects that.
///
/// The RGBA 32-bit float buffer
/// The EXR RGBA 32-bit float buffer
/// The width of the image in pixels
/// The height of the image in pixels
/// True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible
static void Rgba32ToRgbaExr(v4F* rgba, Rgba* ilmfRgba, size_t width, size_t height, bool doAlpha)
{
for (size_t i = 0; i < (width * height); i++)
{
ilmfRgba[i].r = Clamp(Sqr(rgba[i].r), 0.0f, 1.0f);
ilmfRgba[i].g = Clamp(Sqr(rgba[i].g), 0.0f, 1.0f);
ilmfRgba[i].b = Clamp(Sqr(rgba[i].b), 0.0f, 1.0f);
ilmfRgba[i].a = doAlpha ? Clamp(rgba[i].a * 1.0f, 0.0f, 1.0f) : 1.0f;
}
}
///
/// Make a filename for a single render. This is used in EmberRender.
///
/// The path portion of where to save the file
/// The full name and path to override everything else
/// The name to use when useFinalName is true
/// The prefix to prepend to the filename
/// True suffix to append to the filename
/// The format extention. This must not contain a period.
/// The width padding to use, which will be zero filled.
/// The numerical value to use for the filename when useFinalName is false and out is empty
/// Whether to use the name included in the flame. The i parameter is ignored in this case.
static string MakeSingleFilename(const string& path, const string& out, const string& finalName, const string& prefix, const string& suffix, const string& format, glm::uint padding, size_t i, bool useFinalName)
{
string filename;
if (!out.empty())
{
filename = out;
}
else if (useFinalName)
{
filename = path + prefix + finalName + suffix + "." + format;
}
else
{
ostringstream fnstream;
fnstream << path << prefix << setfill('0') << setprecision(0) << fixed << setw(padding) << i << suffix << "." << format;
filename = fnstream.str();
}
return filename;
}
///
/// Make a filename for a frame of an animation render. This is used in EmberAnimate.
///
/// The path portion of where to save the file
/// The prefix to prepend to the filename
/// True suffix to append to the filename
/// The format extention. This must contain a period.
/// The width padding to use, which will be zero filled.
/// The numerical value to use for the filename
static string MakeAnimFilename(const string& path, const string& prefix, const string& suffix, const string& format, glm::uint padding, size_t ftime)
{
ostringstream fnstream;
fnstream << path << prefix << setfill('0') << setprecision(0) << fixed << setw(padding) << ftime << suffix << format;
return fnstream.str();
}
///
/// Calculate the number of strips required if the needed amount of memory
/// is greater than the system memory, or greater than what the user wants to allow.
///
/// Amount of memory required
/// Amount of memory available on the system
/// The maximum amount of memory to use. Use max if 0.
/// The number of strips to use
static uint CalcStrips(double memRequired, double memAvailable, double useMem)
{
uint strips;
if (useMem > 0)
memAvailable = useMem;
else
memAvailable *= 0.8;
if (memAvailable >= memRequired)
return 1;
strips = uint(ceil(memRequired / memAvailable));
return strips;
}
///
/// Given a numerator and a denominator, find the next highest denominator that divides
/// evenly into the numerator.
///
/// The numerator
/// The denominator
/// The next highest divisor if found, else 1.
template
static T NextHighestEvenDiv(T numerator, T denominator)
{
T result = 1;
T numDiv2 = numerator / 2;
do
{
denominator++;
if (numerator % denominator == 0)
{
result = denominator;
break;
}
}
while (denominator <= numDiv2);
return result;
}
///
/// Given a numerator and a denominator, find the next lowest denominator that divides
/// evenly into the numerator.
///
/// The numerator
/// The denominator
/// The next lowest divisor if found, else 1.
template
static T NextLowestEvenDiv(T numerator, T denominator)
{
T result = 1;
T numDiv2 = numerator / 2;
denominator--;
if (denominator > numDiv2)
denominator = numDiv2;
while (denominator >= 1)
{
if (numerator % denominator == 0)
{
result = denominator;
break;
}
denominator--;
}
return result;
}
///
/// Wrapper for converting a vector of absolute device indices to a vector
/// of platform,device index pairs.
///
/// The vector of absolute device indices to convert
/// The converted vector of platform,device index pairs
static vector> Devices(const vector& selectedDevices)
{
vector> vec;
auto info = OpenCLInfo::Instance();
auto& devices = info->DeviceIndices();
vec.reserve(selectedDevices.size());
for (size_t i = 0; i < selectedDevices.size(); i++)
{
auto index = selectedDevices[i];
if (index < devices.size())
vec.push_back(devices[index]);
}
return vec;
}
///
/// Wrapper for creating a renderer of the specified type.
///
/// Type of renderer to create
/// The vector of platform/device indices to use
/// True if shared with OpenGL, else false.
/// The texture ID of the shared OpenGL texture if shared
/// The error report for holding errors if anything goes wrong
/// A pointer to the created renderer if successful, else false.
template
static Renderer* CreateRenderer(eRendererType renderType, const vector>& devices, bool shared, GLuint texId, EmberReport& errorReport)
{
string s;
unique_ptr> renderer;
try
{
if (renderType == eRendererType::OPENCL_RENDERER && !devices.empty())
{
s = "OpenCL";
renderer = unique_ptr>(new RendererCL(devices, shared, texId));//Can't use make_unique here.
if (!renderer.get() || !renderer->Ok())
{
if (renderer.get())
errorReport.AddToReport(renderer->ErrorReport());
errorReport.AddToReport("Error initializing OpenCL renderer, using CPU renderer instead.");
renderer = make_unique>();
}
}
else
{
s = "CPU";
renderer = make_unique>();
}
}
catch (const std::exception& e)
{
errorReport.AddToReport("Error creating " + s + " renderer: " + e.what() + "\n");
}
catch (...)
{
errorReport.AddToReport("Error creating " + s + " renderer.\n");
}
return renderer.release();
}
///
/// Wrapper for creating a vector of renderers of the specified type for each passed in device.
/// If shared is true, only the first renderer will be shared with OpenGL.
/// Although a fallback GPU renderer will be created if a failure occurs, it doesn't really
/// make sense since the concept of devices only applies to OpenCL renderers.
///
/// Type of renderer to create
/// The vector of platform/device indices to use
/// True if shared with OpenGL, else false.
/// The texture ID of the shared OpenGL texture if shared
/// The error report for holding errors if anything goes wrong
/// The vector of created renderers if successful, else false.
template
static vector>> CreateRenderers(eRendererType renderType, const vector>& devices, bool shared, GLuint texId, EmberReport& errorReport)
{
string s;
vector>> v;
try
{
if (renderType == eRendererType::OPENCL_RENDERER && !devices.empty())
{
s = "OpenCL";
v.reserve(devices.size());
for (size_t i = 0; i < devices.size(); i++)
{
vector> tempDevices{ devices[i] };
auto renderer = unique_ptr>(new RendererCL(tempDevices, !i ? shared : false, texId));//Can't use make_unique here.
if (!renderer.get() || !renderer->Ok())
{
ostringstream os;
if (renderer.get())
errorReport.AddToReport(renderer->ErrorReport());
os << "Error initializing OpenCL renderer for platform " << devices[i].first << ", " << devices[i].second;
errorReport.AddToReport(os.str());
}
else
v.push_back(std::move(renderer));
}
}
else
{
s = "CPU";
v.push_back(std::move(unique_ptr>(EmberCommon::CreateRenderer(eRendererType::CPU_RENDERER, devices, shared, texId, errorReport))));
}
}
catch (const std::exception& e)
{
errorReport.AddToReport("Error creating " + s + " renderer: " + e.what() + "\n");
}
catch (...)
{
errorReport.AddToReport("Error creating " + s + " renderer.\n");
}
if (v.empty() && s != "CPU")//OpenCL creation failed and CPU creation has not been attempted, so just create one CPU renderer and place it in the vector.
{
try
{
s = "CPU";
v.push_back(std::move(unique_ptr>(EmberCommon::CreateRenderer(eRendererType::CPU_RENDERER, devices, shared, texId, errorReport))));
}
catch (const std::exception& e)
{
errorReport.AddToReport("Error creating fallback" + s + " renderer: " + e.what() + "\n");
}
catch (...)
{
errorReport.AddToReport("Error creating fallback " + s + " renderer.\n");
}
}
return v;
}
///
/// Perform a render which allows for using strips or not.
/// If an error occurs while rendering any strip, the rendering process stops.
///
/// The renderer to use
/// The ember to render
/// The vector to place the final output in
/// The time position to use, only valid for animation
/// The number of strips to use. This must be validated before calling this function.
/// True to flip the Y axis, else false.
/// Function called before the start of the rendering of each strip
/// Function called after the end of the rendering of each strip
/// Function called if there is an error rendering a strip
/// Function called when all strips successfully finish rendering
/// True if all rendering was successful, else false.
template
static bool StripsRender(RendererBase* renderer, Ember& ember, vector& finalImage, double time, size_t strips, bool yAxisUp,
std::function perStripStart,
std::function perStripFinish,
std::function perStripError,
std::function& finalEmber)> allStripsFinished)
{
bool success = false;
size_t origHeight, realHeight = ember.m_FinalRasH;
T centerY = ember.m_CenterY;
T floatStripH = T(ember.m_FinalRasH) / T(strips);
T zoomScale = pow(T(2), ember.m_Zoom);
T centerBase = centerY - ((strips - 1) * floatStripH) / (2 * ember.m_PixelsPerUnit * zoomScale);
vector> randVec;
ember.m_Quality *= strips;
ember.m_FinalRasH = size_t(ceil(floatStripH));
if (strips > 1)
randVec = renderer->RandVec();
for (size_t strip = 0; strip < strips; strip++)
{
size_t stripOffset;
if (yAxisUp)
stripOffset = ember.m_FinalRasH * ((strips - strip) - 1) * ember.m_FinalRasW;
else
stripOffset = ember.m_FinalRasH * strip * ember.m_FinalRasW;
ember.m_CenterY = centerBase + ember.m_FinalRasH * T(strip) / (ember.m_PixelsPerUnit * zoomScale);
if ((ember.m_FinalRasH * (strip + 1)) > realHeight)
{
origHeight = ember.m_FinalRasH;
ember.m_FinalRasH = realHeight - origHeight * strip;
ember.m_CenterY -= (origHeight - ember.m_FinalRasH) * T(0.5) / (ember.m_PixelsPerUnit * zoomScale);
}
perStripStart(strip);
if (strips > 1)
{
renderer->RandVec(randVec);//Use the same vector of ISAAC rands for each strip.
renderer->SetEmber(ember);//Set one final time after modifications for strips.
}
if ((renderer->Run(finalImage, time, 0, false, stripOffset) == eRenderStatus::RENDER_OK) && !renderer->Aborted() && !finalImage.empty())
{
perStripFinish(strip);
}
else
{
perStripError(strip);
break;
}
if (strip == strips - 1)
success = true;
}
//Restore the ember values to their original values.
ember.m_Quality /= strips;
ember.m_FinalRasH = realHeight;
ember.m_CenterY = centerY;
if (strips > 1)
renderer->SetEmber(ember);//Further processing will require the dimensions to match the original ember, so re-assign.
if (success)
allStripsFinished(ember);
Memset(finalImage);
return success;
}
///
/// Verify that the specified number of strips is valid for the given height.
/// The passed in error functions will be called if the number of strips needs
/// to be modified for the given height.
///
/// The height in pixels of the image to be rendered
/// The number of strips to split the render into
/// Function called if the number of strips exceeds the height of the image
/// Function called if the number of strips does not divide evently into the height of the image
/// Called if for any reason the number of strips used will differ from the value passed in
/// The actual number of strips that will be used
static size_t VerifyStrips(size_t height, size_t strips,
std::function stripError1,
std::function stripError2,
std::function stripError3)
{
ostringstream os;
if (strips > height)
{
os << "Cannot have more strips than rows: " << strips << " > " << height << ". Setting strips = rows.";
stripError1(os.str()); os.str("");
strips = height;
}
if (height % strips != 0)
{
os << "A strips value of " << strips << " does not divide evenly into a height of " << height << ".";
stripError2(os.str()); os.str("");
strips = NextHighestEvenDiv(height, strips);
if (strips == 1)//No higher divisor, check for a lower one.
strips = NextLowestEvenDiv(height, strips);
os << "Setting strips to " << strips << ".";
stripError3(os.str()); os.str("");
}
return strips;
}
///
/// Search the variation's OpenCL string to determine whether it contains any of the search strings in stringVec.
/// This is useful for finding variations with certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
///
/// The variation whose OpenCL string will be searched
/// The vector of strings to search for
/// True to find all variations which match any strings, false to break after the first match is found.
/// True if there was at least one match, else false.
template
bool SearchVar(const Variation* var, const vector& stringVec, bool matchAll)
{
bool ret = false;
size_t i;
auto cl = var->OpenCLFuncsString() + "\n" + var->OpenCLString();
if (matchAll)
{
for (i = 0; i < stringVec.size(); i++)
if (cl.find(stringVec[i]) == std::string::npos)
break;
ret = (i == stringVec.size());
}
else
{
for (i = 0; i < stringVec.size(); i++)
{
if (cl.find(stringVec[i]) != std::string::npos)
{
ret = true;
break;
}
}
}
return ret;
}
template
bool SearchVarWWO(const Variation* var, const vector& withVec, const vector& withoutVec)
{
bool ret = false;
size_t i, j, k;
bool onegood = false;
auto cl = var->OpenCLFuncsString() + "\n" + var->OpenCLString();
vector clsplits = Split(cl, '\n');
for (i = 0; i < clsplits.size(); i++)
{
for (j = 0; j < withVec.size(); j++)
{
if (clsplits[i].find(withVec[j]) != std::string::npos)
{
for (k = 0; k < withoutVec.size(); k++)
{
if (clsplits[i].find(withoutVec[k]) != std::string::npos)
{
return false;
}
}
onegood = true;
}
}
}
return onegood;
//return i == clsplits.size() && j == withVec.size() && k == withoutVec.size();
}
///
/// Find all variations whose OpenCL string contains any of the search strings in stringVec.
/// This is useful for finding variations with certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
///
/// The vector of variation pointers to search
/// The vector of strings to search for
/// True to find all variations which match any strings, false to break after the first match is found.
/// True to find all variations which match all strings, false to stop searching a variation after the first match succeeds.
/// A vector of pointers to variations whose OpenCL string matched at least one string in stringVec
template
static vector*> FindVarsWith(const vector*>& vars, const vector& stringVec, bool findAll = true, bool matchAll = false)
{
vector*> vec;
auto vl = VariationList::Instance();
for (auto& v : vars)
{
if (SearchVar(v, stringVec, matchAll))
{
vec.push_back(v);
if (!findAll)
break;
}
}
return vec;
}
template
static vector*> FindVarsWithWithout(const vector*>& vars, const vector& withVec, const vector& withoutVec)
{
vector*> vec;
auto vl = VariationList::Instance();
for (auto& v : vars)
{
if (SearchVarWWO(v, withVec, withoutVec))
{
vec.push_back(v);
}
}
return vec;
}
///
/// Find all variations whose OpenCL string does not contain any of the search strings in stringVec.
/// This is useful for finding variations without certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
///
/// The vector of variation pointers to search
/// The vector of strings to search for
/// True to find all variations which don't match any strings, false to break after the first non-match is found.
/// A vector of pointers to variations whose OpenCL string did not match any string in stringVec
template
static vector*> FindVarsWithout(const vector*>& vars, const vector& stringVec, bool findAll = true)
{
vector*> vec;
auto vl = VariationList::Instance();
for (auto& v : vars)
{
if (!SearchVar(v, stringVec, false))
{
vec.push_back(v);
if (!findAll)
break;
}
}
return vec;
}
///
/// Add a vector of xforms to the passed in ember, and optionally preserve the xaos based on position.
///
/// The ember to add xforms to
/// The vector of xforms to add
/// True to preserve xaos else false.
template
static void AddXformsWithXaos(Ember& ember, std::vector>& xforms, bool preserveXaos)
{
auto origXformCount = ember.XformCount();
for (auto& it : xforms)
ember.AddXform(it);
for (auto i = 0; i < ember.XformCount(); i++)
{
auto xf = ember.GetXform(i);
if (i < origXformCount)
{
for (auto j = 0; j < ember.XformCount(); j++)
if (j >= origXformCount)
xf->SetXaos(j, 0);
}
else
{
for (auto j = 0; j < ember.XformCount(); j++)
if (j < origXformCount)
xf->SetXaos(j, 0);
else if (!preserveXaos)
xf->SetXaos(j, 1);
else if (i - origXformCount < xforms.size())//Should never be out of bounds, but just to be safe.
xf->SetXaos(j, xforms[i - origXformCount].Xaos(j - origXformCount));
}
}
}
}
///
/// Simple macro to print a string if the --verbose options has been specified.
///
#define VerbosePrint(s) if (opt.Verbose()) cout << s << "\n"