#pragma once
#include "VariationList.h"
#include "Interpolate.h"
///
/// Xform class.
///
namespace EmberNs
{
///
/// Xform and Ember need each other, but each can't include the other.
/// So Ember includes this file, and Ember is declared as a forward declaration here.
///
template class Ember;
///
/// If both polymorphism and templating are needed, uncomment this, fill it out and derive from it.
///
//class EMBER_API XformBase
//{
//};
///
/// An xform is a pre affine transform, a list of variations, and an optional final affine transform.
/// This is what gets applied to a point for each iteration.
/// Template argument expected to be float or double.
///
template
class EMBER_API Xform
{
public:
///
/// Default constructor which calls Init() to set default or out of bounds values.
/// When useDefaults is true, Pre and post affine are defaulted to the identity matrix.
///
/// Use reasonable default if true, else use out of bounds values.
Xform(bool useDefaults = true)
{
Init(useDefaults);
}
///
/// Constructor that takes default arguments. Mostly used for testing.
/// Post affine is defaulted to the identity matrix.
///
/// The probability that this xform is chosen
/// The color index
/// The color speed
/// The opacity
/// The a value of the pre affine transform
/// The d value of the pre affine transform
/// The b value of the pre affine transform
/// The e value of the pre affine transform
/// The c value of the pre affine transform
/// The f value of the pre affine transform
/// The a value of the post affine transform. Default: 1.
/// The d value of the post affine transform. Default: 0.
/// The b value of the post affine transform. Default: 0.
/// The e value of the post affine transform. Default: 1.
/// The c value of the post affine transform. Default: 0.
/// The f value of the post affine transform. Default: 0.
Xform(T weight, T colorX, T colorSpeed, T opacity,
T a, T d, T b, T e, T c, T f,
T pa = 1,
T pd = 0,
T pb = 0,
T pe = 1,
T pc = 0,
T pf = 0)
: Xform()
{
m_Weight = weight;
m_ColorX = colorX;
m_ColorSpeed = colorSpeed;
m_Opacity = opacity;
m_Affine.A(a);
m_Affine.B(b);
m_Affine.C(c);
m_Affine.D(d);
m_Affine.E(e);
m_Affine.F(f);
m_Post.A(pa);
m_Post.B(pb);
m_Post.C(pc);
m_Post.D(pd);
m_Post.E(pe);
m_Post.F(pf);
m_HasPost = !m_Post.IsID();
m_HasPreOrRegularVars = PreVariationCount() > 0 || VariationCount() > 0;
CacheColorVals();//Init already called this, but must call again since color was assigned above.
}
///
/// Default copy constructor.
///
/// The Xform object to copy
Xform(const Xform& xform)
: m_ParentEmber(nullptr)//Hack.
{
Xform::operator=(xform);
}
///
/// Copy constructor to copy an Xform object of type U.
///
/// The Xform object to copy
template
Xform(const Xform& xform)
: m_ParentEmber(nullptr)//Hack.
{
Xform::operator=(xform);
}
///
/// Deletes each element of the variation vector and clears it.
///
~Xform()
{
ClearAndDeleteVariations();
}
///
/// Default assignment operator.
///
/// The Xform object to copy
Xform& operator = (const Xform& xform)
{
if (this != &xform)
Xform::operator=(xform);
return *this;
}
///
/// Assignment operator to assign a Xform object of type U.
/// This will delete all of the variations in the vector
/// and repopulate it with copes of the variation in xform's vector.
/// All other values are assigned directly.
///
/// The Xform object to copy.
/// Reference to updated self
template
Xform& operator = (const Xform& xform)
{
m_Affine = xform.m_Affine;
m_Post = xform.m_Post;
m_Weight = T(xform.m_Weight);
m_ColorX = T(xform.m_ColorX);
m_ColorY = T(xform.m_ColorY);
m_DirectColor = T(xform.m_DirectColor);
m_ColorSpeed = T(xform.m_ColorSpeed);
m_Animate = T(xform.m_Animate);
m_Opacity = T(xform.m_Opacity);
CacheColorVals();
m_HasPost = xform.HasPost();
m_HasPreOrRegularVars = xform.PreVariationCount() > 0 || xform.VariationCount() > 0;
m_Wind[0] = T(xform.m_Wind[0]);
m_Wind[1] = T(xform.m_Wind[1]);
m_MotionFreq = T(xform.m_MotionFreq);
m_MotionFunc = xform.m_MotionFunc;
m_MotionOffset = T(xform.m_MotionOffset);
ClearAndDeleteVariations();
//Must manually add them via the AddVariation() function so that
//the variation's m_IndexInXform member gets properly set to this.
for (size_t i = 0; i < xform.TotalVariationCount(); i++)
{
Variation* var = nullptr;
if (Variation* varOrig = xform.GetVariation(i))
{
varOrig->Copy(var);//Will convert from type U to type T.
AddVariation(var);//Will internally call SetPrecalcFlags().
}
}
if (TotalVariationCount() == 0)
SetPrecalcFlags();
//If this xform was already part of a different ember, then do not assign, else do.
if (!m_ParentEmber && (typeid(T) == typeid(U)))
m_ParentEmber = reinterpret_cast*>(xform.ParentEmber());
CopyCont(m_Xaos, xform.XaosVec());
CopyCont(m_Motion, xform.m_Motion);
m_Name = xform.m_Name;
return *this;
}
///
/// Init default values.
/// Non default values are used to signify an uninitialized state. This is useful for
/// doing motion interpolation where we don't want to apply motion to all fields. By setting
/// unreasonable values before parsing, then only assigning the ones the motion tags specified,
/// it is clear which fields are intended to have motion applied to them.
///
/// Use reasonable default if true, else use out of bounds values.
void Init(bool useDefaults = true)
{
static size_t count = 0;
if (useDefaults)
{
m_Weight = 0;
m_ColorSpeed = T(0.5);
m_Animate = 1;
m_ColorX = T(count & 1);
m_ColorY = 0;
m_DirectColor = 1;
m_Opacity = 1;
m_Affine.A(1);
m_Affine.B(0);
m_Affine.C(0);
m_Affine.D(0);
m_Affine.E(1);
m_Affine.F(0);
m_Post.A(1);
m_Post.B(0);
m_Post.C(0);
m_Post.D(0);
m_Post.E(1);
m_Post.F(0);
m_Wind[0] = 0;
m_Wind[1] = 0;
m_MotionFreq = 0;
m_MotionOffset = 0;
}
else
{
m_Weight = EMPTYFIELD;
m_ColorSpeed = EMPTYFIELD;
m_Animate = EMPTYFIELD;
m_ColorX = EMPTYFIELD;
m_ColorY = EMPTYFIELD;
m_DirectColor = EMPTYFIELD;
m_Opacity = EMPTYFIELD;
m_Affine.A(EMPTYFIELD);
m_Affine.B(EMPTYFIELD);
m_Affine.C(EMPTYFIELD);
m_Affine.D(EMPTYFIELD);
m_Affine.E(EMPTYFIELD);
m_Affine.F(EMPTYFIELD);
m_Post.A(EMPTYFIELD);
m_Post.B(EMPTYFIELD);
m_Post.C(EMPTYFIELD);
m_Post.D(EMPTYFIELD);
m_Post.E(EMPTYFIELD);
m_Post.F(EMPTYFIELD);
m_Wind[0] = EMPTYFIELD;
m_Wind[1] = EMPTYFIELD;
m_MotionFreq = EMPTYFIELD;
m_MotionOffset = EMPTYFIELD;
}
m_MotionFunc = eMotion::MOTION_SIN;
m_Motion.clear();
m_NeedPrecalcSumSquares = false;
m_NeedPrecalcSqrtSumSquares = false;
m_NeedPrecalcAngles = false;
m_NeedPrecalcAtanXY = false;
m_NeedPrecalcAtanYX = false;
m_HasPost = false;
m_HasPreOrRegularVars = false;
m_ParentEmber = nullptr;
m_PreVariations.reserve(MAX_VARS_PER_XFORM);
m_Variations.reserve(MAX_VARS_PER_XFORM);
m_PostVariations.reserve(MAX_VARS_PER_XFORM);
CacheColorVals();
count++;
}
///
/// Add a pointer to a variation which will be deleted on destruction so the caller should not delete.
/// This checks if the total number of variations is less than or equal to MAX_VARS_PER_XFORM.
/// It also checks if the variation is already present, in which case it doesn't add.
/// If add, set all precalcs.
///
/// Pointer to a varation to add
/// True if the successful, else false.
bool AddVariation(Variation* variation)
{
if (variation && (GetVariationById(variation->VariationId()) == nullptr))
{
string name = variation->Name();
bool pre = name.find("pre_") == 0;
bool post = name.find("post_") == 0;
vector*>* vec;
if (pre)
vec = &m_PreVariations;
else if (post)
vec = &m_PostVariations;
else
vec = &m_Variations;
if (vec->size() < MAX_VARS_PER_XFORM)
{
vec->push_back(variation);
//Flatten must always be last.
for (size_t i = 0; i < vec->size(); i++)
{
if ((i != vec->size() - 1) && ((*vec)[i]->Name().find("flatten") != string::npos))
{
std::swap((*vec)[i], (*vec)[vec->size() - 1]);
break;
}
}
SetPrecalcFlags();
return true;
}
}
return false;
}
///
/// Get a pointer to the variation at the specified index.
///
/// The index in the list to retrieve
/// A pointer to the variation at the index if in range, else nullptr.
Variation* GetVariation(size_t index) const
{
size_t count = 0;
Variation* var = nullptr;
const_cast*>(this)->AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (size_t i = 0; i < variations.size(); i++, count++)
{
if (count == index)
{
var = variations[i];
keepGoing = false;
break;
}
}
});
return var;
}
///
/// Get a pointer to the variation with the specified ID.
///
/// The ID to search for
/// A pointer to the variation if found, else nullptr.
Variation* GetVariationById(eVariationId id) const
{
Variation* var = nullptr;
const_cast*>(this)->AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (auto v : variations)
{
if (v && v->VariationId() == id)
{
var = v;
keepGoing = false;
break;
}
}
});
return var;
}
///
/// Get a pointer to the variation with the specified name.
///
/// The name to search for
/// A pointer to the variation if found, else nullptr.
Variation* GetVariationByName(const string& name) const
{
Variation* var = nullptr;
const_cast*>(this)->AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (auto v : variations)
{
if (v && v->Name() == name)
{
var = v;
keepGoing = false;
break;
}
}
});
return var;
}
///
/// Get the index in the list of the variation pointer.
/// Note this is searching for the exact pointer address and not the name or ID of the variation.
///
/// A pointer to the variation to search for
/// The index of the variation if found, else -1
intmax_t GetVariationIndex(Variation* var) const
{
intmax_t count = 0, index = -1;
const_cast*>(this)->AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (size_t i = 0; i < variations.size(); i++, count++)
{
if (variations[i] == var)
{
index = count;
keepGoing = false;
break;
}
}
});
return index;
}
///
/// Delete the variation with the matching ID.
/// Update precalcs if deletion successful.
///
/// The ID to search for
/// True if deletion successful, else false.
bool DeleteVariationById(eVariationId id)
{
bool found = false;
AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (size_t i = 0; i < variations.size(); i++)
{
if (variations[i] && variations[i]->VariationId() == id)
{
delete variations[i];
variations.erase(variations.begin() + i);
found = true;
}
}
});
if (found)
SetPrecalcFlags();
return found;
}
///
/// Delete the motion elements.
///
void DeleteMotionElements()
{
m_Motion.clear();
}
///
/// Delete all variations, clear the list and update precalc flags.
///
void ClearAndDeleteVariations()
{
AllVarsFunc([&] (vector*>& variations, bool & keepGoing) { ClearVec>(variations); });
SetPrecalcFlags();
}
///
/// Reset this xform to be totally empty by clearing all variations, resetting both affines to the
/// identity matrix, clearing xaos, color, visibility, wind, animate and setting name
/// to the empty string.
/// Note that this also sets the parent ember to nullptr, so if this xform is reused after calling Clear(),
/// the caller must reset the parent ember to whatever ember they add it to again.
///
void Clear()
{
ClearAndDeleteVariations();
DeleteMotionElements();
m_Affine.MakeID();
m_Post.MakeID();
m_Xaos.clear();
m_ParentEmber = nullptr;
m_ColorSpeedCache = 0;
m_OneMinusColorCache = 0;
m_VizAdjusted = 0;
m_Animate = 0;
m_Wind[0] = 0;
m_Wind[1] = 0;
m_Name = "";
}
///
/// Compute color cache values: color speed, one minus color speed and adjusted visibility.
///
void CacheColorVals()
{
//Figure out which is right. //TODO.
//m_ColorSpeedCache = m_ColorX * (1 - m_ColorSpeed) / 2;//Apo style.
//m_OneMinusColorCache = (1 + m_ColorSpeed) / 2;
m_ColorSpeedCache = m_ColorSpeed * m_ColorX;//Flam3 style.
m_OneMinusColorCache = T(1.0) - m_ColorSpeed;
m_VizAdjusted = AdjustOpacityPercentage(m_Opacity);
}
///
/// Return the xaos value at the specified index.
/// If the index is out of range, return 1.
/// This has the convenient effect that xaos is not present
/// by default and only has a value if explicitly added.
///
/// The xaos index to retrieve
/// The value at the index if in range, else 1.
T Xaos(size_t i) const
{
return i < m_Xaos.size() ? m_Xaos[i] : 1;
}
///
/// Set the xaos value for a given xform index.
/// If the index is out of range, a 1 value will be added
/// to the xaos vector repeatedly until it's one less than the
/// requested index in length, then finally add the specified value.
///
/// The index to set
/// The xaos value to set it to
void SetXaos(size_t i, T val)
{
if (i < m_Xaos.size())
{
m_Xaos[i] = val;
}
else
{
while (m_Xaos.size() <= i)
m_Xaos.push_back(1);
m_Xaos[i] = val;
}
}
///
/// Determine if any xaos value in the vector up to the xform count
/// of the parent ember is anything other than 1.
///
/// True if found, else false.
bool XaosPresent() const
{
if (m_ParentEmber)
for (size_t i = 0; i < m_Xaos.size(); i++)
if (i < m_ParentEmber->XformCount())
if (!IsClose(m_Xaos[i], 1))
return true;//If at least one entry is not equal to 1, then xaos is present.
return false;
}
///
/// Truncate the xaos vector to match the xform count of the parent ember.
///
void TruncateXaos()
{
if (m_ParentEmber)
while (m_Xaos.size() > m_ParentEmber->XformCount())
m_Xaos.pop_back();
}
///
/// Remove all xaos from this xform.
///
void ClearXaos()
{
m_Xaos.clear();
}
///
/// Normalize the variation weights.
///
void NormalizeVariationWeights()
{
AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
T norm = 0;
for (auto var : variations) norm += var->m_Weight;
for (auto var : variations) var->m_Weight /= norm;
});
}
///
/// Applies this xform to the point passed in and saves the result in the out point.
/// It's important to understand what happens here since it's the inner core of the algorithm.
/// See the internal comments for step by step details.
///
/// The initial point from the previous iteration
/// The output point
/// The random context to use
/// True if a bad value was calculated, else false.
bool Apply(Point* inPoint, Point* outPoint, QTIsaac& rand)
{
size_t i;
//This must be local, rather than a member, because this function can be called
//from multiple threads. If it were a member, they'd be clobbering each others' values.
IteratorHelper iterHelper;
//Calculate the color coordinate/index in the palette to look up later when accumulating the output point
//to the histogram. Calculate this value by interpolating between the index value of the
//last iteration with the one specified in this xform. Note that some cached values are used
//to reduce the amount of processing.
outPoint->m_VizAdjusted = m_VizAdjusted;
iterHelper.m_Color.x = outPoint->m_ColorX = m_ColorSpeedCache + (m_OneMinusColorCache * inPoint->m_ColorX);
if (m_HasPreOrRegularVars)
{
//Compute the pre affine portion of the transform.
//These x, y values are what get passed to the variations below.
//Note that they are not changed after this, except in the case of pre_ variations.
iterHelper.m_TransX = (m_Affine.A() * inPoint->m_X) + (m_Affine.B() * inPoint->m_Y) + m_Affine.C();
iterHelper.m_TransY = (m_Affine.D() * inPoint->m_X) + (m_Affine.E() * inPoint->m_Y) + m_Affine.F();
iterHelper.m_TransZ = inPoint->m_Z;
//Apply pre_ variations, these don't affect outPoint, only iterHelper.m_TransX, Y, Z.
for (i = 0; i < PreVariationCount(); i++)
{
iterHelper.In.x = iterHelper.m_TransX;//Read must be done before every pre variation because transX/Y are changing.
iterHelper.In.y = iterHelper.m_TransY;
iterHelper.In.z = iterHelper.m_TransZ;
m_PreVariations[i]->PrePostPrecalcHelper(iterHelper);//Apply per-variation precalc, the second parameter is unused for pre variations.
m_PreVariations[i]->Func(iterHelper, *outPoint, rand);
WritePre(iterHelper, m_PreVariations[i]->AssignType());
}
if (VariationCount() > 0)
{
//The original calculates sumsq and sumsqrt every time, regardless if they're used or not.
//With Precalc(), only calculate those values if they're needed.
Precalc(iterHelper);//Only need per-xform precalc with regular variations.
iterHelper.In.x = iterHelper.m_TransX;//Only need to read once with regular variations, because transX/Y are fixed.
iterHelper.In.y = iterHelper.m_TransY;
iterHelper.In.z = iterHelper.m_TransZ;
//Since these get summed, initialize them to zero.
outPoint->m_X = outPoint->m_Y = outPoint->m_Z = 0;
//Apply variations to the transformed points, accumulating each time, and store the final value in outPoint.
//Using a virtual function is about 3% faster than using a large case statement like the original did.
//Although research says that using virtual functions is slow, experience says otherwise. They execute
//with the exact same speed as both regular and static member functions.
for (i = 0; i < VariationCount(); i++)
{
m_Variations[i]->Func(iterHelper, *outPoint, rand);
outPoint->m_X += iterHelper.Out.x;
outPoint->m_Y += iterHelper.Out.y;
outPoint->m_Z += iterHelper.Out.z;
}
}
else//Only pre variations are present, no regular ones, so assign the affine transformed points directly to the output points.
{
outPoint->m_X = iterHelper.m_TransX;
outPoint->m_Y = iterHelper.m_TransY;
outPoint->m_Z = iterHelper.m_TransZ;
}
}
//Return the affine transformed points if no variations are present.
//Note this differs from flam3, which would just return zero in that scenario.
else
{
//There are no variations, so the affine transformed points can be assigned directly to the output points.
T inX = inPoint->m_X;
outPoint->m_X = (m_Affine.A() * inX) + (m_Affine.B() * inPoint->m_Y) + m_Affine.C();
outPoint->m_Y = (m_Affine.D() * inX) + (m_Affine.E() * inPoint->m_Y) + m_Affine.F();
outPoint->m_Z = inPoint->m_Z;
}
//Apply post variations, these will modify outPoint.
for (i = 0; i < PostVariationCount(); i++)
{
iterHelper.In.x = outPoint->m_X;//Read must be done before every post variation because the out point is changing.
iterHelper.In.y = outPoint->m_Y;
iterHelper.In.z = outPoint->m_Z;
m_PostVariations[i]->PrePostPrecalcHelper(iterHelper);//Apply per-variation precalc.
m_PostVariations[i]->Func(iterHelper, *outPoint, rand);
WritePost(iterHelper, *outPoint, m_PostVariations[i]->AssignType());
}
//Optionally apply the post affine transform if it's present.
if (m_HasPost)
{
T postX = outPoint->m_X;
outPoint->m_X = (m_Post.A() * postX) + (m_Post.B() * outPoint->m_Y) + m_Post.C();
outPoint->m_Y = (m_Post.D() * postX) + (m_Post.E() * outPoint->m_Y) + m_Post.F();
}
outPoint->m_ColorX = iterHelper.m_Color.x + m_DirectColor * (outPoint->m_ColorX - iterHelper.m_Color.x);
//Has the trajectory of x or y gone either to infinity, or too close to zero?
return BadVal(outPoint->m_X) || BadVal(outPoint->m_Y)/* || BadVal(outPoint->m_Z)*/;
}
//Why are we not using template with member var addr as arg here?//TODO
#define APPMOT(x) \
do \
{ \
if (currentMot.x != EMPTYFIELD) \
x += currentMot.x * Interpolater::MotionFuncs(func, freq * (blend + offset)); \
} while (0)
///
/// Apply the motion functions from the passed in xform to this xform.
///
/// The xform containing the motion functions
/// The time blending value 0-1
void ApplyMotion(Xform& xform, T blend)
{
//Loop over the motion elements and add their contribution to the original vals.
for (size_t i = 0; i < xform.m_Motion.size(); i++)
{
//Original only pulls these from the first motion xform which is a bug. Want to pull it from each one.
Xform& currentMot = xform.m_Motion[i];
T freq = currentMot.m_MotionFreq;
eMotion func = currentMot.m_MotionFunc;
T offset = currentMot.m_MotionOffset;
//Clamp these to the appropriate range after all are applied.
APPMOT(m_Weight);
APPMOT(m_ColorX);
//APPMOT(m_ColorY);
APPMOT(m_DirectColor);
APPMOT(m_Opacity);
APPMOT(m_ColorSpeed);
APPMOT(m_Animate);
for (size_t j = 0; j < currentMot.TotalVariationCount(); j++)//For each variation in the motion xform.
{
Variation* motVar = currentMot.GetVariation(j);//Get the variation, which may or may not be present in this xform.
ParametricVariation* motParVar = dynamic_cast*>(motVar);
Variation* var = GetVariationById(motVar->VariationId());//See if the variation in the motion xform was present in the xform.
if (!var)//It wasn't present, so add it and set the weight.
{
Variation* newVar = motVar->Copy();
newVar->m_Weight = motVar->m_Weight * Interpolater::MotionFuncs(func, freq * (blend + offset));
AddVariation(newVar);
var = newVar;//Use this below for params.
}
else//It was present, so apply the motion func to the weight.
{
var->m_Weight += motVar->m_Weight * Interpolater::MotionFuncs(func, freq * (blend + offset));
}
//At this point, we've added if needed, or just applied the motion func to the weight.
//Now apply the motion func to the params if needed.
if (motParVar)
{
auto parVar = dynamic_cast*>(var);
auto params = parVar->Params();
auto motParams = motParVar->Params();
for (size_t k = 0; k < motParVar->ParamCount(); k++)
{
if (!motParams[k].IsPrecalc())
*(params[k].Param()) += motParams[k].ParamVal() * Interpolater::MotionFuncs(func, freq * (blend + offset));
}
}
}
for (glm::length_t j = 0; j < 2; j++)
{
for (glm::length_t k = 0; k < 3; k++)
{
APPMOT(m_Affine.m_Mat[j][k]);
APPMOT(m_Post.m_Mat[j][k]);
}
}
}
//Make sure certain params are within reasonable bounds.
ClampRef(m_ColorX, 0, 1);
//ClampRef(m_ColorY, 0, 1);
ClampRef(m_DirectColor, 0, 1);
ClampRef(m_Opacity, 0, 1);//Original didn't clamp these, but do it here for correctness.
ClampRef(m_ColorSpeed, -1, 1);
ClampGte0Ref(m_Weight);
}
///
/// Accessors.
/// The precalc flags are duplicated in each variation. Each value here
/// is true if any of the variations need it precalculated.
///
inline bool NeedPrecalcSumSquares() const { return m_NeedPrecalcSumSquares; }
inline bool NeedPrecalcSqrtSumSquares() const { return m_NeedPrecalcSqrtSumSquares; }
inline bool NeedPrecalcAngles() const { return m_NeedPrecalcAngles; }
inline bool NeedPrecalcAtanXY() const { return m_NeedPrecalcAtanXY; }
inline bool NeedPrecalcAtanYX() const { return m_NeedPrecalcAtanYX; }
inline bool NeedAnyPrecalc() const { return NeedPrecalcSumSquares() || NeedPrecalcSqrtSumSquares() || NeedPrecalcAngles() || NeedPrecalcAtanXY() || NeedPrecalcAtanYX(); }
bool HasPost() const { return m_HasPost; }
size_t PreVariationCount() const { return m_PreVariations.size(); }
size_t VariationCount() const { return m_Variations.size(); }
size_t PostVariationCount() const { return m_PostVariations.size(); }
size_t TotalVariationCount() const { return PreVariationCount() + VariationCount() + PostVariationCount(); }
bool Empty() const { return TotalVariationCount() == 0 && m_Affine.IsID(); }//Use this instead of padding like the original did.
T VizAdjusted() const { return m_VizAdjusted; }
T ColorSpeedCache() const { return m_ColorSpeedCache; }
T OneMinusColorCache() const { return m_OneMinusColorCache; }
const vector& XaosVec() const { return m_Xaos; }
Ember* ParentEmber() const { return m_ParentEmber; }
void ParentEmber(Ember* ember) { m_ParentEmber = ember; }
intmax_t IndexInParentEmber() const { return m_ParentEmber ? m_ParentEmber->GetTotalXformIndex(const_cast*>(this)) : -1; }
///
/// Set the precalc flags based on whether any variation in the vector needs them.
/// Also call Precalc() virtual function on each variation, which will setup any needed
/// precalcs in parametric variations.
/// Set the parent xform of each variation to this.
///
void SetPrecalcFlags()
{
m_NeedPrecalcSumSquares = false;
m_NeedPrecalcSqrtSumSquares = false;
m_NeedPrecalcAngles = false;
m_NeedPrecalcAtanXY = false;
m_NeedPrecalcAtanYX = false;
m_HasPost = !m_Post.IsID();
m_HasPreOrRegularVars = PreVariationCount() > 0 || VariationCount() > 0;
//Only set precalcs for regular variations, they work differently for pre and post.
for (auto var : m_Variations)
{
if (var->NeedPrecalcSumSquares())
m_NeedPrecalcSumSquares = true;
if (var->NeedPrecalcSqrtSumSquares())
m_NeedPrecalcSqrtSumSquares = true;
if (var->NeedPrecalcAngles())
m_NeedPrecalcAngles = true;
if (var->NeedPrecalcAtanXY())
m_NeedPrecalcAtanXY = true;
if (var->NeedPrecalcAtanYX())
m_NeedPrecalcAtanYX = true;
}
AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (auto var : variations)
{
var->ParentXform(this);
var->Precalc();
}
});
}
///
/// Based on the precalc flags determined in SetPrecalcFlags(), do the appropriate precalcs.
///
/// The iterator helper to store the precalculated values in
void Precalc(IteratorHelper& helper)
{
if (m_NeedPrecalcSumSquares)
{
helper.m_PrecalcSumSquares = SQR(helper.m_TransX) + SQR(helper.m_TransY);
if (m_NeedPrecalcSqrtSumSquares)
{
helper.m_PrecalcSqrtSumSquares = std::sqrt(helper.m_PrecalcSumSquares);
if (m_NeedPrecalcAngles)
{
helper.m_PrecalcSina = helper.m_TransX / Zeps(helper.m_PrecalcSqrtSumSquares);
helper.m_PrecalcCosa = helper.m_TransY / Zeps(helper.m_PrecalcSqrtSumSquares);
}
}
}
if (m_NeedPrecalcAtanXY)
helper.m_PrecalcAtanxy = atan2(helper.m_TransX, helper.m_TransY);
if (m_NeedPrecalcAtanYX)
helper.m_PrecalcAtanyx = atan2(helper.m_TransY, helper.m_TransX);
}
///
/// Flatten this xform by adding a flatten variation if none is present, and if none of the
/// variations or parameters in the vector are present.
///
/// Vector of variation and parameter names that inhibit flattening
/// True if flatten was added, false if it already was present or if at least one of the specified variations or parameters were present.
bool Flatten(vector& names)
{
bool shouldFlatten = true;
auto vl = VariationList::Instance();
if (GetVariationById(eVariationId::VAR_FLATTEN) == nullptr)
{
AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (auto var : variations)
{
if (var->m_Weight != 0)//This should never happen, but just to be safe.
{
if (FindIf(names, [&] (const string & s) -> bool { return !_stricmp(s.c_str(), var->Name().c_str()); })) //If any variation is present, don't flatten.
{
shouldFlatten = false;
keepGoing = false;
break;
}
}
//Now traverse the parameters for this variation.
if (auto parVar = dynamic_cast*>(var))//If any parametric variation parameter is present and non-zero, don't flatten.
{
for (auto& s : names)
{
if (parVar->GetParamVal(s.c_str()) != 0)
{
shouldFlatten = false;
keepGoing = false;
break;
}
}
}
}
});
if (shouldFlatten)//Flatten was not present and neither was any variation name or parameter in the list.
{
auto var = vl->GetVariationCopy(eVariationId::VAR_FLATTEN);
if (AddVariation(var))
{
return true;
}
else
{
delete var;
return false;
}
}
}
return false;
}
///
/// Generate the OpenCL string for reading input values to
/// be passed to a variation.
///
/// Type of the variation these values will be passed to.
/// The OpenCL string
string ReadOpenCLString(eVariationType varType)
{
string s;
switch (varType)
{
case eVariationType::VARTYPE_REG:
case eVariationType::VARTYPE_PRE:
s =
"\tvIn.x = transX;\n"
"\tvIn.y = transY;\n"
"\tvIn.z = transZ;\n";
break;
case eVariationType::VARTYPE_POST:
default:
s =
"\tvIn.x = outPoint->m_X;\n"
"\tvIn.y = outPoint->m_Y;\n"
"\tvIn.z = outPoint->m_Z;\n";
break;
}
return s;
}
///
/// Assing output values from the result of a pre variation.
///
/// The helper to store the output values in
/// The type of assignment this variation uses, assign or sum.
inline void WritePre(IteratorHelper& helper, eVariationAssignType assignType)
{
switch (assignType)
{
case eVariationAssignType::ASSIGNTYPE_SET:
{
helper.m_TransX = helper.Out.x;
helper.m_TransY = helper.Out.y;
helper.m_TransZ = helper.Out.z;
break;
}
case eVariationAssignType::ASSIGNTYPE_SUM:
default:
{
helper.m_TransX += helper.Out.x;
helper.m_TransY += helper.Out.y;
helper.m_TransZ += helper.Out.z;
break;
}
}
}
///
/// Assing output values from the result of a post variation.
///
/// The helper to store the output values in
/// The type of assignment this variation uses, assign or sum.
inline void WritePost(IteratorHelper& helper, Point& outPoint, eVariationAssignType assignType)
{
switch (assignType)
{
case eVariationAssignType::ASSIGNTYPE_SET:
{
outPoint.m_X = helper.Out.x;
outPoint.m_Y = helper.Out.y;
outPoint.m_Z = helper.Out.z;
break;
}
case eVariationAssignType::ASSIGNTYPE_SUM:
default:
{
outPoint.m_X += helper.Out.x;
outPoint.m_Y += helper.Out.y;
outPoint.m_Z += helper.Out.z;
break;
}
}
}
///
/// Generate the OpenCL string for writing output values from a call to a variation.
///
/// The type of variation these values were calculated from, pre, reg or post.
/// The type of assignment used by the variation these values were calculated from, assign or sum.
/// The OpenCL string
string WriteOpenCLString(eVariationType varType, eVariationAssignType assignType)
{
string s;
switch (varType)
{
case eVariationType::VARTYPE_REG:
{
s =
"\toutPoint->m_X += vOut.x;\n"
"\toutPoint->m_Y += vOut.y;\n"
"\toutPoint->m_Z += vOut.z;\n";
break;
}
case eVariationType::VARTYPE_PRE:
{
switch (assignType)
{
case eVariationAssignType::ASSIGNTYPE_SET:
{
s =
"\ttransX = vOut.x;\n"
"\ttransY = vOut.y;\n"
"\ttransZ = vOut.z;\n";
break;
}
case eVariationAssignType::ASSIGNTYPE_SUM:
default:
{
s =
"\ttransX += vOut.x;\n"
"\ttransY += vOut.y;\n"
"\ttransZ += vOut.z;\n";
break;
}
}
break;
}
case eVariationType::VARTYPE_POST:
default:
{
switch (assignType)
{
case eVariationAssignType::ASSIGNTYPE_SET:
{
s =
"\toutPoint->m_X = vOut.x;\n"
"\toutPoint->m_Y = vOut.y;\n"
"\toutPoint->m_Z = vOut.z;\n";
break;
}
case eVariationAssignType::ASSIGNTYPE_SUM:
default:
{
s =
"\toutPoint->m_X += vOut.x;\n"
"\toutPoint->m_Y += vOut.y;\n"
"\toutPoint->m_Z += vOut.z;\n";
break;
}
}
break;
}
}
return s;
}
///
/// Return a string representation of this xform.
/// It will include all pre affine values, and optionally post affine values if present.
/// Various variables, all variations as strings and xaos values if present.
///
/// The string representation of this xform
string ToString() const
{
ostringstream ss;
ss << "A: " << m_Affine.A() << " "
<< "B: " << m_Affine.B() << " "
<< "C: " << m_Affine.C() << " "
<< "D: " << m_Affine.D() << " "
<< "E: " << m_Affine.E() << " "
<< "F: " << m_Affine.F() << " \n";
if (m_HasPost)
{
ss << "Post A: " << m_Post.A() << " "
<< "Post B: " << m_Post.B() << " "
<< "Post C: " << m_Post.C() << " "
<< "Post D: " << m_Post.D() << " "
<< "Post E: " << m_Post.E() << " "
<< "Post F: " << m_Post.F() << " \n";
}
ss << "Weight: " << m_Weight;
ss << "\nColorX: " << m_ColorX;
ss << "\nColorY: " << m_ColorY;
ss << "\nDirect Color: " << m_DirectColor;
ss << "\nColor Speed: " << m_ColorSpeed;
ss << "\nAnimate: " << m_Animate;
ss << "\nOpacity: " << m_Opacity;
ss << "\nViz Adjusted: " << m_VizAdjusted;
ss << "\nWind: " << m_Wind[0] << ", " << m_Wind[1];
ss << "\nMotion Frequency: " << m_MotionFreq;
ss << "\nMotion Func: " << m_MotionFunc;
ss << "\nMotion Offset: " << m_MotionOffset;
const_cast*>(this)->AllVarsFunc([&] (vector*>& variations, bool & keepGoing)
{
for (auto var : variations)
ss << var->ToString() << "\n";
ss << "\n";
});
if (XaosPresent())
{
for (auto xaos : m_Xaos)
ss << xaos << " ";
ss << "\n";
}
return ss.str();
}
///
/// Members are listed in the exact order they are used in Apply() to make them
/// as cache efficient as possible. Not all are public, so there is repeated public/private
/// access specifiers.
///
private:
bool m_HasPreOrRegularVars;//Whethere there are any pre or regular variations present.
T m_VizAdjusted;//Adjusted visibility for better transitions.
public:
//Color coordinates for this function. This is the index into the palette used to look up a color and add to the histogram for each iter.
//The original only allows for an x coord. Will eventually allow for a y coord like Fractron for 2D palettes.
T m_ColorX, m_ColorY;
private:
T m_ColorSpeedCache;//Cache of m_ColorSpeed * m_ColorX. Need to recalc cache values whenever anything relating to color is set. Made private because one affects the other.
T m_OneMinusColorCache;//Cache of 1 - m_ColorSpeedCache.
public:
//Coefficients for the affine portion of the transform.
//Discussed on page 3 of the paper:
//Fi(x, y) = (aix + biy + ci, dix + eiy + fi)
Affine2D m_Affine;
private:
vector*> m_PreVariations;//The list of pre variations to call when applying this xform.
vector*> m_Variations;//The list of variations to call when applying this xform.
bool m_HasPost;//Whether a post affine transform is present.
public:
//Coefficients for the affine portion of the post transform.
//Discussed on page 5 of the paper:
//Pi(x, y) = (αix + βiy + γi, δix + ǫiy + ζi).
Affine2D m_Post;
private:
vector*> m_PostVariations;//The list of post variations to call when applying this xform.
public:
T m_DirectColor;//Used with direct color variations.
//Probability that this function is chosen. Can be greater than 1.
//Discussed on page 4 of the paper:
//Probability wi.
T m_Weight;
//Scaling factor on color added to current iteration, also known as color weight. Normally defaults to 0.5.
//Discussed on page 9 of the paper with a hard coded default value of 0.5:
//C = (C + Ci) * m_ColorSpeed.
T m_ColorSpeed;
T m_Opacity;//How much of this xform is seen. Range: 0.0 (invisible) - 1.0 (totally visible).
T m_Animate;//Whether or not this xform rotates during animation. 0 means stationary, > 0 means rotate. Use T instead of bool so it can be interpolated.
T m_Wind[2];
eMotion m_MotionFunc;
T m_MotionFreq;
T m_MotionOffset;
vector> m_Motion;
string m_Name;
private:
///
/// Perform an operation on all variation vectors.
/// The operation is supplied in the func parameter.
/// To stop performing the operation on vectors after the current one,
/// set the keepGoing parameter to false;
///
/// The function to call for each variation vector.
void AllVarsFunc(std::function*>&, bool&)> func)
{
bool keepGoing = true;
func(m_PreVariations, keepGoing);
if (keepGoing)
func(m_Variations, keepGoing);
if (keepGoing)
func(m_PostVariations, keepGoing);
}
///
/// Adjust opacity.
///
/// The opacity to adjust, range 0-1.
/// The adjusted opacity
static T AdjustOpacityPercentage(T in)
{
if (in == 0)
return 0;
else
return std::pow(T(10.0), -std::log(T(1.0) / T(in)) / std::log(T(2)));
}
vector m_Xaos;//Xaos vector which affects the probability that this xform is chosen. Usually empty.
Ember* m_ParentEmber;//The parent ember that contains this xform.
bool m_NeedPrecalcSumSquares;//Whether any variation uses the precalc sum squares value in its calculations.
bool m_NeedPrecalcSqrtSumSquares;//Whether any variation uses the sqrt precalc sum squares value in its calculations.
bool m_NeedPrecalcAngles;//Whether any variation uses the precalc sin and cos values in its calculations.
bool m_NeedPrecalcAtanXY;//Whether any variation uses the precalc atan XY value in its calculations.
bool m_NeedPrecalcAtanYX;//Whether any variation uses the precalc atan YX value in its calculations.
};
}