// // Copyright (c) 2008-2020 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /*! \file * * \brief C++ bindings for OpenCL 1.0, OpenCL 1.1, OpenCL 1.2, * OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, and OpenCL 3.0. * \author Lee Howes and Bruce Merry * * Derived from the OpenCL 1.x C++ bindings written by * Benedict R. Gaster, Laurent Morichetti and Lee Howes * With additions and fixes from: * Brian Cole, March 3rd 2010 and April 2012 * Matt Gruenke, April 2012. * Bruce Merry, February 2013. * Tom Deakin and Simon McIntosh-Smith, July 2013 * James Price, 2015- * \version 2.2.0 * \date 2019-09-18 * * Optional extension support * * cl_khr_d3d10_sharing * #define CL_HPP_USE_DX_INTEROP * cl_khr_il_program * #define CL_HPP_USE_IL_KHR * cl_khr_sub_groups * #define CL_HPP_USE_CL_SUB_GROUPS_KHR * * Doxygen documentation for this header is available here: * * http://khronosgroup.github.io/OpenCL-CLHPP/ * * The latest version of this header can be found on the GitHub releases page: * * https://github.com/KhronosGroup/OpenCL-CLHPP/releases * * Bugs and patches can be submitted to the GitHub repository: * * https://github.com/KhronosGroup/OpenCL-CLHPP */ /*! \mainpage * \section intro Introduction * For many large applications C++ is the language of choice and so it seems * reasonable to define C++ bindings for OpenCL. * * The interface is contained with a single C++ header file \em opencl.hpp and all * definitions are contained within the namespace \em cl. There is no additional * requirement to include \em cl.h and to use either the C++ or original C * bindings; it is enough to simply include \em opencl.hpp. * * The bindings themselves are lightweight and correspond closely to the * underlying C API. Using the C++ bindings introduces no additional execution * overhead. * * There are numerous compatibility, portability and memory management * fixes in the new header as well as additional OpenCL 2.0 features. * As a result the header is not directly backward compatible and for this * reason we release it as opencl.hpp rather than a new version of cl.hpp. * * * \section compatibility Compatibility * Due to the evolution of the underlying OpenCL API the 2.0 C++ bindings * include an updated approach to defining supported feature versions * and the range of valid underlying OpenCL runtime versions supported. * * The combination of preprocessor macros CL_HPP_TARGET_OPENCL_VERSION and * CL_HPP_MINIMUM_OPENCL_VERSION control this range. These are three digit * decimal values representing OpenCL runtime versions. The default for * the target is 300, representing OpenCL 3.0. The minimum is defined as 200. * These settings would use 2.0 and newer API calls only. * If backward compatibility with a 1.2 runtime is required, the minimum * version may be set to 120. * * Note that this is a compile-time setting, and so affects linking against * a particular SDK version rather than the versioning of the loaded runtime. * * The earlier versions of the header included basic vector and string * classes based loosely on STL versions. These were difficult to * maintain and very rarely used. For the 2.0 header we now assume * the presence of the standard library unless requested otherwise. * We use std::array, std::vector, std::shared_ptr and std::string * throughout to safely manage memory and reduce the chance of a * recurrance of earlier memory management bugs. * * These classes are used through typedefs in the cl namespace: * cl::array, cl::vector, cl::pointer and cl::string. * In addition cl::allocate_pointer forwards to std::allocate_shared * by default. * In all cases these standard library classes can be replaced with * custom interface-compatible versions using the CL_HPP_NO_STD_ARRAY, * CL_HPP_NO_STD_VECTOR, CL_HPP_NO_STD_UNIQUE_PTR and * CL_HPP_NO_STD_STRING macros. * * The OpenCL 1.x versions of the C++ bindings included a size_t wrapper * class to interface with kernel enqueue. This caused unpleasant interactions * with the standard size_t declaration and led to namespacing bugs. * In the 2.0 version we have replaced this with a std::array-based interface. * However, the old behaviour can be regained for backward compatibility * using the CL_HPP_ENABLE_SIZE_T_COMPATIBILITY macro. * * Finally, the program construction interface used a clumsy vector-of-pairs * design in the earlier versions. We have replaced that with a cleaner * vector-of-vectors and vector-of-strings design. However, for backward * compatibility old behaviour can be regained with the * CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY macro. * * In OpenCL 2.0 OpenCL C is not entirely backward compatibility with * earlier versions. As a result a flag must be passed to the OpenCL C * compiled to request OpenCL 2.0 compilation of kernels with 1.2 as * the default in the absence of the flag. * In some cases the C++ bindings automatically compile code for ease. * For those cases the compilation defaults to OpenCL C 2.0. * If this is not wanted, the CL_HPP_CL_1_2_DEFAULT_BUILD macro may * be specified to assume 1.2 compilation. * If more fine-grained decisions on a per-kernel bases are required * then explicit build operations that take the flag should be used. * * * \section parameterization Parameters * This header may be parameterized by a set of preprocessor macros. * * - CL_HPP_TARGET_OPENCL_VERSION * * Defines the target OpenCL runtime version to build the header * against. Defaults to 300, representing OpenCL 3.0. * * - CL_HPP_MINIMUM_OPENCL_VERSION * * Defines the minimum OpenCL runtime version to build the header * against. Defaults to 200, representing OpenCL 2.0. * * - CL_HPP_NO_STD_STRING * * Do not use the standard library string class. cl::string is not * defined and may be defined by the user before opencl.hpp is * included. * * - CL_HPP_NO_STD_VECTOR * * Do not use the standard library vector class. cl::vector is not * defined and may be defined by the user before opencl.hpp is * included. * * - CL_HPP_NO_STD_ARRAY * * Do not use the standard library array class. cl::array is not * defined and may be defined by the user before opencl.hpp is * included. * * - CL_HPP_NO_STD_UNIQUE_PTR * * Do not use the standard library unique_ptr class. cl::pointer and * the cl::allocate_pointer functions are not defined and may be * defined by the user before opencl.hpp is included. * * - CL_HPP_ENABLE_EXCEPTIONS * * Enable exceptions for use in the C++ bindings header. This is the * preferred error handling mechanism but is not required. * * - CL_HPP_ENABLE_SIZE_T_COMPATIBILITY * * Backward compatibility option to support cl.hpp-style size_t * class. Replaces the updated std::array derived version and * removal of size_t from the namespace. Note that in this case the * new size_t class is placed in the cl::compatibility namespace and * thus requires an additional using declaration for direct backward * compatibility. * * - CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY * * Enable older vector of pairs interface for construction of * programs. * * - CL_HPP_CL_1_2_DEFAULT_BUILD * * Default to OpenCL C 1.2 compilation rather than OpenCL C 2.0 * applies to use of cl::Program construction and other program * build variants. * * * - CL_HPP_USE_CL_SUB_GROUPS_KHR * * Enable the cl_khr_subgroups extension. * * - CL_HPP_USE_DX_INTEROP * * Enable the cl_khr_d3d10_sharing extension. * * - CL_HPP_USE_IL_KHR * * Enable the cl_khr_il_program extension. * * * \section example Example * * The following example shows a general use case for the C++ * bindings, including support for the optional exception feature and * also the supplied vector and string classes, see following sections for * decriptions of these features. * * Note: the C++ bindings use std::call_once and therefore may need to be * compiled using special command-line options (such as "-pthread") on some * platforms! * * \code #define CL_HPP_ENABLE_EXCEPTIONS #define CL_HPP_TARGET_OPENCL_VERSION 200 #include #include #include #include #include const int numElements = 32; int main(void) { // Filter for a 2.0 or newer platform and set it as the default std::vector platforms; cl::Platform::get(&platforms); cl::Platform plat; for (auto &p : platforms) { std::string platver = p.getInfo(); if (platver.find("OpenCL 2.") != std::string::npos || platver.find("OpenCL 3.") != std::string::npos) { // Note: an OpenCL 3.x platform may not support all required features! plat = p; } } if (plat() == 0) { std::cout << "No OpenCL 2.0 or newer platform found.\n"; return -1; } cl::Platform newP = cl::Platform::setDefault(plat); if (newP != plat) { std::cout << "Error setting default platform.\n"; return -1; } // C++11 raw string literal for the first kernel std::string kernel1{R"CLC( global int globalA; kernel void updateGlobal() { globalA = 75; } )CLC"}; // Raw string literal for the second kernel std::string kernel2{R"CLC( typedef struct { global int *bar; } Foo; kernel void vectorAdd(global const Foo* aNum, global const int *inputA, global const int *inputB, global int *output, int val, write_only pipe int outPipe, queue_t childQueue) { output[get_global_id(0)] = inputA[get_global_id(0)] + inputB[get_global_id(0)] + val + *(aNum->bar); write_pipe(outPipe, &val); queue_t default_queue = get_default_queue(); ndrange_t ndrange = ndrange_1D(get_global_size(0)/2, get_global_size(0)/2); // Have a child kernel write into third quarter of output enqueue_kernel(default_queue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, ^{ output[get_global_size(0)*2 + get_global_id(0)] = inputA[get_global_size(0)*2 + get_global_id(0)] + inputB[get_global_size(0)*2 + get_global_id(0)] + globalA; }); // Have a child kernel write into last quarter of output enqueue_kernel(childQueue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, ^{ output[get_global_size(0)*3 + get_global_id(0)] = inputA[get_global_size(0)*3 + get_global_id(0)] + inputB[get_global_size(0)*3 + get_global_id(0)] + globalA + 2; }); } )CLC"}; std::vector programStrings; programStrings.push_back(kernel1); programStrings.push_back(kernel2); cl::Program vectorAddProgram(programStrings); try { vectorAddProgram.build("-cl-std=CL2.0"); } catch (...) { // Print build info for all devices cl_int buildErr = CL_SUCCESS; auto buildInfo = vectorAddProgram.getBuildInfo(&buildErr); for (auto &pair : buildInfo) { std::cerr << pair.second << std::endl << std::endl; } return 1; } typedef struct { int *bar; } Foo; // Get and run kernel that initializes the program-scope global // A test for kernels that take no arguments auto program2Kernel = cl::KernelFunctor<>(vectorAddProgram, "updateGlobal"); program2Kernel( cl::EnqueueArgs( cl::NDRange(1))); ////////////////// // SVM allocations auto anSVMInt = cl::allocate_svm>(); *anSVMInt = 5; cl::SVMAllocator>> svmAllocReadOnly; auto fooPointer = cl::allocate_pointer(svmAllocReadOnly); fooPointer->bar = anSVMInt.get(); cl::SVMAllocator> svmAlloc; std::vector>> inputA(numElements, 1, svmAlloc); cl::coarse_svm_vector inputB(numElements, 2, svmAlloc); ////////////// // Traditional cl_mem allocations std::vector output(numElements, 0xdeadbeef); cl::Buffer outputBuffer(begin(output), end(output), false); cl::Pipe aPipe(sizeof(cl_int), numElements / 2); // Default command queue, also passed in as a parameter cl::DeviceCommandQueue defaultDeviceQueue = cl::DeviceCommandQueue::makeDefault( cl::Context::getDefault(), cl::Device::getDefault()); auto vectorAddKernel = cl::KernelFunctor< decltype(fooPointer)&, int*, cl::coarse_svm_vector&, cl::Buffer, int, cl::Pipe&, cl::DeviceCommandQueue >(vectorAddProgram, "vectorAdd"); // Ensure that the additional SVM pointer is available to the kernel // This one was not passed as a parameter vectorAddKernel.setSVMPointers(anSVMInt); cl_int error; vectorAddKernel( cl::EnqueueArgs( cl::NDRange(numElements/2), cl::NDRange(numElements/2)), fooPointer, inputA.data(), inputB, outputBuffer, 3, aPipe, defaultDeviceQueue, error ); cl::copy(outputBuffer, begin(output), end(output)); cl::Device d = cl::Device::getDefault(); std::cout << "Output:\n"; for (int i = 1; i < numElements; ++i) { std::cout << "\t" << output[i] << "\n"; } std::cout << "\n\n"; return 0; } * * \endcode * */ #ifndef CL_HPP_ #define CL_HPP_ /* Handle deprecated preprocessor definitions. In each case, we only check for * the old name if the new name is not defined, so that user code can define * both and hence work with either version of the bindings. */ #if !defined(CL_HPP_USE_DX_INTEROP) && defined(USE_DX_INTEROP) # pragma message("opencl.hpp: USE_DX_INTEROP is deprecated. Define CL_HPP_USE_DX_INTEROP instead") # define CL_HPP_USE_DX_INTEROP #endif #if !defined(CL_HPP_ENABLE_EXCEPTIONS) && defined(__CL_ENABLE_EXCEPTIONS) # pragma message("opencl.hpp: __CL_ENABLE_EXCEPTIONS is deprecated. Define CL_HPP_ENABLE_EXCEPTIONS instead") # define CL_HPP_ENABLE_EXCEPTIONS #endif #if !defined(CL_HPP_NO_STD_VECTOR) && defined(__NO_STD_VECTOR) # pragma message("opencl.hpp: __NO_STD_VECTOR is deprecated. Define CL_HPP_NO_STD_VECTOR instead") # define CL_HPP_NO_STD_VECTOR #endif #if !defined(CL_HPP_NO_STD_STRING) && defined(__NO_STD_STRING) # pragma message("opencl.hpp: __NO_STD_STRING is deprecated. Define CL_HPP_NO_STD_STRING instead") # define CL_HPP_NO_STD_STRING #endif #if defined(VECTOR_CLASS) # pragma message("opencl.hpp: VECTOR_CLASS is deprecated. Alias cl::vector instead") #endif #if defined(STRING_CLASS) # pragma message("opencl.hpp: STRING_CLASS is deprecated. Alias cl::string instead.") #endif #if !defined(CL_HPP_USER_OVERRIDE_ERROR_STRINGS) && defined(__CL_USER_OVERRIDE_ERROR_STRINGS) # pragma message("opencl.hpp: __CL_USER_OVERRIDE_ERROR_STRINGS is deprecated. Define CL_HPP_USER_OVERRIDE_ERROR_STRINGS instead") # define CL_HPP_USER_OVERRIDE_ERROR_STRINGS #endif /* Warn about features that are no longer supported */ #if defined(__USE_DEV_VECTOR) # pragma message("opencl.hpp: __USE_DEV_VECTOR is no longer supported. Expect compilation errors") #endif #if defined(__USE_DEV_STRING) # pragma message("opencl.hpp: __USE_DEV_STRING is no longer supported. Expect compilation errors") #endif /* Detect which version to target */ #if !defined(CL_HPP_TARGET_OPENCL_VERSION) # pragma message("opencl.hpp: CL_HPP_TARGET_OPENCL_VERSION is not defined. It will default to 300 (OpenCL 3.0)") # define CL_HPP_TARGET_OPENCL_VERSION 300 #endif #if CL_HPP_TARGET_OPENCL_VERSION != 100 && \ CL_HPP_TARGET_OPENCL_VERSION != 110 && \ CL_HPP_TARGET_OPENCL_VERSION != 120 && \ CL_HPP_TARGET_OPENCL_VERSION != 200 && \ CL_HPP_TARGET_OPENCL_VERSION != 210 && \ CL_HPP_TARGET_OPENCL_VERSION != 220 && \ CL_HPP_TARGET_OPENCL_VERSION != 300 # pragma message("opencl.hpp: CL_HPP_TARGET_OPENCL_VERSION is not a valid value (100, 110, 120, 200, 210, 220 or 300). It will be set to 300 (OpenCL 3.0).") # undef CL_HPP_TARGET_OPENCL_VERSION # define CL_HPP_TARGET_OPENCL_VERSION 300 #endif /* Forward target OpenCL version to C headers if necessary */ #if defined(CL_TARGET_OPENCL_VERSION) /* Warn if prior definition of CL_TARGET_OPENCL_VERSION is lower than * requested C++ bindings version */ #if CL_TARGET_OPENCL_VERSION < CL_HPP_TARGET_OPENCL_VERSION # pragma message("CL_TARGET_OPENCL_VERSION is already defined as is lower than CL_HPP_TARGET_OPENCL_VERSION") #endif #else # define CL_TARGET_OPENCL_VERSION CL_HPP_TARGET_OPENCL_VERSION #endif #if !defined(CL_HPP_MINIMUM_OPENCL_VERSION) # define CL_HPP_MINIMUM_OPENCL_VERSION 200 #endif #if CL_HPP_MINIMUM_OPENCL_VERSION != 100 && \ CL_HPP_MINIMUM_OPENCL_VERSION != 110 && \ CL_HPP_MINIMUM_OPENCL_VERSION != 120 && \ CL_HPP_MINIMUM_OPENCL_VERSION != 200 && \ CL_HPP_MINIMUM_OPENCL_VERSION != 210 && \ CL_HPP_MINIMUM_OPENCL_VERSION != 220 && \ CL_HPP_MINIMUM_OPENCL_VERSION != 300 # pragma message("opencl.hpp: CL_HPP_MINIMUM_OPENCL_VERSION is not a valid value (100, 110, 120, 200, 210, 220 or 300). It will be set to 100") # undef CL_HPP_MINIMUM_OPENCL_VERSION # define CL_HPP_MINIMUM_OPENCL_VERSION 100 #endif #if CL_HPP_MINIMUM_OPENCL_VERSION > CL_HPP_TARGET_OPENCL_VERSION # error "CL_HPP_MINIMUM_OPENCL_VERSION must not be greater than CL_HPP_TARGET_OPENCL_VERSION" #endif #if CL_HPP_MINIMUM_OPENCL_VERSION <= 100 && !defined(CL_USE_DEPRECATED_OPENCL_1_0_APIS) # define CL_USE_DEPRECATED_OPENCL_1_0_APIS #endif #if CL_HPP_MINIMUM_OPENCL_VERSION <= 110 && !defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) # define CL_USE_DEPRECATED_OPENCL_1_1_APIS #endif #if CL_HPP_MINIMUM_OPENCL_VERSION <= 120 && !defined(CL_USE_DEPRECATED_OPENCL_1_2_APIS) # define CL_USE_DEPRECATED_OPENCL_1_2_APIS #endif #if CL_HPP_MINIMUM_OPENCL_VERSION <= 200 && !defined(CL_USE_DEPRECATED_OPENCL_2_0_APIS) # define CL_USE_DEPRECATED_OPENCL_2_0_APIS #endif #if CL_HPP_MINIMUM_OPENCL_VERSION <= 210 && !defined(CL_USE_DEPRECATED_OPENCL_2_1_APIS) # define CL_USE_DEPRECATED_OPENCL_2_1_APIS #endif #if CL_HPP_MINIMUM_OPENCL_VERSION <= 220 && !defined(CL_USE_DEPRECATED_OPENCL_2_2_APIS) # define CL_USE_DEPRECATED_OPENCL_2_2_APIS #endif #ifdef _WIN32 #include #if defined(CL_HPP_USE_DX_INTEROP) #include #include #endif #endif // _WIN32 #if defined(_MSC_VER) #include #endif // _MSC_VER // Check for a valid C++ version // Need to do both tests here because for some reason __cplusplus is not // updated in visual studio #if (!defined(_MSC_VER) && __cplusplus < 201103L) || (defined(_MSC_VER) && _MSC_VER < 1700) #error Visual studio 2013 or another C++11-supporting compiler required #endif #if defined(__APPLE__) || defined(__MACOSX) #include #else #include #endif // !__APPLE__ #if (__cplusplus >= 201103L || _MSVC_LANG >= 201103L ) #define CL_HPP_NOEXCEPT_ noexcept #else #define CL_HPP_NOEXCEPT_ #endif #if __cplusplus >= 201703L # define CL_HPP_DEFINE_STATIC_MEMBER_ inline #elif defined(_MSC_VER) # define CL_HPP_DEFINE_STATIC_MEMBER_ __declspec(selectany) #elif defined(__MINGW32__) # define CL_HPP_DEFINE_STATIC_MEMBER_ __attribute__((selectany)) #else # define CL_HPP_DEFINE_STATIC_MEMBER_ __attribute__((weak)) #endif // !_MSC_VER // Define deprecated prefixes and suffixes to ensure compilation // in case they are not pre-defined #if !defined(CL_API_PREFIX__VERSION_1_1_DEPRECATED) #define CL_API_PREFIX__VERSION_1_1_DEPRECATED #endif // #if !defined(CL_API_PREFIX__VERSION_1_1_DEPRECATED) #if !defined(CL_API_SUFFIX__VERSION_1_1_DEPRECATED) #define CL_API_SUFFIX__VERSION_1_1_DEPRECATED #endif // #if !defined(CL_API_SUFFIX__VERSION_1_1_DEPRECATED) #if !defined(CL_API_PREFIX__VERSION_1_2_DEPRECATED) #define CL_API_PREFIX__VERSION_1_2_DEPRECATED #endif // #if !defined(CL_API_PREFIX__VERSION_1_2_DEPRECATED) #if !defined(CL_API_SUFFIX__VERSION_1_2_DEPRECATED) #define CL_API_SUFFIX__VERSION_1_2_DEPRECATED #endif // #if !defined(CL_API_SUFFIX__VERSION_1_2_DEPRECATED) #if !defined(CL_API_PREFIX__VERSION_2_2_DEPRECATED) #define CL_API_PREFIX__VERSION_2_2_DEPRECATED #endif // #if !defined(CL_API_PREFIX__VERSION_2_2_DEPRECATED) #if !defined(CL_API_SUFFIX__VERSION_2_2_DEPRECATED) #define CL_API_SUFFIX__VERSION_2_2_DEPRECATED #endif // #if !defined(CL_API_SUFFIX__VERSION_2_2_DEPRECATED) #if !defined(CL_CALLBACK) #define CL_CALLBACK #endif //CL_CALLBACK #include #include #include #include #include #include // Define a size_type to represent a correctly resolved size_t #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY) namespace cl { using size_type = ::size_t; } // namespace cl #else // #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY) namespace cl { using size_type = size_t; } // namespace cl #endif // #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY) #if defined(CL_HPP_ENABLE_EXCEPTIONS) #include #endif // #if defined(CL_HPP_ENABLE_EXCEPTIONS) #if !defined(CL_HPP_NO_STD_VECTOR) #include namespace cl { template < class T, class Alloc = std::allocator > using vector = std::vector; } // namespace cl #endif // #if !defined(CL_HPP_NO_STD_VECTOR) #if !defined(CL_HPP_NO_STD_STRING) #include namespace cl { using string = std::string; } // namespace cl #endif // #if !defined(CL_HPP_NO_STD_STRING) #if CL_HPP_TARGET_OPENCL_VERSION >= 200 #if !defined(CL_HPP_NO_STD_UNIQUE_PTR) #include namespace cl { // Replace unique_ptr and allocate_pointer for internal use // to allow user to replace them template using pointer = std::unique_ptr; } // namespace cl #endif #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 #if !defined(CL_HPP_NO_STD_ARRAY) #include namespace cl { template < class T, size_type N > using array = std::array; } // namespace cl #endif // #if !defined(CL_HPP_NO_STD_ARRAY) // Define size_type appropriately to allow backward-compatibility // use of the old size_t interface class #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY) namespace cl { namespace compatibility { /*! \brief class used to interface between C++ and * OpenCL C calls that require arrays of size_t values, whose * size is known statically. */ template class size_t { private: size_type data_[N]; public: //! \brief Initialize size_t to all 0s size_t() { for (int i = 0; i < N; ++i) { data_[i] = 0; } } size_t(const array &rhs) { for (int i = 0; i < N; ++i) { data_[i] = rhs[i]; } } size_type& operator[](int index) { return data_[index]; } const size_type& operator[](int index) const { return data_[index]; } //! \brief Conversion operator to T*. operator size_type* () { return data_; } //! \brief Conversion operator to const T*. operator const size_type* () const { return data_; } operator array() const { array ret; for (int i = 0; i < N; ++i) { ret[i] = data_[i]; } return ret; } }; } // namespace compatibility template using size_t = compatibility::size_t; } // namespace cl #endif // #if defined(CL_HPP_ENABLE_SIZE_T_COMPATIBILITY) // Helper alias to avoid confusing the macros namespace cl { namespace detail { using size_t_array = array; } // namespace detail } // namespace cl /*! \namespace cl * * \brief The OpenCL C++ bindings are defined within this namespace. * */ namespace cl { class Memory; #define CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(name) \ using PFN_##name = name##_fn #define CL_HPP_INIT_CL_EXT_FCN_PTR_(name) \ if (!pfn_##name) { \ pfn_##name = (PFN_##name)clGetExtensionFunctionAddress(#name); \ } #define CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, name) \ if (!pfn_##name) { \ pfn_##name = (PFN_##name) \ clGetExtensionFunctionAddressForPlatform(platform, #name); \ } class Program; class Device; class Context; class CommandQueue; class DeviceCommandQueue; class Memory; class Buffer; class Pipe; #ifdef cl_khr_semaphore class Semaphore; #endif #if defined(cl_khr_command_buffer) class CommandBufferKhr; class MutableCommandKhr; #endif // cl_khr_command_buffer #if defined(CL_HPP_ENABLE_EXCEPTIONS) /*! \brief Exception class * * This may be thrown by API functions when CL_HPP_ENABLE_EXCEPTIONS is defined. */ class Error : public std::exception { private: cl_int err_; const char * errStr_; public: /*! \brief Create a new CL error exception for a given error code * and corresponding message. * * \param err error code value. * * \param errStr a descriptive string that must remain in scope until * handling of the exception has concluded. If set, it * will be returned by what(). */ Error(cl_int err, const char * errStr = nullptr) : err_(err), errStr_(errStr) {} ~Error() throw() {} /*! \brief Get error string associated with exception * * \return A memory pointer to the error message string. */ virtual const char * what() const throw () { if (errStr_ == nullptr) { return "empty"; } else { return errStr_; } } /*! \brief Get error code associated with exception * * \return The error code. */ cl_int err(void) const { return err_; } }; #define CL_HPP_ERR_STR_(x) #x #else #define CL_HPP_ERR_STR_(x) nullptr #endif // CL_HPP_ENABLE_EXCEPTIONS namespace detail { #if defined(CL_HPP_ENABLE_EXCEPTIONS) static inline cl_int errHandler ( cl_int err, const char * errStr = nullptr) { if (err != CL_SUCCESS) { throw Error(err, errStr); } return err; } #else static inline cl_int errHandler (cl_int err, const char * errStr = nullptr) { (void) errStr; // suppress unused variable warning return err; } #endif // CL_HPP_ENABLE_EXCEPTIONS } //! \cond DOXYGEN_DETAIL #if !defined(CL_HPP_USER_OVERRIDE_ERROR_STRINGS) #define __GET_DEVICE_INFO_ERR CL_HPP_ERR_STR_(clGetDeviceInfo) #define __GET_PLATFORM_INFO_ERR CL_HPP_ERR_STR_(clGetPlatformInfo) #define __GET_DEVICE_IDS_ERR CL_HPP_ERR_STR_(clGetDeviceIDs) #define __GET_PLATFORM_IDS_ERR CL_HPP_ERR_STR_(clGetPlatformIDs) #define __GET_CONTEXT_INFO_ERR CL_HPP_ERR_STR_(clGetContextInfo) #define __GET_EVENT_INFO_ERR CL_HPP_ERR_STR_(clGetEventInfo) #define __GET_EVENT_PROFILE_INFO_ERR CL_HPP_ERR_STR_(clGetEventProfileInfo) #define __GET_MEM_OBJECT_INFO_ERR CL_HPP_ERR_STR_(clGetMemObjectInfo) #define __GET_IMAGE_INFO_ERR CL_HPP_ERR_STR_(clGetImageInfo) #define __GET_SAMPLER_INFO_ERR CL_HPP_ERR_STR_(clGetSamplerInfo) #define __GET_KERNEL_INFO_ERR CL_HPP_ERR_STR_(clGetKernelInfo) #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __GET_KERNEL_ARG_INFO_ERR CL_HPP_ERR_STR_(clGetKernelArgInfo) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_TARGET_OPENCL_VERSION >= 210 #define __GET_KERNEL_SUB_GROUP_INFO_ERR CL_HPP_ERR_STR_(clGetKernelSubGroupInfo) #else #define __GET_KERNEL_SUB_GROUP_INFO_ERR CL_HPP_ERR_STR_(clGetKernelSubGroupInfoKHR) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 210 #define __GET_KERNEL_WORK_GROUP_INFO_ERR CL_HPP_ERR_STR_(clGetKernelWorkGroupInfo) #define __GET_PROGRAM_INFO_ERR CL_HPP_ERR_STR_(clGetProgramInfo) #define __GET_PROGRAM_BUILD_INFO_ERR CL_HPP_ERR_STR_(clGetProgramBuildInfo) #define __GET_COMMAND_QUEUE_INFO_ERR CL_HPP_ERR_STR_(clGetCommandQueueInfo) #define __CREATE_CONTEXT_ERR CL_HPP_ERR_STR_(clCreateContext) #define __CREATE_CONTEXT_FROM_TYPE_ERR CL_HPP_ERR_STR_(clCreateContextFromType) #define __GET_SUPPORTED_IMAGE_FORMATS_ERR CL_HPP_ERR_STR_(clGetSupportedImageFormats) #if CL_HPP_TARGET_OPENCL_VERSION >= 300 #define __SET_CONTEXT_DESCTRUCTOR_CALLBACK_ERR CL_HPP_ERR_STR_(clSetContextDestructorCallback) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 300 #define __CREATE_BUFFER_ERR CL_HPP_ERR_STR_(clCreateBuffer) #define __COPY_ERR CL_HPP_ERR_STR_(cl::copy) #define __CREATE_SUBBUFFER_ERR CL_HPP_ERR_STR_(clCreateSubBuffer) #define __CREATE_GL_BUFFER_ERR CL_HPP_ERR_STR_(clCreateFromGLBuffer) #define __CREATE_GL_RENDER_BUFFER_ERR CL_HPP_ERR_STR_(clCreateFromGLBuffer) #define __GET_GL_OBJECT_INFO_ERR CL_HPP_ERR_STR_(clGetGLObjectInfo) #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __CREATE_IMAGE_ERR CL_HPP_ERR_STR_(clCreateImage) #define __CREATE_GL_TEXTURE_ERR CL_HPP_ERR_STR_(clCreateFromGLTexture) #define __IMAGE_DIMENSION_ERR CL_HPP_ERR_STR_(Incorrect image dimensions) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR CL_HPP_ERR_STR_(clSetMemObjectDestructorCallback) #define __CREATE_USER_EVENT_ERR CL_HPP_ERR_STR_(clCreateUserEvent) #define __SET_USER_EVENT_STATUS_ERR CL_HPP_ERR_STR_(clSetUserEventStatus) #define __SET_EVENT_CALLBACK_ERR CL_HPP_ERR_STR_(clSetEventCallback) #define __WAIT_FOR_EVENTS_ERR CL_HPP_ERR_STR_(clWaitForEvents) #define __CREATE_KERNEL_ERR CL_HPP_ERR_STR_(clCreateKernel) #define __SET_KERNEL_ARGS_ERR CL_HPP_ERR_STR_(clSetKernelArg) #define __CREATE_PROGRAM_WITH_SOURCE_ERR CL_HPP_ERR_STR_(clCreateProgramWithSource) #define __CREATE_PROGRAM_WITH_BINARY_ERR CL_HPP_ERR_STR_(clCreateProgramWithBinary) #if CL_HPP_TARGET_OPENCL_VERSION >= 210 #define __CREATE_PROGRAM_WITH_IL_ERR CL_HPP_ERR_STR_(clCreateProgramWithIL) #else #define __CREATE_PROGRAM_WITH_IL_ERR CL_HPP_ERR_STR_(clCreateProgramWithILKHR) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 210 #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __CREATE_PROGRAM_WITH_BUILT_IN_KERNELS_ERR CL_HPP_ERR_STR_(clCreateProgramWithBuiltInKernels) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __BUILD_PROGRAM_ERR CL_HPP_ERR_STR_(clBuildProgram) #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __COMPILE_PROGRAM_ERR CL_HPP_ERR_STR_(clCompileProgram) #define __LINK_PROGRAM_ERR CL_HPP_ERR_STR_(clLinkProgram) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __CREATE_KERNELS_IN_PROGRAM_ERR CL_HPP_ERR_STR_(clCreateKernelsInProgram) #if CL_HPP_TARGET_OPENCL_VERSION >= 200 #define __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR CL_HPP_ERR_STR_(clCreateCommandQueueWithProperties) #define __CREATE_SAMPLER_WITH_PROPERTIES_ERR CL_HPP_ERR_STR_(clCreateSamplerWithProperties) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #define __SET_COMMAND_QUEUE_PROPERTY_ERR CL_HPP_ERR_STR_(clSetCommandQueueProperty) #define __ENQUEUE_READ_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueReadBuffer) #define __ENQUEUE_READ_BUFFER_RECT_ERR CL_HPP_ERR_STR_(clEnqueueReadBufferRect) #define __ENQUEUE_WRITE_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueWriteBuffer) #define __ENQUEUE_WRITE_BUFFER_RECT_ERR CL_HPP_ERR_STR_(clEnqueueWriteBufferRect) #define __ENQEUE_COPY_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueCopyBuffer) #define __ENQEUE_COPY_BUFFER_RECT_ERR CL_HPP_ERR_STR_(clEnqueueCopyBufferRect) #define __ENQUEUE_FILL_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueFillBuffer) #define __ENQUEUE_READ_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueReadImage) #define __ENQUEUE_WRITE_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueWriteImage) #define __ENQUEUE_COPY_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueCopyImage) #define __ENQUEUE_FILL_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueFillImage) #define __ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueCopyImageToBuffer) #define __ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueCopyBufferToImage) #define __ENQUEUE_MAP_BUFFER_ERR CL_HPP_ERR_STR_(clEnqueueMapBuffer) #define __ENQUEUE_MAP_IMAGE_ERR CL_HPP_ERR_STR_(clEnqueueMapImage) #define __ENQUEUE_UNMAP_MEM_OBJECT_ERR CL_HPP_ERR_STR_(clEnqueueUnMapMemObject) #define __ENQUEUE_NDRANGE_KERNEL_ERR CL_HPP_ERR_STR_(clEnqueueNDRangeKernel) #define __ENQUEUE_NATIVE_KERNEL CL_HPP_ERR_STR_(clEnqueueNativeKernel) #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __ENQUEUE_MIGRATE_MEM_OBJECTS_ERR CL_HPP_ERR_STR_(clEnqueueMigrateMemObjects) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_TARGET_OPENCL_VERSION >= 210 #define __ENQUEUE_MIGRATE_SVM_ERR CL_HPP_ERR_STR_(clEnqueueSVMMigrateMem) #define __SET_DEFAULT_DEVICE_COMMAND_QUEUE_ERR CL_HPP_ERR_STR_(clSetDefaultDeviceCommandQueue) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 210 #define __ENQUEUE_ACQUIRE_GL_ERR CL_HPP_ERR_STR_(clEnqueueAcquireGLObjects) #define __ENQUEUE_RELEASE_GL_ERR CL_HPP_ERR_STR_(clEnqueueReleaseGLObjects) #define __CREATE_PIPE_ERR CL_HPP_ERR_STR_(clCreatePipe) #define __GET_PIPE_INFO_ERR CL_HPP_ERR_STR_(clGetPipeInfo) #define __RETAIN_ERR CL_HPP_ERR_STR_(Retain Object) #define __RELEASE_ERR CL_HPP_ERR_STR_(Release Object) #define __FLUSH_ERR CL_HPP_ERR_STR_(clFlush) #define __FINISH_ERR CL_HPP_ERR_STR_(clFinish) #define __VECTOR_CAPACITY_ERR CL_HPP_ERR_STR_(Vector capacity error) #if CL_HPP_TARGET_OPENCL_VERSION >= 210 #define __GET_HOST_TIMER_ERR CL_HPP_ERR_STR_(clGetHostTimer) #define __GET_DEVICE_AND_HOST_TIMER_ERR CL_HPP_ERR_STR_(clGetDeviceAndHostTimer) #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 220 #define __SET_PROGRAM_RELEASE_CALLBACK_ERR CL_HPP_ERR_STR_(clSetProgramReleaseCallback) #define __SET_PROGRAM_SPECIALIZATION_CONSTANT_ERR CL_HPP_ERR_STR_(clSetProgramSpecializationConstant) #endif #ifdef cl_khr_semaphore #define __GET_SEMAPHORE_KHR_INFO_ERR CL_HPP_ERR_STR_(clGetSemaphoreInfoKHR) #define __CREATE_SEMAPHORE_KHR_WITH_PROPERTIES_ERR CL_HPP_ERR_STR_(clCreateSemaphoreWithPropertiesKHR) #define __ENQUEUE_WAIT_SEMAPHORE_KHR_ERR CL_HPP_ERR_STR_(clEnqueueWaitSemaphoresKHR) #define __ENQUEUE_SIGNAL_SEMAPHORE_KHR_ERR CL_HPP_ERR_STR_(clEnqueueSignalSemaphoresKHR) #define __RETAIN_SEMAPHORE_KHR_ERR CL_HPP_ERR_STR_(clRetainSemaphoreKHR) #define __RELEASE_SEMAPHORE_KHR_ERR CL_HPP_ERR_STR_(clReleaseSemaphoreKHR) #endif #if defined(cl_khr_command_buffer) #define __CREATE_COMMAND_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clCreateCommandBufferKHR) #define __GET_COMMAND_BUFFER_INFO_KHR_ERR CL_HPP_ERR_STR_(clGetCommandBufferInfoKHR) #define __FINALIZE_COMMAND_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clFinalizeCommandBufferKHR) #define __ENQUEUE_COMMAND_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clEnqueueCommandBufferKHR) #define __COMMAND_BARRIER_WITH_WAIT_LIST_KHR_ERR CL_HPP_ERR_STR_(clCommandBarrierWithWaitListKHR) #define __COMMAND_COPY_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clCommandCopyBufferKHR) #define __COMMAND_COPY_BUFFER_RECT_KHR_ERR CL_HPP_ERR_STR_(clCommandCopyBufferRectKHR) #define __COMMAND_COPY_BUFFER_TO_IMAGE_KHR_ERR CL_HPP_ERR_STR_(clCommandCopyBufferToImageKHR) #define __COMMAND_COPY_IMAGE_KHR_ERR CL_HPP_ERR_STR_(clCommandCopyImageKHR) #define __COMMAND_COPY_IMAGE_TO_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clCommandCopyImageToBufferKHR) #define __COMMAND_FILL_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clCommandFillBufferKHR) #define __COMMAND_FILL_IMAGE_KHR_ERR CL_HPP_ERR_STR_(clCommandFillImageKHR) #define __COMMAND_NDRANGE_KERNEL_KHR_ERR CL_HPP_ERR_STR_(clCommandNDRangeKernelKHR) #define __UPDATE_MUTABLE_COMMANDS_KHR_ERR CL_HPP_ERR_STR_(clUpdateMutableCommandsKHR) #define __GET_MUTABLE_COMMAND_INFO_KHR_ERR CL_HPP_ERR_STR_(clGetMutableCommandInfoKHR) #define __RETAIN_COMMAND_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clRetainCommandBufferKHR) #define __RELEASE_COMMAND_BUFFER_KHR_ERR CL_HPP_ERR_STR_(clReleaseCommandBufferKHR) #endif // cl_khr_command_buffer /** * CL 1.2 version that uses device fission. */ #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __CREATE_SUB_DEVICES_ERR CL_HPP_ERR_STR_(clCreateSubDevices) #else #define __CREATE_SUB_DEVICES_ERR CL_HPP_ERR_STR_(clCreateSubDevicesEXT) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 /** * Deprecated APIs for 1.2 */ #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) #define __ENQUEUE_MARKER_ERR CL_HPP_ERR_STR_(clEnqueueMarker) #define __ENQUEUE_WAIT_FOR_EVENTS_ERR CL_HPP_ERR_STR_(clEnqueueWaitForEvents) #define __ENQUEUE_BARRIER_ERR CL_HPP_ERR_STR_(clEnqueueBarrier) #define __UNLOAD_COMPILER_ERR CL_HPP_ERR_STR_(clUnloadCompiler) #define __CREATE_GL_TEXTURE_2D_ERR CL_HPP_ERR_STR_(clCreateFromGLTexture2D) #define __CREATE_GL_TEXTURE_3D_ERR CL_HPP_ERR_STR_(clCreateFromGLTexture3D) #define __CREATE_IMAGE2D_ERR CL_HPP_ERR_STR_(clCreateImage2D) #define __CREATE_IMAGE3D_ERR CL_HPP_ERR_STR_(clCreateImage3D) #endif // #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) /** * Deprecated APIs for 2.0 */ #if defined(CL_USE_DEPRECATED_OPENCL_1_2_APIS) #define __CREATE_COMMAND_QUEUE_ERR CL_HPP_ERR_STR_(clCreateCommandQueue) #define __ENQUEUE_TASK_ERR CL_HPP_ERR_STR_(clEnqueueTask) #define __CREATE_SAMPLER_ERR CL_HPP_ERR_STR_(clCreateSampler) #endif // #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) /** * CL 1.2 marker and barrier commands */ #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #define __ENQUEUE_MARKER_WAIT_LIST_ERR CL_HPP_ERR_STR_(clEnqueueMarkerWithWaitList) #define __ENQUEUE_BARRIER_WAIT_LIST_ERR CL_HPP_ERR_STR_(clEnqueueBarrierWithWaitList) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_TARGET_OPENCL_VERSION >= 210 #define __CLONE_KERNEL_ERR CL_HPP_ERR_STR_(clCloneKernel) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 210 #endif // CL_HPP_USER_OVERRIDE_ERROR_STRINGS //! \endcond #ifdef cl_khr_semaphore CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCreateSemaphoreWithPropertiesKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clReleaseSemaphoreKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clRetainSemaphoreKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clEnqueueWaitSemaphoresKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clEnqueueSignalSemaphoresKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clGetSemaphoreInfoKHR); CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCreateSemaphoreWithPropertiesKHR pfn_clCreateSemaphoreWithPropertiesKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clReleaseSemaphoreKHR pfn_clReleaseSemaphoreKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clRetainSemaphoreKHR pfn_clRetainSemaphoreKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clEnqueueWaitSemaphoresKHR pfn_clEnqueueWaitSemaphoresKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clEnqueueSignalSemaphoresKHR pfn_clEnqueueSignalSemaphoresKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clGetSemaphoreInfoKHR pfn_clGetSemaphoreInfoKHR = nullptr; #endif // cl_khr_semaphore #if defined(cl_khr_command_buffer) CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCreateCommandBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clFinalizeCommandBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clRetainCommandBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clReleaseCommandBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clGetCommandBufferInfoKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clEnqueueCommandBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandBarrierWithWaitListKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandCopyBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandCopyBufferRectKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandCopyBufferToImageKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandCopyImageKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandCopyImageToBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandFillBufferKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandFillImageKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clCommandNDRangeKernelKHR); CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCreateCommandBufferKHR pfn_clCreateCommandBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clFinalizeCommandBufferKHR pfn_clFinalizeCommandBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clRetainCommandBufferKHR pfn_clRetainCommandBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clReleaseCommandBufferKHR pfn_clReleaseCommandBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clGetCommandBufferInfoKHR pfn_clGetCommandBufferInfoKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clEnqueueCommandBufferKHR pfn_clEnqueueCommandBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandBarrierWithWaitListKHR pfn_clCommandBarrierWithWaitListKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandCopyBufferKHR pfn_clCommandCopyBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandCopyBufferRectKHR pfn_clCommandCopyBufferRectKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandCopyBufferToImageKHR pfn_clCommandCopyBufferToImageKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandCopyImageKHR pfn_clCommandCopyImageKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandCopyImageToBufferKHR pfn_clCommandCopyImageToBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandFillBufferKHR pfn_clCommandFillBufferKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandFillImageKHR pfn_clCommandFillImageKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clCommandNDRangeKernelKHR pfn_clCommandNDRangeKernelKHR = nullptr; #endif /* cl_khr_command_buffer */ #if defined(cl_khr_command_buffer_mutable_dispatch) CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clUpdateMutableCommandsKHR); CL_HPP_CREATE_CL_EXT_FCN_PTR_ALIAS_(clGetMutableCommandInfoKHR); CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clUpdateMutableCommandsKHR pfn_clUpdateMutableCommandsKHR = nullptr; CL_HPP_DEFINE_STATIC_MEMBER_ PFN_clGetMutableCommandInfoKHR pfn_clGetMutableCommandInfoKHR = nullptr; #endif /* cl_khr_command_buffer_mutable_dispatch */ namespace detail { // Generic getInfoHelper. The final parameter is used to guide overload // resolution: the actual parameter passed is an int, which makes this // a worse conversion sequence than a specialization that declares the // parameter as an int. template inline cl_int getInfoHelper(Functor f, cl_uint name, T* param, long) { return f(name, sizeof(T), param, nullptr); } // Specialized for getInfo // Assumes that the output vector was correctly resized on the way in template inline cl_int getInfoHelper(Func f, cl_uint name, vector>* param, int) { if (name != CL_PROGRAM_BINARIES) { return CL_INVALID_VALUE; } if (param) { // Create array of pointers, calculate total size and pass pointer array in size_type numBinaries = param->size(); vector binariesPointers(numBinaries); for (size_type i = 0; i < numBinaries; ++i) { binariesPointers[i] = (*param)[i].data(); } cl_int err = f(name, numBinaries * sizeof(unsigned char*), binariesPointers.data(), nullptr); if (err != CL_SUCCESS) { return err; } } return CL_SUCCESS; } // Specialized getInfoHelper for vector params template inline cl_int getInfoHelper(Func f, cl_uint name, vector* param, long) { size_type required; cl_int err = f(name, 0, nullptr, &required); if (err != CL_SUCCESS) { return err; } const size_type elements = required / sizeof(T); // Temporary to avoid changing param on an error vector localData(elements); err = f(name, required, localData.data(), nullptr); if (err != CL_SUCCESS) { return err; } if (param) { *param = std::move(localData); } return CL_SUCCESS; } /* Specialization for reference-counted types. This depends on the * existence of Wrapper::cl_type, and none of the other types having the * cl_type member. Note that simplify specifying the parameter as Wrapper * does not work, because when using a derived type (e.g. Context) the generic * template will provide a better match. */ template inline cl_int getInfoHelper( Func f, cl_uint name, vector* param, int, typename T::cl_type = 0) { size_type required; cl_int err = f(name, 0, nullptr, &required); if (err != CL_SUCCESS) { return err; } const size_type elements = required / sizeof(typename T::cl_type); vector value(elements); err = f(name, required, value.data(), nullptr); if (err != CL_SUCCESS) { return err; } if (param) { // Assign to convert CL type to T for each element param->resize(elements); // Assign to param, constructing with retain behaviour // to correctly capture each underlying CL object for (size_type i = 0; i < elements; i++) { (*param)[i] = T(value[i], true); } } return CL_SUCCESS; } // Specialized GetInfoHelper for string params template inline cl_int getInfoHelper(Func f, cl_uint name, string* param, long) { size_type required; cl_int err = f(name, 0, nullptr, &required); if (err != CL_SUCCESS) { return err; } // std::string has a constant data member // a char vector does not if (required > 0) { vector value(required); err = f(name, required, value.data(), nullptr); if (err != CL_SUCCESS) { return err; } if (param) { param->assign(begin(value), prev(end(value))); } } else if (param) { param->assign(""); } return CL_SUCCESS; } // Specialized GetInfoHelper for clsize_t params template inline cl_int getInfoHelper(Func f, cl_uint name, array* param, long) { size_type required; cl_int err = f(name, 0, nullptr, &required); if (err != CL_SUCCESS) { return err; } size_type elements = required / sizeof(size_type); vector value(elements, 0); err = f(name, required, value.data(), nullptr); if (err != CL_SUCCESS) { return err; } // Bound the copy with N to prevent overruns // if passed N > than the amount copied if (elements > N) { elements = N; } for (size_type i = 0; i < elements; ++i) { (*param)[i] = value[i]; } return CL_SUCCESS; } template struct ReferenceHandler; /* Specialization for reference-counted types. This depends on the * existence of Wrapper::cl_type, and none of the other types having the * cl_type member. Note that simplify specifying the parameter as Wrapper * does not work, because when using a derived type (e.g. Context) the generic * template will provide a better match. */ template inline cl_int getInfoHelper(Func f, cl_uint name, T* param, int, typename T::cl_type = 0) { typename T::cl_type value; cl_int err = f(name, sizeof(value), &value, nullptr); if (err != CL_SUCCESS) { return err; } *param = value; if (value != nullptr) { err = param->retain(); if (err != CL_SUCCESS) { return err; } } return CL_SUCCESS; } #define CL_HPP_PARAM_NAME_INFO_1_0_(F) \ F(cl_platform_info, CL_PLATFORM_PROFILE, string) \ F(cl_platform_info, CL_PLATFORM_VERSION, string) \ F(cl_platform_info, CL_PLATFORM_NAME, string) \ F(cl_platform_info, CL_PLATFORM_VENDOR, string) \ F(cl_platform_info, CL_PLATFORM_EXTENSIONS, string) \ \ F(cl_device_info, CL_DEVICE_TYPE, cl_device_type) \ F(cl_device_info, CL_DEVICE_VENDOR_ID, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_COMPUTE_UNITS, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_WORK_GROUP_SIZE, size_type) \ F(cl_device_info, CL_DEVICE_MAX_WORK_ITEM_SIZES, cl::vector) \ F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_CLOCK_FREQUENCY, cl_uint) \ F(cl_device_info, CL_DEVICE_ADDRESS_BITS, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_READ_IMAGE_ARGS, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_MEM_ALLOC_SIZE, cl_ulong) \ F(cl_device_info, CL_DEVICE_IMAGE2D_MAX_WIDTH, size_type) \ F(cl_device_info, CL_DEVICE_IMAGE2D_MAX_HEIGHT, size_type) \ F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_WIDTH, size_type) \ F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_HEIGHT, size_type) \ F(cl_device_info, CL_DEVICE_IMAGE3D_MAX_DEPTH, size_type) \ F(cl_device_info, CL_DEVICE_IMAGE_SUPPORT, cl_bool) \ F(cl_device_info, CL_DEVICE_MAX_PARAMETER_SIZE, size_type) \ F(cl_device_info, CL_DEVICE_MAX_SAMPLERS, cl_uint) \ F(cl_device_info, CL_DEVICE_MEM_BASE_ADDR_ALIGN, cl_uint) \ F(cl_device_info, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, cl_uint) \ F(cl_device_info, CL_DEVICE_SINGLE_FP_CONFIG, cl_device_fp_config) \ F(cl_device_info, CL_DEVICE_DOUBLE_FP_CONFIG, cl_device_fp_config) \ F(cl_device_info, CL_DEVICE_HALF_FP_CONFIG, cl_device_fp_config) \ F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHE_TYPE, cl_device_mem_cache_type) \ F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, cl_uint)\ F(cl_device_info, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, cl_ulong) \ F(cl_device_info, CL_DEVICE_GLOBAL_MEM_SIZE, cl_ulong) \ F(cl_device_info, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, cl_ulong) \ F(cl_device_info, CL_DEVICE_MAX_CONSTANT_ARGS, cl_uint) \ F(cl_device_info, CL_DEVICE_LOCAL_MEM_TYPE, cl_device_local_mem_type) \ F(cl_device_info, CL_DEVICE_LOCAL_MEM_SIZE, cl_ulong) \ F(cl_device_info, CL_DEVICE_ERROR_CORRECTION_SUPPORT, cl_bool) \ F(cl_device_info, CL_DEVICE_PROFILING_TIMER_RESOLUTION, size_type) \ F(cl_device_info, CL_DEVICE_ENDIAN_LITTLE, cl_bool) \ F(cl_device_info, CL_DEVICE_AVAILABLE, cl_bool) \ F(cl_device_info, CL_DEVICE_COMPILER_AVAILABLE, cl_bool) \ F(cl_device_info, CL_DEVICE_EXECUTION_CAPABILITIES, cl_device_exec_capabilities) \ F(cl_device_info, CL_DEVICE_PLATFORM, cl_platform_id) \ F(cl_device_info, CL_DEVICE_NAME, string) \ F(cl_device_info, CL_DEVICE_VENDOR, string) \ F(cl_device_info, CL_DRIVER_VERSION, string) \ F(cl_device_info, CL_DEVICE_PROFILE, string) \ F(cl_device_info, CL_DEVICE_VERSION, string) \ F(cl_device_info, CL_DEVICE_EXTENSIONS, string) \ \ F(cl_context_info, CL_CONTEXT_REFERENCE_COUNT, cl_uint) \ F(cl_context_info, CL_CONTEXT_DEVICES, cl::vector) \ F(cl_context_info, CL_CONTEXT_PROPERTIES, cl::vector) \ \ F(cl_event_info, CL_EVENT_COMMAND_QUEUE, cl::CommandQueue) \ F(cl_event_info, CL_EVENT_COMMAND_TYPE, cl_command_type) \ F(cl_event_info, CL_EVENT_REFERENCE_COUNT, cl_uint) \ F(cl_event_info, CL_EVENT_COMMAND_EXECUTION_STATUS, cl_int) \ \ F(cl_profiling_info, CL_PROFILING_COMMAND_QUEUED, cl_ulong) \ F(cl_profiling_info, CL_PROFILING_COMMAND_SUBMIT, cl_ulong) \ F(cl_profiling_info, CL_PROFILING_COMMAND_START, cl_ulong) \ F(cl_profiling_info, CL_PROFILING_COMMAND_END, cl_ulong) \ \ F(cl_mem_info, CL_MEM_TYPE, cl_mem_object_type) \ F(cl_mem_info, CL_MEM_FLAGS, cl_mem_flags) \ F(cl_mem_info, CL_MEM_SIZE, size_type) \ F(cl_mem_info, CL_MEM_HOST_PTR, void*) \ F(cl_mem_info, CL_MEM_MAP_COUNT, cl_uint) \ F(cl_mem_info, CL_MEM_REFERENCE_COUNT, cl_uint) \ F(cl_mem_info, CL_MEM_CONTEXT, cl::Context) \ \ F(cl_image_info, CL_IMAGE_FORMAT, cl_image_format) \ F(cl_image_info, CL_IMAGE_ELEMENT_SIZE, size_type) \ F(cl_image_info, CL_IMAGE_ROW_PITCH, size_type) \ F(cl_image_info, CL_IMAGE_SLICE_PITCH, size_type) \ F(cl_image_info, CL_IMAGE_WIDTH, size_type) \ F(cl_image_info, CL_IMAGE_HEIGHT, size_type) \ F(cl_image_info, CL_IMAGE_DEPTH, size_type) \ \ F(cl_sampler_info, CL_SAMPLER_REFERENCE_COUNT, cl_uint) \ F(cl_sampler_info, CL_SAMPLER_CONTEXT, cl::Context) \ F(cl_sampler_info, CL_SAMPLER_NORMALIZED_COORDS, cl_bool) \ F(cl_sampler_info, CL_SAMPLER_ADDRESSING_MODE, cl_addressing_mode) \ F(cl_sampler_info, CL_SAMPLER_FILTER_MODE, cl_filter_mode) \ \ F(cl_program_info, CL_PROGRAM_REFERENCE_COUNT, cl_uint) \ F(cl_program_info, CL_PROGRAM_CONTEXT, cl::Context) \ F(cl_program_info, CL_PROGRAM_NUM_DEVICES, cl_uint) \ F(cl_program_info, CL_PROGRAM_DEVICES, cl::vector) \ F(cl_program_info, CL_PROGRAM_SOURCE, string) \ F(cl_program_info, CL_PROGRAM_BINARY_SIZES, cl::vector) \ F(cl_program_info, CL_PROGRAM_BINARIES, cl::vector>) \ \ F(cl_program_build_info, CL_PROGRAM_BUILD_STATUS, cl_build_status) \ F(cl_program_build_info, CL_PROGRAM_BUILD_OPTIONS, string) \ F(cl_program_build_info, CL_PROGRAM_BUILD_LOG, string) \ \ F(cl_kernel_info, CL_KERNEL_FUNCTION_NAME, string) \ F(cl_kernel_info, CL_KERNEL_NUM_ARGS, cl_uint) \ F(cl_kernel_info, CL_KERNEL_REFERENCE_COUNT, cl_uint) \ F(cl_kernel_info, CL_KERNEL_CONTEXT, cl::Context) \ F(cl_kernel_info, CL_KERNEL_PROGRAM, cl::Program) \ \ F(cl_kernel_work_group_info, CL_KERNEL_WORK_GROUP_SIZE, size_type) \ F(cl_kernel_work_group_info, CL_KERNEL_COMPILE_WORK_GROUP_SIZE, cl::detail::size_t_array) \ F(cl_kernel_work_group_info, CL_KERNEL_LOCAL_MEM_SIZE, cl_ulong) \ \ F(cl_command_queue_info, CL_QUEUE_CONTEXT, cl::Context) \ F(cl_command_queue_info, CL_QUEUE_DEVICE, cl::Device) \ F(cl_command_queue_info, CL_QUEUE_REFERENCE_COUNT, cl_uint) \ F(cl_command_queue_info, CL_QUEUE_PROPERTIES, cl_command_queue_properties) #define CL_HPP_PARAM_NAME_INFO_1_1_(F) \ F(cl_context_info, CL_CONTEXT_NUM_DEVICES, cl_uint)\ F(cl_device_info, CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF, cl_uint) \ F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR, cl_uint) \ F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT, cl_uint) \ F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_INT, cl_uint) \ F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, cl_uint) \ F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT, cl_uint) \ F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, cl_uint) \ F(cl_device_info, CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF, cl_uint) \ F(cl_device_info, CL_DEVICE_OPENCL_C_VERSION, string) \ \ F(cl_mem_info, CL_MEM_ASSOCIATED_MEMOBJECT, cl::Memory) \ F(cl_mem_info, CL_MEM_OFFSET, size_type) \ \ F(cl_kernel_work_group_info, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, size_type) \ F(cl_kernel_work_group_info, CL_KERNEL_PRIVATE_MEM_SIZE, cl_ulong) \ \ F(cl_event_info, CL_EVENT_CONTEXT, cl::Context) #define CL_HPP_PARAM_NAME_INFO_1_2_(F) \ F(cl_program_info, CL_PROGRAM_NUM_KERNELS, size_type) \ F(cl_program_info, CL_PROGRAM_KERNEL_NAMES, string) \ \ F(cl_program_build_info, CL_PROGRAM_BINARY_TYPE, cl_program_binary_type) \ \ F(cl_kernel_info, CL_KERNEL_ATTRIBUTES, string) \ \ F(cl_kernel_arg_info, CL_KERNEL_ARG_ADDRESS_QUALIFIER, cl_kernel_arg_address_qualifier) \ F(cl_kernel_arg_info, CL_KERNEL_ARG_ACCESS_QUALIFIER, cl_kernel_arg_access_qualifier) \ F(cl_kernel_arg_info, CL_KERNEL_ARG_TYPE_NAME, string) \ F(cl_kernel_arg_info, CL_KERNEL_ARG_NAME, string) \ F(cl_kernel_arg_info, CL_KERNEL_ARG_TYPE_QUALIFIER, cl_kernel_arg_type_qualifier) \ \ F(cl_kernel_work_group_info, CL_KERNEL_GLOBAL_WORK_SIZE, cl::detail::size_t_array) \ \ F(cl_device_info, CL_DEVICE_LINKER_AVAILABLE, cl_bool) \ F(cl_device_info, CL_DEVICE_IMAGE_MAX_BUFFER_SIZE, size_type) \ F(cl_device_info, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE, size_type) \ F(cl_device_info, CL_DEVICE_PARENT_DEVICE, cl::Device) \ F(cl_device_info, CL_DEVICE_PARTITION_MAX_SUB_DEVICES, cl_uint) \ F(cl_device_info, CL_DEVICE_PARTITION_PROPERTIES, cl::vector) \ F(cl_device_info, CL_DEVICE_PARTITION_TYPE, cl::vector) \ F(cl_device_info, CL_DEVICE_REFERENCE_COUNT, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_INTEROP_USER_SYNC, cl_bool) \ F(cl_device_info, CL_DEVICE_PARTITION_AFFINITY_DOMAIN, cl_device_affinity_domain) \ F(cl_device_info, CL_DEVICE_BUILT_IN_KERNELS, string) \ F(cl_device_info, CL_DEVICE_PRINTF_BUFFER_SIZE, size_type) \ \ F(cl_image_info, CL_IMAGE_ARRAY_SIZE, size_type) \ F(cl_image_info, CL_IMAGE_NUM_MIP_LEVELS, cl_uint) \ F(cl_image_info, CL_IMAGE_NUM_SAMPLES, cl_uint) #define CL_HPP_PARAM_NAME_INFO_2_0_(F) \ F(cl_device_info, CL_DEVICE_QUEUE_ON_HOST_PROPERTIES, cl_command_queue_properties) \ F(cl_device_info, CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES, cl_command_queue_properties) \ F(cl_device_info, CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE, cl_uint) \ F(cl_device_info, CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_ON_DEVICE_QUEUES, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_ON_DEVICE_EVENTS, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_PIPE_ARGS, cl_uint) \ F(cl_device_info, CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS, cl_uint) \ F(cl_device_info, CL_DEVICE_PIPE_MAX_PACKET_SIZE, cl_uint) \ F(cl_device_info, CL_DEVICE_SVM_CAPABILITIES, cl_device_svm_capabilities) \ F(cl_device_info, CL_DEVICE_PREFERRED_PLATFORM_ATOMIC_ALIGNMENT, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_GLOBAL_ATOMIC_ALIGNMENT, cl_uint) \ F(cl_device_info, CL_DEVICE_PREFERRED_LOCAL_ATOMIC_ALIGNMENT, cl_uint) \ F(cl_device_info, CL_DEVICE_IMAGE_PITCH_ALIGNMENT, cl_uint) \ F(cl_device_info, CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT, cl_uint) \ F(cl_device_info, CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS, cl_uint ) \ F(cl_device_info, CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE, size_type ) \ F(cl_device_info, CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE, size_type ) \ F(cl_profiling_info, CL_PROFILING_COMMAND_COMPLETE, cl_ulong) \ F(cl_kernel_exec_info, CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM, cl_bool) \ F(cl_kernel_exec_info, CL_KERNEL_EXEC_INFO_SVM_PTRS, void**) \ F(cl_command_queue_info, CL_QUEUE_SIZE, cl_uint) \ F(cl_mem_info, CL_MEM_USES_SVM_POINTER, cl_bool) \ F(cl_program_build_info, CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE, size_type) \ F(cl_pipe_info, CL_PIPE_PACKET_SIZE, cl_uint) \ F(cl_pipe_info, CL_PIPE_MAX_PACKETS, cl_uint) #define CL_HPP_PARAM_NAME_INFO_SUBGROUP_KHR_(F) \ F(cl_kernel_sub_group_info, CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE_KHR, size_type) \ F(cl_kernel_sub_group_info, CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE_KHR, size_type) #define CL_HPP_PARAM_NAME_INFO_IL_KHR_(F) \ F(cl_device_info, CL_DEVICE_IL_VERSION_KHR, string) \ F(cl_program_info, CL_PROGRAM_IL_KHR, cl::vector) #define CL_HPP_PARAM_NAME_INFO_2_1_(F) \ F(cl_platform_info, CL_PLATFORM_HOST_TIMER_RESOLUTION, cl_ulong) \ F(cl_program_info, CL_PROGRAM_IL, cl::vector) \ F(cl_device_info, CL_DEVICE_MAX_NUM_SUB_GROUPS, cl_uint) \ F(cl_device_info, CL_DEVICE_IL_VERSION, string) \ F(cl_device_info, CL_DEVICE_SUB_GROUP_INDEPENDENT_FORWARD_PROGRESS, cl_bool) \ F(cl_command_queue_info, CL_QUEUE_DEVICE_DEFAULT, cl::DeviceCommandQueue) \ F(cl_kernel_sub_group_info, CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE, size_type) \ F(cl_kernel_sub_group_info, CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE, size_type) \ F(cl_kernel_sub_group_info, CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT, cl::detail::size_t_array) \ F(cl_kernel_sub_group_info, CL_KERNEL_MAX_NUM_SUB_GROUPS, size_type) \ F(cl_kernel_sub_group_info, CL_KERNEL_COMPILE_NUM_SUB_GROUPS, size_type) #define CL_HPP_PARAM_NAME_INFO_2_2_(F) \ F(cl_program_info, CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT, cl_bool) \ F(cl_program_info, CL_PROGRAM_SCOPE_GLOBAL_DTORS_PRESENT, cl_bool) #define CL_HPP_PARAM_NAME_DEVICE_FISSION_EXT_(F) \ F(cl_device_info, CL_DEVICE_PARENT_DEVICE_EXT, cl::Device) \ F(cl_device_info, CL_DEVICE_PARTITION_TYPES_EXT, cl::vector) \ F(cl_device_info, CL_DEVICE_AFFINITY_DOMAINS_EXT, cl::vector) \ F(cl_device_info, CL_DEVICE_REFERENCE_COUNT_EXT , cl_uint) \ F(cl_device_info, CL_DEVICE_PARTITION_STYLE_EXT, cl::vector) #define CL_HPP_PARAM_NAME_CL_KHR_EXTENDED_VERSIONING_CL3_SHARED_(F) \ F(cl_platform_info, CL_PLATFORM_NUMERIC_VERSION_KHR, cl_version_khr) \ F(cl_platform_info, CL_PLATFORM_EXTENSIONS_WITH_VERSION_KHR, cl::vector) \ \ F(cl_device_info, CL_DEVICE_NUMERIC_VERSION_KHR, cl_version_khr) \ F(cl_device_info, CL_DEVICE_EXTENSIONS_WITH_VERSION_KHR, cl::vector) \ F(cl_device_info, CL_DEVICE_ILS_WITH_VERSION_KHR, cl::vector) \ F(cl_device_info, CL_DEVICE_BUILT_IN_KERNELS_WITH_VERSION_KHR, cl::vector) #define CL_HPP_PARAM_NAME_CL_KHR_EXTENDED_VERSIONING_KHRONLY_(F) \ F(cl_device_info, CL_DEVICE_OPENCL_C_NUMERIC_VERSION_KHR, cl_version_khr) #define CL_HPP_PARAM_NAME_CL_KHR_SEMAPHORE_(F) \ F(cl_semaphore_info_khr, CL_SEMAPHORE_PROPERTIES_KHR, cl::vector) \ F(cl_platform_info, CL_PLATFORM_SEMAPHORE_TYPES_KHR, cl::vector) \ F(cl_device_info, CL_DEVICE_SEMAPHORE_TYPES_KHR, cl::vector) \ #define CL_HPP_PARAM_NAME_INFO_3_0_(F) \ F(cl_platform_info, CL_PLATFORM_NUMERIC_VERSION, cl_version) \ F(cl_platform_info, CL_PLATFORM_EXTENSIONS_WITH_VERSION, cl::vector) \ \ F(cl_device_info, CL_DEVICE_NUMERIC_VERSION, cl_version) \ F(cl_device_info, CL_DEVICE_EXTENSIONS_WITH_VERSION, cl::vector) \ F(cl_device_info, CL_DEVICE_ILS_WITH_VERSION, cl::vector) \ F(cl_device_info, CL_DEVICE_BUILT_IN_KERNELS_WITH_VERSION, cl::vector) \ F(cl_device_info, CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES, cl_device_atomic_capabilities) \ F(cl_device_info, CL_DEVICE_ATOMIC_FENCE_CAPABILITIES, cl_device_atomic_capabilities) \ F(cl_device_info, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, cl_bool) \ F(cl_device_info, CL_DEVICE_OPENCL_C_ALL_VERSIONS, cl::vector) \ F(cl_device_info, CL_DEVICE_PREFERRED_WORK_GROUP_SIZE_MULTIPLE, size_type) \ F(cl_device_info, CL_DEVICE_WORK_GROUP_COLLECTIVE_FUNCTIONS_SUPPORT, cl_bool) \ F(cl_device_info, CL_DEVICE_GENERIC_ADDRESS_SPACE_SUPPORT, cl_bool) \ F(cl_device_info, CL_DEVICE_OPENCL_C_FEATURES, cl::vector) \ F(cl_device_info, CL_DEVICE_DEVICE_ENQUEUE_CAPABILITIES, cl_device_device_enqueue_capabilities) \ F(cl_device_info, CL_DEVICE_PIPE_SUPPORT, cl_bool) \ F(cl_device_info, CL_DEVICE_LATEST_CONFORMANCE_VERSION_PASSED, string) \ \ F(cl_command_queue_info, CL_QUEUE_PROPERTIES_ARRAY, cl::vector) \ F(cl_mem_info, CL_MEM_PROPERTIES, cl::vector) \ F(cl_pipe_info, CL_PIPE_PROPERTIES, cl::vector) \ F(cl_sampler_info, CL_SAMPLER_PROPERTIES, cl::vector) \ template struct param_traits {}; #define CL_HPP_DECLARE_PARAM_TRAITS_(token, param_name, T) \ struct token; \ template<> \ struct param_traits \ { \ enum { value = param_name }; \ typedef T param_type; \ }; CL_HPP_PARAM_NAME_INFO_1_0_(CL_HPP_DECLARE_PARAM_TRAITS_) #if CL_HPP_TARGET_OPENCL_VERSION >= 110 CL_HPP_PARAM_NAME_INFO_1_1_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 110 #if CL_HPP_TARGET_OPENCL_VERSION >= 120 CL_HPP_PARAM_NAME_INFO_1_2_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_TARGET_OPENCL_VERSION >= 200 CL_HPP_PARAM_NAME_INFO_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_TARGET_OPENCL_VERSION >= 210 CL_HPP_PARAM_NAME_INFO_2_1_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 210 #if CL_HPP_TARGET_OPENCL_VERSION >= 220 CL_HPP_PARAM_NAME_INFO_2_2_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 220 #if CL_HPP_TARGET_OPENCL_VERSION >= 300 CL_HPP_PARAM_NAME_INFO_3_0_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_TARGET_OPENCL_VERSION >= 300 #if defined(cl_khr_subgroups) && CL_HPP_TARGET_OPENCL_VERSION < 210 CL_HPP_PARAM_NAME_INFO_SUBGROUP_KHR_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // #if defined(cl_khr_subgroups) && CL_HPP_TARGET_OPENCL_VERSION < 210 #if defined(cl_khr_il_program) && CL_HPP_TARGET_OPENCL_VERSION < 210 CL_HPP_PARAM_NAME_INFO_IL_KHR_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // #if defined(cl_khr_il_program) && CL_HPP_TARGET_OPENCL_VERSION < 210 // Flags deprecated in OpenCL 2.0 #define CL_HPP_PARAM_NAME_INFO_1_0_DEPRECATED_IN_2_0_(F) \ F(cl_device_info, CL_DEVICE_QUEUE_PROPERTIES, cl_command_queue_properties) #define CL_HPP_PARAM_NAME_INFO_1_1_DEPRECATED_IN_2_0_(F) \ F(cl_device_info, CL_DEVICE_HOST_UNIFIED_MEMORY, cl_bool) #define CL_HPP_PARAM_NAME_INFO_1_2_DEPRECATED_IN_2_0_(F) \ F(cl_image_info, CL_IMAGE_BUFFER, cl::Buffer) // Include deprecated query flags based on versions // Only include deprecated 1.0 flags if 2.0 not active as there is an enum clash #if CL_HPP_TARGET_OPENCL_VERSION > 100 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 && CL_HPP_TARGET_OPENCL_VERSION < 200 CL_HPP_PARAM_NAME_INFO_1_0_DEPRECATED_IN_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 110 #if CL_HPP_TARGET_OPENCL_VERSION > 110 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 CL_HPP_PARAM_NAME_INFO_1_1_DEPRECATED_IN_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 120 #if CL_HPP_TARGET_OPENCL_VERSION > 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 CL_HPP_PARAM_NAME_INFO_1_2_DEPRECATED_IN_2_0_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200 #if defined(cl_ext_device_fission) CL_HPP_PARAM_NAME_DEVICE_FISSION_EXT_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // cl_ext_device_fission #if defined(cl_khr_extended_versioning) #if CL_HPP_TARGET_OPENCL_VERSION < 300 CL_HPP_PARAM_NAME_CL_KHR_EXTENDED_VERSIONING_CL3_SHARED_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // CL_HPP_TARGET_OPENCL_VERSION < 300 CL_HPP_PARAM_NAME_CL_KHR_EXTENDED_VERSIONING_KHRONLY_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // cl_khr_extended_versioning #if defined(cl_khr_semaphore) CL_HPP_PARAM_NAME_CL_KHR_SEMAPHORE_(CL_HPP_DECLARE_PARAM_TRAITS_) #endif // cl_khr_semaphore #if defined(cl_khr_device_uuid) using uuid_array = array; using luid_array = array; CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_UUID_KHR, uuid_array) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DRIVER_UUID_KHR, uuid_array) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_LUID_VALID_KHR, cl_bool) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_LUID_KHR, luid_array) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_NODE_MASK_KHR, cl_uint) #endif #if defined(cl_khr_pci_bus_info) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_PCI_BUS_INFO_KHR, cl_device_pci_bus_info_khr) #endif // Note: some headers do not define cl_khr_image2d_from_buffer #if CL_HPP_TARGET_OPENCL_VERSION < 200 #if defined(CL_DEVICE_IMAGE_PITCH_ALIGNMENT_KHR) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_IMAGE_PITCH_ALIGNMENT_KHR, cl_uint) #endif #if defined(CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT_KHR) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT_KHR, cl_uint) #endif #endif // CL_HPP_TARGET_OPENCL_VERSION < 200 #if defined(cl_khr_integer_dot_product) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_INTEGER_DOT_PRODUCT_CAPABILITIES_KHR, cl_device_integer_dot_product_capabilities_khr) #if defined(CL_DEVICE_INTEGER_DOT_PRODUCT_ACCELERATION_PROPERTIES_8BIT_KHR) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_INTEGER_DOT_PRODUCT_ACCELERATION_PROPERTIES_8BIT_KHR, cl_device_integer_dot_product_acceleration_properties_khr) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_INTEGER_DOT_PRODUCT_ACCELERATION_PROPERTIES_4x8BIT_PACKED_KHR, cl_device_integer_dot_product_acceleration_properties_khr) #endif // defined(CL_DEVICE_INTEGER_DOT_PRODUCT_ACCELERATION_PROPERTIES_8BIT_KHR) #endif // defined(cl_khr_integer_dot_product) #ifdef CL_PLATFORM_ICD_SUFFIX_KHR CL_HPP_DECLARE_PARAM_TRAITS_(cl_platform_info, CL_PLATFORM_ICD_SUFFIX_KHR, string) #endif #ifdef CL_DEVICE_PROFILING_TIMER_OFFSET_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_PROFILING_TIMER_OFFSET_AMD, cl_ulong) #endif #ifdef CL_DEVICE_GLOBAL_FREE_MEMORY_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_FREE_MEMORY_AMD, vector) #endif #ifdef CL_DEVICE_SIMD_PER_COMPUTE_UNIT_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SIMD_PER_COMPUTE_UNIT_AMD, cl_uint) #endif #ifdef CL_DEVICE_SIMD_WIDTH_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SIMD_WIDTH_AMD, cl_uint) #endif #ifdef CL_DEVICE_SIMD_INSTRUCTION_WIDTH_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SIMD_INSTRUCTION_WIDTH_AMD, cl_uint) #endif #ifdef CL_DEVICE_WAVEFRONT_WIDTH_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_WAVEFRONT_WIDTH_AMD, cl_uint) #endif #ifdef CL_DEVICE_GLOBAL_MEM_CHANNELS_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_MEM_CHANNELS_AMD, cl_uint) #endif #ifdef CL_DEVICE_GLOBAL_MEM_CHANNEL_BANKS_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_MEM_CHANNEL_BANKS_AMD, cl_uint) #endif #ifdef CL_DEVICE_GLOBAL_MEM_CHANNEL_BANK_WIDTH_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GLOBAL_MEM_CHANNEL_BANK_WIDTH_AMD, cl_uint) #endif #ifdef CL_DEVICE_LOCAL_MEM_SIZE_PER_COMPUTE_UNIT_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_LOCAL_MEM_SIZE_PER_COMPUTE_UNIT_AMD, cl_uint) #endif #ifdef CL_DEVICE_LOCAL_MEM_BANKS_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_LOCAL_MEM_BANKS_AMD, cl_uint) #endif #ifdef CL_DEVICE_BOARD_NAME_AMD CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_BOARD_NAME_AMD, string) #endif #ifdef CL_DEVICE_COMPUTE_UNITS_BITFIELD_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_COMPUTE_UNITS_BITFIELD_ARM, cl_ulong) #endif #ifdef CL_DEVICE_JOB_SLOTS_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_JOB_SLOTS_ARM, cl_uint) #endif #ifdef CL_DEVICE_SCHEDULING_CONTROLS_CAPABILITIES_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SCHEDULING_CONTROLS_CAPABILITIES_ARM, cl_bitfield) #endif #ifdef CL_DEVICE_SUPPORTED_REGISTER_ALLOCATIONS_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_SUPPORTED_REGISTER_ALLOCATIONS_ARM, vector) #endif #ifdef CL_DEVICE_MAX_WARP_COUNT_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_MAX_WARP_COUNT_ARM, cl_uint) #endif #ifdef CL_KERNEL_MAX_WARP_COUNT_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_kernel_info, CL_KERNEL_MAX_WARP_COUNT_ARM, cl_uint) #endif #ifdef CL_KERNEL_EXEC_INFO_WORKGROUP_BATCH_SIZE_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_kernel_exec_info, CL_KERNEL_EXEC_INFO_WORKGROUP_BATCH_SIZE_ARM, cl_uint) #endif #ifdef CL_KERNEL_EXEC_INFO_WORKGROUP_BATCH_SIZE_MODIFIER_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_kernel_exec_info, CL_KERNEL_EXEC_INFO_WORKGROUP_BATCH_SIZE_MODIFIER_ARM, cl_int) #endif #ifdef CL_KERNEL_EXEC_INFO_WARP_COUNT_LIMIT_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_kernel_exec_info, CL_KERNEL_EXEC_INFO_WARP_COUNT_LIMIT_ARM, cl_uint) #endif #ifdef CL_KERNEL_EXEC_INFO_COMPUTE_UNIT_MAX_QUEUED_BATCHES_ARM CL_HPP_DECLARE_PARAM_TRAITS_(cl_kernel_exec_info, CL_KERNEL_EXEC_INFO_COMPUTE_UNIT_MAX_QUEUED_BATCHES_ARM, cl_uint) #endif #ifdef CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_COMPUTE_CAPABILITY_MAJOR_NV, cl_uint) #endif #ifdef CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_COMPUTE_CAPABILITY_MINOR_NV, cl_uint) #endif #ifdef CL_DEVICE_REGISTERS_PER_BLOCK_NV CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_REGISTERS_PER_BLOCK_NV, cl_uint) #endif #ifdef CL_DEVICE_WARP_SIZE_NV CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_WARP_SIZE_NV, cl_uint) #endif #ifdef CL_DEVICE_GPU_OVERLAP_NV CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_GPU_OVERLAP_NV, cl_bool) #endif #ifdef CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV, cl_bool) #endif #ifdef CL_DEVICE_INTEGRATED_MEMORY_NV CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_INTEGRATED_MEMORY_NV, cl_bool) #endif #if defined(cl_khr_command_buffer) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_COMMAND_BUFFER_CAPABILITIES_KHR, cl_device_command_buffer_capabilities_khr) CL_HPP_DECLARE_PARAM_TRAITS_(cl_device_info, CL_DEVICE_COMMAND_BUFFER_REQUIRED_QUEUE_PROPERTIES_KHR, cl_command_buffer_properties_khr) CL_HPP_DECLARE_PARAM_TRAITS_(cl_command_buffer_info_khr, CL_COMMAND_BUFFER_QUEUES_KHR, cl::vector) CL_HPP_DECLARE_PARAM_TRAITS_(cl_command_buffer_info_khr, CL_COMMAND_BUFFER_NUM_QUEUES_KHR, cl_uint) CL_HPP_DECLARE_PARAM_TRAITS_(cl_command_buffer_info_khr, CL_COMMAND_BUFFER_REFERENCE_COUNT_KHR, cl_uint) CL_HPP_DECLARE_PARAM_TRAITS_(cl_command_buffer_info_khr, CL_COMMAND_BUFFER_STATE_KHR, cl_command_buffer_state_khr) CL_HPP_DECLARE_PARAM_TRAITS_(cl_command_buffer_info_khr, CL_COMMAND_BUFFER_PROPERTIES_ARRAY_KHR, cl::vector) #endif /* cl_khr_command_buffer */ #if defined(cl_khr_command_buffer_mutable_dispatch) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_COMMAND_COMMAND_QUEUE_KHR, CommandQueue) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_COMMAND_COMMAND_BUFFER_KHR, CommandBufferKhr) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_COMMAND_COMMAND_TYPE_KHR, cl_command_type) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_DISPATCH_PROPERTIES_ARRAY_KHR, cl::vector) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_DISPATCH_KERNEL_KHR, cl_kernel) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_DISPATCH_DIMENSIONS_KHR, cl_uint) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_DISPATCH_GLOBAL_WORK_OFFSET_KHR, cl::vector) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_DISPATCH_GLOBAL_WORK_SIZE_KHR, cl::vector) CL_HPP_DECLARE_PARAM_TRAITS_(cl_mutable_command_info_khr, CL_MUTABLE_DISPATCH_LOCAL_WORK_SIZE_KHR, cl::vector) #endif /* cl_khr_command_buffer_mutable_dispatch */ // Convenience functions template inline cl_int getInfo(Func f, cl_uint name, T* param) { return getInfoHelper(f, name, param, 0); } template struct GetInfoFunctor0 { Func f_; const Arg0& arg0_; cl_int operator ()( cl_uint param, size_type size, void* value, size_type* size_ret) { return f_(arg0_, param, size, value, size_ret); } }; template struct GetInfoFunctor1 { Func f_; const Arg0& arg0_; const Arg1& arg1_; cl_int operator ()( cl_uint param, size_type size, void* value, size_type* size_ret) { return f_(arg0_, arg1_, param, size, value, size_ret); } }; template inline cl_int getInfo(Func f, const Arg0& arg0, cl_uint name, T* param) { GetInfoFunctor0 f0 = { f, arg0 }; return getInfoHelper(f0, name, param, 0); } template inline cl_int getInfo(Func f, const Arg0& arg0, const Arg1& arg1, cl_uint name, T* param) { GetInfoFunctor1 f0 = { f, arg0, arg1 }; return getInfoHelper(f0, name, param, 0); } template struct ReferenceHandler { }; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /** * OpenCL 1.2 devices do have retain/release. */ template <> struct ReferenceHandler { /** * Retain the device. * \param device A valid device created using createSubDevices * \return * CL_SUCCESS if the function executed successfully. * CL_INVALID_DEVICE if device was not a valid subdevice * CL_OUT_OF_RESOURCES * CL_OUT_OF_HOST_MEMORY */ static cl_int retain(cl_device_id device) { return ::clRetainDevice(device); } /** * Retain the device. * \param device A valid device created using createSubDevices * \return * CL_SUCCESS if the function executed successfully. * CL_INVALID_DEVICE if device was not a valid subdevice * CL_OUT_OF_RESOURCES * CL_OUT_OF_HOST_MEMORY */ static cl_int release(cl_device_id device) { return ::clReleaseDevice(device); } }; #else // CL_HPP_TARGET_OPENCL_VERSION >= 120 /** * OpenCL 1.1 devices do not have retain/release. */ template <> struct ReferenceHandler { // cl_device_id does not have retain(). static cl_int retain(cl_device_id) { return CL_SUCCESS; } // cl_device_id does not have release(). static cl_int release(cl_device_id) { return CL_SUCCESS; } }; #endif // ! (CL_HPP_TARGET_OPENCL_VERSION >= 120) template <> struct ReferenceHandler { // cl_platform_id does not have retain(). static cl_int retain(cl_platform_id) { return CL_SUCCESS; } // cl_platform_id does not have release(). static cl_int release(cl_platform_id) { return CL_SUCCESS; } }; template <> struct ReferenceHandler { static cl_int retain(cl_context context) { return ::clRetainContext(context); } static cl_int release(cl_context context) { return ::clReleaseContext(context); } }; template <> struct ReferenceHandler { static cl_int retain(cl_command_queue queue) { return ::clRetainCommandQueue(queue); } static cl_int release(cl_command_queue queue) { return ::clReleaseCommandQueue(queue); } }; template <> struct ReferenceHandler { static cl_int retain(cl_mem memory) { return ::clRetainMemObject(memory); } static cl_int release(cl_mem memory) { return ::clReleaseMemObject(memory); } }; template <> struct ReferenceHandler { static cl_int retain(cl_sampler sampler) { return ::clRetainSampler(sampler); } static cl_int release(cl_sampler sampler) { return ::clReleaseSampler(sampler); } }; template <> struct ReferenceHandler { static cl_int retain(cl_program program) { return ::clRetainProgram(program); } static cl_int release(cl_program program) { return ::clReleaseProgram(program); } }; template <> struct ReferenceHandler { static cl_int retain(cl_kernel kernel) { return ::clRetainKernel(kernel); } static cl_int release(cl_kernel kernel) { return ::clReleaseKernel(kernel); } }; template <> struct ReferenceHandler { static cl_int retain(cl_event event) { return ::clRetainEvent(event); } static cl_int release(cl_event event) { return ::clReleaseEvent(event); } }; #ifdef cl_khr_semaphore template <> struct ReferenceHandler { static cl_int retain(cl_semaphore_khr semaphore) { if (pfn_clRetainSemaphoreKHR != nullptr) { return pfn_clRetainSemaphoreKHR(semaphore); } return CL_INVALID_OPERATION; } static cl_int release(cl_semaphore_khr semaphore) { if (pfn_clReleaseSemaphoreKHR != nullptr) { return pfn_clReleaseSemaphoreKHR(semaphore); } return CL_INVALID_OPERATION; } }; #endif // cl_khr_semaphore #if defined(cl_khr_command_buffer) template <> struct ReferenceHandler { static cl_int retain(cl_command_buffer_khr cmdBufferKhr) { if (pfn_clRetainCommandBufferKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __RETAIN_COMMAND_BUFFER_KHR_ERR); } return pfn_clRetainCommandBufferKHR(cmdBufferKhr); } static cl_int release(cl_command_buffer_khr cmdBufferKhr) { if (pfn_clReleaseCommandBufferKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __RELEASE_COMMAND_BUFFER_KHR_ERR); } return pfn_clReleaseCommandBufferKHR(cmdBufferKhr); } }; template <> struct ReferenceHandler { // cl_mutable_command_khr does not have retain(). static cl_int retain(cl_mutable_command_khr) { return CL_SUCCESS; } // cl_mutable_command_khr does not have release(). static cl_int release(cl_mutable_command_khr) { return CL_SUCCESS; } }; #endif // cl_khr_command_buffer #if CL_HPP_TARGET_OPENCL_VERSION >= 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 120 // Extracts version number with major in the upper 16 bits, minor in the lower 16 static cl_uint getVersion(const vector &versionInfo) { int highVersion = 0; int lowVersion = 0; int index = 7; while(versionInfo[index] != '.' ) { highVersion *= 10; highVersion += versionInfo[index]-'0'; ++index; } ++index; while(versionInfo[index] != ' ' && versionInfo[index] != '\0') { lowVersion *= 10; lowVersion += versionInfo[index]-'0'; ++index; } return (highVersion << 16) | lowVersion; } static cl_uint getPlatformVersion(cl_platform_id platform) { size_type size = 0; clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &size); vector versionInfo(size); clGetPlatformInfo(platform, CL_PLATFORM_VERSION, size, versionInfo.data(), &size); return getVersion(versionInfo); } static cl_uint getDevicePlatformVersion(cl_device_id device) { cl_platform_id platform; clGetDeviceInfo(device, CL_DEVICE_PLATFORM, sizeof(platform), &platform, nullptr); return getPlatformVersion(platform); } static cl_uint getContextPlatformVersion(cl_context context) { // The platform cannot be queried directly, so we first have to grab a // device and obtain its context size_type size = 0; clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, nullptr, &size); if (size == 0) return 0; vector devices(size/sizeof(cl_device_id)); clGetContextInfo(context, CL_CONTEXT_DEVICES, size, devices.data(), nullptr); return getDevicePlatformVersion(devices[0]); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 120 template class Wrapper { public: typedef T cl_type; protected: cl_type object_; public: Wrapper() : object_(nullptr) { } Wrapper(const cl_type &obj, bool retainObject) : object_(obj) { if (retainObject) { detail::errHandler(retain(), __RETAIN_ERR); } } ~Wrapper() { if (object_ != nullptr) { release(); } } Wrapper(const Wrapper& rhs) { object_ = rhs.object_; detail::errHandler(retain(), __RETAIN_ERR); } Wrapper(Wrapper&& rhs) CL_HPP_NOEXCEPT_ { object_ = rhs.object_; rhs.object_ = nullptr; } Wrapper& operator = (const Wrapper& rhs) { if (this != &rhs) { detail::errHandler(release(), __RELEASE_ERR); object_ = rhs.object_; detail::errHandler(retain(), __RETAIN_ERR); } return *this; } Wrapper& operator = (Wrapper&& rhs) { if (this != &rhs) { detail::errHandler(release(), __RELEASE_ERR); object_ = rhs.object_; rhs.object_ = nullptr; } return *this; } Wrapper& operator = (const cl_type &rhs) { detail::errHandler(release(), __RELEASE_ERR); object_ = rhs; return *this; } const cl_type& operator ()() const { return object_; } cl_type& operator ()() { return object_; } cl_type get() const { return object_; } protected: template friend inline cl_int getInfoHelper(Func, cl_uint, U*, int, typename U::cl_type); cl_int retain() const { if (object_ != nullptr) { return ReferenceHandler::retain(object_); } else { return CL_SUCCESS; } } cl_int release() const { if (object_ != nullptr) { return ReferenceHandler::release(object_); } else { return CL_SUCCESS; } } }; template <> class Wrapper { public: typedef cl_device_id cl_type; protected: cl_type object_; bool referenceCountable_; static bool isReferenceCountable(cl_device_id device) { bool retVal = false; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 if (device != nullptr) { int version = getDevicePlatformVersion(device); if(version > ((1 << 16) + 1)) { retVal = true; } } #else // CL_HPP_MINIMUM_OPENCL_VERSION < 120 retVal = true; #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 120 #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 (void)device; return retVal; } public: Wrapper() : object_(nullptr), referenceCountable_(false) { } Wrapper(const cl_type &obj, bool retainObject) : object_(obj), referenceCountable_(false) { referenceCountable_ = isReferenceCountable(obj); if (retainObject) { detail::errHandler(retain(), __RETAIN_ERR); } } ~Wrapper() { release(); } Wrapper(const Wrapper& rhs) { object_ = rhs.object_; referenceCountable_ = isReferenceCountable(object_); detail::errHandler(retain(), __RETAIN_ERR); } Wrapper(Wrapper&& rhs) CL_HPP_NOEXCEPT_ { object_ = rhs.object_; referenceCountable_ = rhs.referenceCountable_; rhs.object_ = nullptr; rhs.referenceCountable_ = false; } Wrapper& operator = (const Wrapper& rhs) { if (this != &rhs) { detail::errHandler(release(), __RELEASE_ERR); object_ = rhs.object_; referenceCountable_ = rhs.referenceCountable_; detail::errHandler(retain(), __RETAIN_ERR); } return *this; } Wrapper& operator = (Wrapper&& rhs) { if (this != &rhs) { detail::errHandler(release(), __RELEASE_ERR); object_ = rhs.object_; referenceCountable_ = rhs.referenceCountable_; rhs.object_ = nullptr; rhs.referenceCountable_ = false; } return *this; } Wrapper& operator = (const cl_type &rhs) { detail::errHandler(release(), __RELEASE_ERR); object_ = rhs; referenceCountable_ = isReferenceCountable(object_); return *this; } const cl_type& operator ()() const { return object_; } cl_type& operator ()() { return object_; } cl_type get() const { return object_; } protected: template friend inline cl_int getInfoHelper(Func, cl_uint, U*, int, typename U::cl_type); template friend inline cl_int getInfoHelper(Func, cl_uint, vector*, int, typename U::cl_type); cl_int retain() const { if( object_ != nullptr && referenceCountable_ ) { return ReferenceHandler::retain(object_); } else { return CL_SUCCESS; } } cl_int release() const { if (object_ != nullptr && referenceCountable_) { return ReferenceHandler::release(object_); } else { return CL_SUCCESS; } } }; template inline bool operator==(const Wrapper &lhs, const Wrapper &rhs) { return lhs() == rhs(); } template inline bool operator!=(const Wrapper &lhs, const Wrapper &rhs) { return !operator==(lhs, rhs); } } // namespace detail //! \endcond /*! \stuct ImageFormat * \brief Adds constructors and member functions for cl_image_format. * * \see cl_image_format */ struct ImageFormat : public cl_image_format { //! \brief Default constructor - performs no initialization. ImageFormat(){} //! \brief Initializing constructor. ImageFormat(cl_channel_order order, cl_channel_type type) { image_channel_order = order; image_channel_data_type = type; } //! \brief Copy constructor. ImageFormat(const ImageFormat &other) { *this = other; } //! \brief Assignment operator. ImageFormat& operator = (const ImageFormat& rhs) { if (this != &rhs) { this->image_channel_data_type = rhs.image_channel_data_type; this->image_channel_order = rhs.image_channel_order; } return *this; } }; /*! \brief Class interface for cl_device_id. * * \note Copies of these objects are inexpensive, since they don't 'own' * any underlying resources or data structures. * * \see cl_device_id */ class Device : public detail::Wrapper { private: static std::once_flag default_initialized_; static Device default_; static cl_int default_error_; /*! \brief Create the default context. * * This sets @c default_ and @c default_error_. It does not throw * @c cl::Error. */ static void makeDefault(); /*! \brief Create the default platform from a provided platform. * * This sets @c default_. It does not throw * @c cl::Error. */ static void makeDefaultProvided(const Device &p) { default_ = p; } public: #ifdef CL_HPP_UNIT_TEST_ENABLE /*! \brief Reset the default. * * This sets @c default_ to an empty value to support cleanup in * the unit test framework. * This function is not thread safe. */ static void unitTestClearDefault() { default_ = Device(); } #endif // #ifdef CL_HPP_UNIT_TEST_ENABLE //! \brief Default constructor - initializes to nullptr. Device() : detail::Wrapper() { } /*! \brief Constructor from cl_device_id. * * This simply copies the device ID value, which is an inexpensive operation. */ explicit Device(const cl_device_id &device, bool retainObject = false) : detail::Wrapper(device, retainObject) { } /*! \brief Returns the first device on the default context. * * \see Context::getDefault() */ static Device getDefault( cl_int *errResult = nullptr) { std::call_once(default_initialized_, makeDefault); detail::errHandler(default_error_); if (errResult != nullptr) { *errResult = default_error_; } return default_; } /** * Modify the default device to be used by * subsequent operations. * Will only set the default if no default was previously created. * @return updated default device. * Should be compared to the passed value to ensure that it was updated. */ static Device setDefault(const Device &default_device) { std::call_once(default_initialized_, makeDefaultProvided, std::cref(default_device)); detail::errHandler(default_error_); return default_; } /*! \brief Assignment operator from cl_device_id. * * This simply copies the device ID value, which is an inexpensive operation. */ Device& operator = (const cl_device_id& rhs) { detail::Wrapper::operator=(rhs); return *this; } //! \brief Wrapper for clGetDeviceInfo(). template cl_int getInfo(cl_device_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetDeviceInfo, object_, name, param), __GET_DEVICE_INFO_ERR); } //! \brief Wrapper for clGetDeviceInfo() that returns by value. template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_device_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } #if CL_HPP_TARGET_OPENCL_VERSION >= 210 /** * Return the current value of the host clock as seen by the device. * The resolution of the device timer may be queried with the * CL_DEVICE_PROFILING_TIMER_RESOLUTION query. * @return The host timer value. */ cl_ulong getHostTimer(cl_int *error = nullptr) { cl_ulong retVal = 0; cl_int err = clGetHostTimer(this->get(), &retVal); detail::errHandler( err, __GET_HOST_TIMER_ERR); if (error) { *error = err; } return retVal; } /** * Return a synchronized pair of host and device timestamps as seen by device. * Use to correlate the clocks and get the host timer only using getHostTimer * as a lower cost mechanism in between calls. * The resolution of the host timer may be queried with the * CL_PLATFORM_HOST_TIMER_RESOLUTION query. * The resolution of the device timer may be queried with the * CL_DEVICE_PROFILING_TIMER_RESOLUTION query. * @return A pair of (device timer, host timer) timer values. */ std::pair getDeviceAndHostTimer(cl_int *error = nullptr) { std::pair retVal; cl_int err = clGetDeviceAndHostTimer(this->get(), &(retVal.first), &(retVal.second)); detail::errHandler( err, __GET_DEVICE_AND_HOST_TIMER_ERR); if (error) { *error = err; } return retVal; } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 #if CL_HPP_TARGET_OPENCL_VERSION >= 120 //! \brief Wrapper for clCreateSubDevices(). cl_int createSubDevices( const cl_device_partition_property * properties, vector* devices) { cl_uint n = 0; cl_int err = clCreateSubDevices(object_, properties, 0, nullptr, &n); if (err != CL_SUCCESS) { return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR); } vector ids(n); err = clCreateSubDevices(object_, properties, n, ids.data(), nullptr); if (err != CL_SUCCESS) { return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR); } // Cannot trivially assign because we need to capture intermediates // with safe construction if (devices) { devices->resize(ids.size()); // Assign to param, constructing with retain behaviour // to correctly capture each underlying CL object for (size_type i = 0; i < ids.size(); i++) { // We do not need to retain because this device is being created // by the runtime (*devices)[i] = Device(ids[i], false); } } return CL_SUCCESS; } #endif #if defined(cl_ext_device_fission) //! \brief Wrapper for clCreateSubDevices(). cl_int createSubDevices( const cl_device_partition_property_ext * properties, vector* devices) { typedef CL_API_ENTRY cl_int ( CL_API_CALL * PFN_clCreateSubDevicesEXT)( cl_device_id /*in_device*/, const cl_device_partition_property_ext * /* properties */, cl_uint /*num_entries*/, cl_device_id * /*out_devices*/, cl_uint * /*num_devices*/ ) CL_API_SUFFIX__VERSION_1_1; static PFN_clCreateSubDevicesEXT pfn_clCreateSubDevicesEXT = nullptr; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 cl::Device device(object_); cl_platform_id platform = device.getInfo(); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCreateSubDevicesEXT); #endif #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 CL_HPP_INIT_CL_EXT_FCN_PTR_(clCreateSubDevicesEXT); #endif cl_uint n = 0; cl_int err = pfn_clCreateSubDevicesEXT(object_, properties, 0, nullptr, &n); if (err != CL_SUCCESS) { return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR); } vector ids(n); err = pfn_clCreateSubDevicesEXT(object_, properties, n, ids.data(), nullptr); if (err != CL_SUCCESS) { return detail::errHandler(err, __CREATE_SUB_DEVICES_ERR); } // Cannot trivially assign because we need to capture intermediates // with safe construction if (devices) { devices->resize(ids.size()); // Assign to param, constructing with retain behaviour // to correctly capture each underlying CL object for (size_type i = 0; i < ids.size(); i++) { // We do not need to retain because this device is being created // by the runtime (*devices)[i] = Device(ids[i], false); } } return CL_SUCCESS; } #endif // defined(cl_ext_device_fission) }; using BuildLogType = vector::param_type>>; #if defined(CL_HPP_ENABLE_EXCEPTIONS) /** * Exception class for build errors to carry build info */ class BuildError : public Error { private: BuildLogType buildLogs; public: BuildError(cl_int err, const char * errStr, const BuildLogType &vec) : Error(err, errStr), buildLogs(vec) { } BuildLogType getBuildLog() const { return buildLogs; } }; namespace detail { static inline cl_int buildErrHandler( cl_int err, const char * errStr, const BuildLogType &buildLogs) { if (err != CL_SUCCESS) { throw BuildError(err, errStr, buildLogs); } return err; } } // namespace detail #else namespace detail { static inline cl_int buildErrHandler( cl_int err, const char * errStr, const BuildLogType &buildLogs) { (void)buildLogs; // suppress unused variable warning (void)errStr; return err; } } // namespace detail #endif // #if defined(CL_HPP_ENABLE_EXCEPTIONS) CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag Device::default_initialized_; CL_HPP_DEFINE_STATIC_MEMBER_ Device Device::default_; CL_HPP_DEFINE_STATIC_MEMBER_ cl_int Device::default_error_ = CL_SUCCESS; /*! \brief Class interface for cl_platform_id. * * \note Copies of these objects are inexpensive, since they don't 'own' * any underlying resources or data structures. * * \see cl_platform_id */ class Platform : public detail::Wrapper { private: static std::once_flag default_initialized_; static Platform default_; static cl_int default_error_; /*! \brief Create the default context. * * This sets @c default_ and @c default_error_. It does not throw * @c cl::Error. */ static void makeDefault() { /* Throwing an exception from a call_once invocation does not do * what we wish, so we catch it and save the error. */ #if defined(CL_HPP_ENABLE_EXCEPTIONS) try #endif { // If default wasn't passed ,generate one // Otherwise set it cl_uint n = 0; cl_int err = ::clGetPlatformIDs(0, nullptr, &n); if (err != CL_SUCCESS) { default_error_ = err; return; } if (n == 0) { default_error_ = CL_INVALID_PLATFORM; return; } vector ids(n); err = ::clGetPlatformIDs(n, ids.data(), nullptr); if (err != CL_SUCCESS) { default_error_ = err; return; } default_ = Platform(ids[0]); } #if defined(CL_HPP_ENABLE_EXCEPTIONS) catch (cl::Error &e) { default_error_ = e.err(); } #endif } /*! \brief Create the default platform from a provided platform. * * This sets @c default_. It does not throw * @c cl::Error. */ static void makeDefaultProvided(const Platform &p) { default_ = p; } public: #ifdef CL_HPP_UNIT_TEST_ENABLE /*! \brief Reset the default. * * This sets @c default_ to an empty value to support cleanup in * the unit test framework. * This function is not thread safe. */ static void unitTestClearDefault() { default_ = Platform(); } #endif // #ifdef CL_HPP_UNIT_TEST_ENABLE //! \brief Default constructor - initializes to nullptr. Platform() : detail::Wrapper() { } /*! \brief Constructor from cl_platform_id. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * This simply copies the platform ID value, which is an inexpensive operation. */ explicit Platform(const cl_platform_id &platform, bool retainObject = false) : detail::Wrapper(platform, retainObject) { } /*! \brief Assignment operator from cl_platform_id. * * This simply copies the platform ID value, which is an inexpensive operation. */ Platform& operator = (const cl_platform_id& rhs) { detail::Wrapper::operator=(rhs); return *this; } static Platform getDefault( cl_int *errResult = nullptr) { std::call_once(default_initialized_, makeDefault); detail::errHandler(default_error_); if (errResult != nullptr) { *errResult = default_error_; } return default_; } /** * Modify the default platform to be used by * subsequent operations. * Will only set the default if no default was previously created. * @return updated default platform. * Should be compared to the passed value to ensure that it was updated. */ static Platform setDefault(const Platform &default_platform) { std::call_once(default_initialized_, makeDefaultProvided, std::cref(default_platform)); detail::errHandler(default_error_); return default_; } //! \brief Wrapper for clGetPlatformInfo(). template cl_int getInfo(cl_platform_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetPlatformInfo, object_, name, param), __GET_PLATFORM_INFO_ERR); } //! \brief Wrapper for clGetPlatformInfo() that returns by value. template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_platform_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } /*! \brief Gets a list of devices for this platform. * * Wraps clGetDeviceIDs(). */ cl_int getDevices( cl_device_type type, vector* devices) const { cl_uint n = 0; if( devices == nullptr ) { return detail::errHandler(CL_INVALID_ARG_VALUE, __GET_DEVICE_IDS_ERR); } cl_int err = ::clGetDeviceIDs(object_, type, 0, nullptr, &n); if (err != CL_SUCCESS && err != CL_DEVICE_NOT_FOUND) { return detail::errHandler(err, __GET_DEVICE_IDS_ERR); } vector ids(n); if (n>0) { err = ::clGetDeviceIDs(object_, type, n, ids.data(), nullptr); if (err != CL_SUCCESS) { return detail::errHandler(err, __GET_DEVICE_IDS_ERR); } } // Cannot trivially assign because we need to capture intermediates // with safe construction // We must retain things we obtain from the API to avoid releasing // API-owned objects. if (devices) { devices->resize(ids.size()); // Assign to param, constructing with retain behaviour // to correctly capture each underlying CL object for (size_type i = 0; i < ids.size(); i++) { (*devices)[i] = Device(ids[i], true); } } return CL_SUCCESS; } #if defined(CL_HPP_USE_DX_INTEROP) /*! \brief Get the list of available D3D10 devices. * * \param d3d_device_source. * * \param d3d_object. * * \param d3d_device_set. * * \param devices returns a vector of OpenCL D3D10 devices found. The cl::Device * values returned in devices can be used to identify a specific OpenCL * device. If \a devices argument is nullptr, this argument is ignored. * * \return One of the following values: * - CL_SUCCESS if the function is executed successfully. * * The application can query specific capabilities of the OpenCL device(s) * returned by cl::getDevices. This can be used by the application to * determine which device(s) to use. * * \note In the case that exceptions are enabled and a return value * other than CL_SUCCESS is generated, then cl::Error exception is * generated. */ cl_int getDevices( cl_d3d10_device_source_khr d3d_device_source, void * d3d_object, cl_d3d10_device_set_khr d3d_device_set, vector* devices) const { typedef CL_API_ENTRY cl_int (CL_API_CALL *PFN_clGetDeviceIDsFromD3D10KHR)( cl_platform_id platform, cl_d3d10_device_source_khr d3d_device_source, void * d3d_object, cl_d3d10_device_set_khr d3d_device_set, cl_uint num_entries, cl_device_id * devices, cl_uint* num_devices); if( devices == nullptr ) { return detail::errHandler(CL_INVALID_ARG_VALUE, __GET_DEVICE_IDS_ERR); } static PFN_clGetDeviceIDsFromD3D10KHR pfn_clGetDeviceIDsFromD3D10KHR = nullptr; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(object_, clGetDeviceIDsFromD3D10KHR); #endif #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 CL_HPP_INIT_CL_EXT_FCN_PTR_(clGetDeviceIDsFromD3D10KHR); #endif cl_uint n = 0; cl_int err = pfn_clGetDeviceIDsFromD3D10KHR( object_, d3d_device_source, d3d_object, d3d_device_set, 0, nullptr, &n); if (err != CL_SUCCESS) { return detail::errHandler(err, __GET_DEVICE_IDS_ERR); } vector ids(n); err = pfn_clGetDeviceIDsFromD3D10KHR( object_, d3d_device_source, d3d_object, d3d_device_set, n, ids.data(), nullptr); if (err != CL_SUCCESS) { return detail::errHandler(err, __GET_DEVICE_IDS_ERR); } // Cannot trivially assign because we need to capture intermediates // with safe construction // We must retain things we obtain from the API to avoid releasing // API-owned objects. if (devices) { devices->resize(ids.size()); // Assign to param, constructing with retain behaviour // to correctly capture each underlying CL object for (size_type i = 0; i < ids.size(); i++) { (*devices)[i] = Device(ids[i], true); } } return CL_SUCCESS; } #endif /*! \brief Gets a list of available platforms. * * Wraps clGetPlatformIDs(). */ static cl_int get( vector* platforms) { cl_uint n = 0; if( platforms == nullptr ) { return detail::errHandler(CL_INVALID_ARG_VALUE, __GET_PLATFORM_IDS_ERR); } cl_int err = ::clGetPlatformIDs(0, nullptr, &n); if (err != CL_SUCCESS) { return detail::errHandler(err, __GET_PLATFORM_IDS_ERR); } vector ids(n); err = ::clGetPlatformIDs(n, ids.data(), nullptr); if (err != CL_SUCCESS) { return detail::errHandler(err, __GET_PLATFORM_IDS_ERR); } if (platforms) { platforms->resize(ids.size()); // Platforms don't reference count for (size_type i = 0; i < ids.size(); i++) { (*platforms)[i] = Platform(ids[i]); } } return CL_SUCCESS; } /*! \brief Gets the first available platform. * * Wraps clGetPlatformIDs(), returning the first result. */ static cl_int get( Platform * platform) { cl_int err; Platform default_platform = Platform::getDefault(&err); if (platform) { *platform = default_platform; } return err; } /*! \brief Gets the first available platform, returning it by value. * * \return Returns a valid platform if one is available. * If no platform is available will return a null platform. * Throws an exception if no platforms are available * or an error condition occurs. * Wraps clGetPlatformIDs(), returning the first result. */ static Platform get( cl_int * errResult = nullptr) { cl_int err; Platform default_platform = Platform::getDefault(&err); if (errResult) { *errResult = err; } return default_platform; } #if CL_HPP_TARGET_OPENCL_VERSION >= 120 //! \brief Wrapper for clUnloadCompiler(). cl_int unloadCompiler() { return ::clUnloadPlatformCompiler(object_); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 }; // class Platform CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag Platform::default_initialized_; CL_HPP_DEFINE_STATIC_MEMBER_ Platform Platform::default_; CL_HPP_DEFINE_STATIC_MEMBER_ cl_int Platform::default_error_ = CL_SUCCESS; /** * Deprecated APIs for 1.2 */ #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) /** * Unload the OpenCL compiler. * \note Deprecated for OpenCL 1.2. Use Platform::unloadCompiler instead. */ inline CL_API_PREFIX__VERSION_1_1_DEPRECATED cl_int UnloadCompiler() CL_API_SUFFIX__VERSION_1_1_DEPRECATED; inline cl_int UnloadCompiler() { return ::clUnloadCompiler(); } #endif // #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) /*! \brief Class interface for cl_context. * * \note Copies of these objects are shallow, meaning that the copy will refer * to the same underlying cl_context as the original. For details, see * clRetainContext() and clReleaseContext(). * * \see cl_context */ class Context : public detail::Wrapper { private: static std::once_flag default_initialized_; static Context default_; static cl_int default_error_; /*! \brief Create the default context from the default device type in the default platform. * * This sets @c default_ and @c default_error_. It does not throw * @c cl::Error. */ static void makeDefault() { /* Throwing an exception from a call_once invocation does not do * what we wish, so we catch it and save the error. */ #if defined(CL_HPP_ENABLE_EXCEPTIONS) try #endif { #if !defined(__APPLE__) && !defined(__MACOS) const Platform &p = Platform::getDefault(); cl_platform_id defaultPlatform = p(); cl_context_properties properties[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)defaultPlatform, 0 }; #else // #if !defined(__APPLE__) && !defined(__MACOS) cl_context_properties *properties = nullptr; #endif // #if !defined(__APPLE__) && !defined(__MACOS) default_ = Context( CL_DEVICE_TYPE_DEFAULT, properties, nullptr, nullptr, &default_error_); } #if defined(CL_HPP_ENABLE_EXCEPTIONS) catch (cl::Error &e) { default_error_ = e.err(); } #endif } /*! \brief Create the default context from a provided Context. * * This sets @c default_. It does not throw * @c cl::Error. */ static void makeDefaultProvided(const Context &c) { default_ = c; } public: #ifdef CL_HPP_UNIT_TEST_ENABLE /*! \brief Reset the default. * * This sets @c default_ to an empty value to support cleanup in * the unit test framework. * This function is not thread safe. */ static void unitTestClearDefault() { default_ = Context(); } #endif // #ifdef CL_HPP_UNIT_TEST_ENABLE /*! \brief Constructs a context including a list of specified devices. * * Wraps clCreateContext(). */ Context( const vector& devices, const cl_context_properties* properties = nullptr, void (CL_CALLBACK * notifyFptr)( const char *, const void *, size_type, void *) = nullptr, void* data = nullptr, cl_int* err = nullptr) { cl_int error; size_type numDevices = devices.size(); vector deviceIDs(numDevices); for( size_type deviceIndex = 0; deviceIndex < numDevices; ++deviceIndex ) { deviceIDs[deviceIndex] = (devices[deviceIndex])(); } object_ = ::clCreateContext( properties, (cl_uint) numDevices, deviceIDs.data(), notifyFptr, data, &error); detail::errHandler(error, __CREATE_CONTEXT_ERR); if (err != nullptr) { *err = error; } } /*! \brief Constructs a context including a specific device. * * Wraps clCreateContext(). */ Context( const Device& device, const cl_context_properties* properties = nullptr, void (CL_CALLBACK * notifyFptr)( const char *, const void *, size_type, void *) = nullptr, void* data = nullptr, cl_int* err = nullptr) { cl_int error; cl_device_id deviceID = device(); object_ = ::clCreateContext( properties, 1, &deviceID, notifyFptr, data, &error); detail::errHandler(error, __CREATE_CONTEXT_ERR); if (err != nullptr) { *err = error; } } /*! \brief Constructs a context including all or a subset of devices of a specified type. * * Wraps clCreateContextFromType(). */ Context( cl_device_type type, const cl_context_properties* properties = nullptr, void (CL_CALLBACK * notifyFptr)( const char *, const void *, size_type, void *) = nullptr, void* data = nullptr, cl_int* err = nullptr) { cl_int error; #if !defined(__APPLE__) && !defined(__MACOS) cl_context_properties prop[4] = {CL_CONTEXT_PLATFORM, 0, 0, 0 }; if (properties == nullptr) { // Get a valid platform ID as we cannot send in a blank one vector platforms; error = Platform::get(&platforms); if (error != CL_SUCCESS) { detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR); if (err != nullptr) { *err = error; } return; } // Check the platforms we found for a device of our specified type cl_context_properties platform_id = 0; for (unsigned int i = 0; i < platforms.size(); i++) { vector devices; #if defined(CL_HPP_ENABLE_EXCEPTIONS) try { #endif error = platforms[i].getDevices(type, &devices); #if defined(CL_HPP_ENABLE_EXCEPTIONS) } catch (cl::Error& e) { error = e.err(); } // Catch if exceptions are enabled as we don't want to exit if first platform has no devices of type // We do error checking next anyway, and can throw there if needed #endif // Only squash CL_SUCCESS and CL_DEVICE_NOT_FOUND if (error != CL_SUCCESS && error != CL_DEVICE_NOT_FOUND) { detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR); if (err != nullptr) { *err = error; } } if (devices.size() > 0) { platform_id = (cl_context_properties)platforms[i](); break; } } if (platform_id == 0) { detail::errHandler(CL_DEVICE_NOT_FOUND, __CREATE_CONTEXT_FROM_TYPE_ERR); if (err != nullptr) { *err = CL_DEVICE_NOT_FOUND; } return; } prop[1] = platform_id; properties = &prop[0]; } #endif object_ = ::clCreateContextFromType( properties, type, notifyFptr, data, &error); detail::errHandler(error, __CREATE_CONTEXT_FROM_TYPE_ERR); if (err != nullptr) { *err = error; } } /*! \brief Returns a singleton context including all devices of CL_DEVICE_TYPE_DEFAULT. * * \note All calls to this function return the same cl_context as the first. */ static Context getDefault(cl_int * err = nullptr) { std::call_once(default_initialized_, makeDefault); detail::errHandler(default_error_); if (err != nullptr) { *err = default_error_; } return default_; } /** * Modify the default context to be used by * subsequent operations. * Will only set the default if no default was previously created. * @return updated default context. * Should be compared to the passed value to ensure that it was updated. */ static Context setDefault(const Context &default_context) { std::call_once(default_initialized_, makeDefaultProvided, std::cref(default_context)); detail::errHandler(default_error_); return default_; } //! \brief Default constructor - initializes to nullptr. Context() : detail::Wrapper() { } /*! \brief Constructor from cl_context - takes ownership. * * This effectively transfers ownership of a refcount on the cl_context * into the new Context object. */ explicit Context(const cl_context& context, bool retainObject = false) : detail::Wrapper(context, retainObject) { } /*! \brief Assignment operator from cl_context - takes ownership. * * This effectively transfers ownership of a refcount on the rhs and calls * clReleaseContext() on the value previously held by this instance. */ Context& operator = (const cl_context& rhs) { detail::Wrapper::operator=(rhs); return *this; } //! \brief Wrapper for clGetContextInfo(). template cl_int getInfo(cl_context_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetContextInfo, object_, name, param), __GET_CONTEXT_INFO_ERR); } //! \brief Wrapper for clGetContextInfo() that returns by value. template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_context_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } /*! \brief Gets a list of supported image formats. * * Wraps clGetSupportedImageFormats(). */ cl_int getSupportedImageFormats( cl_mem_flags flags, cl_mem_object_type type, vector* formats) const { cl_uint numEntries; if (!formats) { return CL_SUCCESS; } cl_int err = ::clGetSupportedImageFormats( object_, flags, type, 0, nullptr, &numEntries); if (err != CL_SUCCESS) { return detail::errHandler(err, __GET_SUPPORTED_IMAGE_FORMATS_ERR); } if (numEntries > 0) { vector value(numEntries); err = ::clGetSupportedImageFormats( object_, flags, type, numEntries, (cl_image_format*)value.data(), nullptr); if (err != CL_SUCCESS) { return detail::errHandler(err, __GET_SUPPORTED_IMAGE_FORMATS_ERR); } formats->assign(begin(value), end(value)); } else { // If no values are being returned, ensure an empty vector comes back formats->clear(); } return CL_SUCCESS; } #if CL_HPP_TARGET_OPENCL_VERSION >= 300 /*! \brief Registers a destructor callback function with a context. * * Wraps clSetContextDestructorCallback(). * * Each call to this function registers the specified callback function on * a destructor callback stack associated with context. The registered * callback functions are called in the reverse order in which they were registered. * If a context callback function was specified when context was created, * it will not be called after any context destructor callback is called. */ cl_int setDestructorCallback( void (CL_CALLBACK * pfn_notify)(cl_context, void *), void * user_data = nullptr) { return detail::errHandler( ::clSetContextDestructorCallback( object_, pfn_notify, user_data), __SET_CONTEXT_DESCTRUCTOR_CALLBACK_ERR); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 300 }; inline void Device::makeDefault() { /* Throwing an exception from a call_once invocation does not do * what we wish, so we catch it and save the error. */ #if defined(CL_HPP_ENABLE_EXCEPTIONS) try #endif { cl_int error = 0; Context context = Context::getDefault(&error); detail::errHandler(error, __CREATE_CONTEXT_ERR); if (error != CL_SUCCESS) { default_error_ = error; } else { default_ = context.getInfo()[0]; default_error_ = CL_SUCCESS; } } #if defined(CL_HPP_ENABLE_EXCEPTIONS) catch (cl::Error &e) { default_error_ = e.err(); } #endif } CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag Context::default_initialized_; CL_HPP_DEFINE_STATIC_MEMBER_ Context Context::default_; CL_HPP_DEFINE_STATIC_MEMBER_ cl_int Context::default_error_ = CL_SUCCESS; /*! \brief Class interface for cl_event. * * \note Copies of these objects are shallow, meaning that the copy will refer * to the same underlying cl_event as the original. For details, see * clRetainEvent() and clReleaseEvent(). * * \see cl_event */ class Event : public detail::Wrapper { public: //! \brief Default constructor - initializes to nullptr. Event() : detail::Wrapper() { } /*! \brief Constructor from cl_event - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * This effectively transfers ownership of a refcount on the cl_event * into the new Event object. */ explicit Event(const cl_event& event, bool retainObject = false) : detail::Wrapper(event, retainObject) { } /*! \brief Assignment operator from cl_event - takes ownership. * * This effectively transfers ownership of a refcount on the rhs and calls * clReleaseEvent() on the value previously held by this instance. */ Event& operator = (const cl_event& rhs) { detail::Wrapper::operator=(rhs); return *this; } //! \brief Wrapper for clGetEventInfo(). template cl_int getInfo(cl_event_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetEventInfo, object_, name, param), __GET_EVENT_INFO_ERR); } //! \brief Wrapper for clGetEventInfo() that returns by value. template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_event_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } //! \brief Wrapper for clGetEventProfilingInfo(). template cl_int getProfilingInfo(cl_profiling_info name, T* param) const { return detail::errHandler(detail::getInfo( &::clGetEventProfilingInfo, object_, name, param), __GET_EVENT_PROFILE_INFO_ERR); } //! \brief Wrapper for clGetEventProfilingInfo() that returns by value. template typename detail::param_traits::param_type getProfilingInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_profiling_info, name>::param_type param; cl_int result = getProfilingInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } /*! \brief Blocks the calling thread until this event completes. * * Wraps clWaitForEvents(). */ cl_int wait() const { return detail::errHandler( ::clWaitForEvents(1, &object_), __WAIT_FOR_EVENTS_ERR); } #if CL_HPP_TARGET_OPENCL_VERSION >= 110 /*! \brief Registers a user callback function for a specific command execution status. * * Wraps clSetEventCallback(). */ cl_int setCallback( cl_int type, void (CL_CALLBACK * pfn_notify)(cl_event, cl_int, void *), void * user_data = nullptr) { return detail::errHandler( ::clSetEventCallback( object_, type, pfn_notify, user_data), __SET_EVENT_CALLBACK_ERR); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 110 /*! \brief Blocks the calling thread until every event specified is complete. * * Wraps clWaitForEvents(). */ static cl_int waitForEvents(const vector& events) { static_assert(sizeof(cl::Event) == sizeof(cl_event), "Size of cl::Event must be equal to size of cl_event"); return detail::errHandler( ::clWaitForEvents( (cl_uint) events.size(), (events.size() > 0) ? (cl_event*)&events.front() : nullptr), __WAIT_FOR_EVENTS_ERR); } }; #if CL_HPP_TARGET_OPENCL_VERSION >= 110 /*! \brief Class interface for user events (a subset of cl_event's). * * See Event for details about copy semantics, etc. */ class UserEvent : public Event { public: /*! \brief Constructs a user event on a given context. * * Wraps clCreateUserEvent(). */ UserEvent( const Context& context, cl_int * err = nullptr) { cl_int error; object_ = ::clCreateUserEvent( context(), &error); detail::errHandler(error, __CREATE_USER_EVENT_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. UserEvent() : Event() { } /*! \brief Sets the execution status of a user event object. * * Wraps clSetUserEventStatus(). */ cl_int setStatus(cl_int status) { return detail::errHandler( ::clSetUserEventStatus(object_,status), __SET_USER_EVENT_STATUS_ERR); } }; #endif // CL_HPP_TARGET_OPENCL_VERSION >= 110 /*! \brief Blocks the calling thread until every event specified is complete. * * Wraps clWaitForEvents(). */ inline static cl_int WaitForEvents(const vector& events) { return detail::errHandler( ::clWaitForEvents( (cl_uint) events.size(), (events.size() > 0) ? (cl_event*)&events.front() : nullptr), __WAIT_FOR_EVENTS_ERR); } /*! \brief Class interface for cl_mem. * * \note Copies of these objects are shallow, meaning that the copy will refer * to the same underlying cl_mem as the original. For details, see * clRetainMemObject() and clReleaseMemObject(). * * \see cl_mem */ class Memory : public detail::Wrapper { public: //! \brief Default constructor - initializes to nullptr. Memory() : detail::Wrapper() { } /*! \brief Constructor from cl_mem - takes ownership. * * Optionally transfer ownership of a refcount on the cl_mem * into the new Memory object. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * * See Memory for further details. */ explicit Memory(const cl_mem& memory, bool retainObject) : detail::Wrapper(memory, retainObject) { } /*! \brief Assignment operator from cl_mem - takes ownership. * * This effectively transfers ownership of a refcount on the rhs and calls * clReleaseMemObject() on the value previously held by this instance. */ Memory& operator = (const cl_mem& rhs) { detail::Wrapper::operator=(rhs); return *this; } //! \brief Wrapper for clGetMemObjectInfo(). template cl_int getInfo(cl_mem_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetMemObjectInfo, object_, name, param), __GET_MEM_OBJECT_INFO_ERR); } //! \brief Wrapper for clGetMemObjectInfo() that returns by value. template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_mem_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } #if CL_HPP_TARGET_OPENCL_VERSION >= 110 /*! \brief Registers a callback function to be called when the memory object * is no longer needed. * * Wraps clSetMemObjectDestructorCallback(). * * Repeated calls to this function, for a given cl_mem value, will append * to the list of functions called (in reverse order) when memory object's * resources are freed and the memory object is deleted. * * \note * The registered callbacks are associated with the underlying cl_mem * value - not the Memory class instance. */ cl_int setDestructorCallback( void (CL_CALLBACK * pfn_notify)(cl_mem, void *), void * user_data = nullptr) { return detail::errHandler( ::clSetMemObjectDestructorCallback( object_, pfn_notify, user_data), __SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 110 }; // Pre-declare copy functions class Buffer; template< typename IteratorType > cl_int copy( IteratorType startIterator, IteratorType endIterator, cl::Buffer &buffer ); template< typename IteratorType > cl_int copy( const cl::Buffer &buffer, IteratorType startIterator, IteratorType endIterator ); template< typename IteratorType > cl_int copy( const CommandQueue &queue, IteratorType startIterator, IteratorType endIterator, cl::Buffer &buffer ); template< typename IteratorType > cl_int copy( const CommandQueue &queue, const cl::Buffer &buffer, IteratorType startIterator, IteratorType endIterator ); #if CL_HPP_TARGET_OPENCL_VERSION >= 200 namespace detail { class SVMTraitNull { public: static cl_svm_mem_flags getSVMMemFlags() { return 0; } }; } // namespace detail template class SVMTraitReadWrite { public: static cl_svm_mem_flags getSVMMemFlags() { return CL_MEM_READ_WRITE | Trait::getSVMMemFlags(); } }; template class SVMTraitReadOnly { public: static cl_svm_mem_flags getSVMMemFlags() { return CL_MEM_READ_ONLY | Trait::getSVMMemFlags(); } }; template class SVMTraitWriteOnly { public: static cl_svm_mem_flags getSVMMemFlags() { return CL_MEM_WRITE_ONLY | Trait::getSVMMemFlags(); } }; template> class SVMTraitCoarse { public: static cl_svm_mem_flags getSVMMemFlags() { return Trait::getSVMMemFlags(); } }; template> class SVMTraitFine { public: static cl_svm_mem_flags getSVMMemFlags() { return CL_MEM_SVM_FINE_GRAIN_BUFFER | Trait::getSVMMemFlags(); } }; template> class SVMTraitAtomic { public: static cl_svm_mem_flags getSVMMemFlags() { return CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS | Trait::getSVMMemFlags(); } }; // Pre-declare SVM map function template inline cl_int enqueueMapSVM( T* ptr, cl_bool blocking, cl_map_flags flags, size_type size, const vector* events = nullptr, Event* event = nullptr); /** * STL-like allocator class for managing SVM objects provided for convenience. * * Note that while this behaves like an allocator for the purposes of constructing vectors and similar objects, * care must be taken when using with smart pointers. * The allocator should not be used to construct a unique_ptr if we are using coarse-grained SVM mode because * the coarse-grained management behaviour would behave incorrectly with respect to reference counting. * * Instead the allocator embeds a Deleter which may be used with unique_ptr and is used * with the allocate_shared and allocate_ptr supplied operations. */ template class SVMAllocator { private: Context context_; public: typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef std::size_t size_type; typedef std::ptrdiff_t difference_type; template struct rebind { typedef SVMAllocator other; }; template friend class SVMAllocator; SVMAllocator() : context_(Context::getDefault()) { } explicit SVMAllocator(cl::Context context) : context_(context) { } SVMAllocator(const SVMAllocator &other) : context_(other.context_) { } template SVMAllocator(const SVMAllocator &other) : context_(other.context_) { } ~SVMAllocator() { } pointer address(reference r) CL_HPP_NOEXCEPT_ { return std::addressof(r); } const_pointer address(const_reference r) CL_HPP_NOEXCEPT_ { return std::addressof(r); } /** * Allocate an SVM pointer. * * If the allocator is coarse-grained, this will take ownership to allow * containers to correctly construct data in place. */ pointer allocate( size_type size, typename cl::SVMAllocator::const_pointer = 0) { // Allocate memory with default alignment matching the size of the type void* voidPointer = clSVMAlloc( context_(), SVMTrait::getSVMMemFlags(), size*sizeof(T), 0); pointer retValue = reinterpret_cast( voidPointer); #if defined(CL_HPP_ENABLE_EXCEPTIONS) if (!retValue) { std::bad_alloc excep; throw excep; } #endif // #if defined(CL_HPP_ENABLE_EXCEPTIONS) // If allocation was coarse-grained then map it if (!(SVMTrait::getSVMMemFlags() & CL_MEM_SVM_FINE_GRAIN_BUFFER)) { cl_int err = enqueueMapSVM(retValue, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE, size*sizeof(T)); if (err != CL_SUCCESS) { std::bad_alloc excep; throw excep; } } // If exceptions disabled, return null pointer from allocator return retValue; } void deallocate(pointer p, size_type) { clSVMFree(context_(), p); } /** * Return the maximum possible allocation size. * This is the minimum of the maximum sizes of all devices in the context. */ size_type max_size() const CL_HPP_NOEXCEPT_ { size_type maxSize = std::numeric_limits::max() / sizeof(T); for (const Device &d : context_.getInfo()) { maxSize = std::min( maxSize, static_cast(d.getInfo())); } return maxSize; } template< class U, class... Args > void construct(U* p, Args&&... args) { new(p)T(args...); } template< class U > void destroy(U* p) { p->~U(); } /** * Returns true if the contexts match. */ inline bool operator==(SVMAllocator const& rhs) { return (context_==rhs.context_); } inline bool operator!=(SVMAllocator const& a) { return !operator==(a); } }; // class SVMAllocator return cl::pointer(tmp, detail::Deleter{alloc, copies}); template class SVMAllocator { public: typedef void value_type; typedef value_type* pointer; typedef const value_type* const_pointer; template struct rebind { typedef SVMAllocator other; }; template friend class SVMAllocator; }; #if !defined(CL_HPP_NO_STD_UNIQUE_PTR) namespace detail { template class Deleter { private: Alloc alloc_; size_type copies_; public: typedef typename std::allocator_traits::pointer pointer; Deleter(const Alloc &alloc, size_type copies) : alloc_{ alloc }, copies_{ copies } { } void operator()(pointer ptr) const { Alloc tmpAlloc{ alloc_ }; std::allocator_traits::destroy(tmpAlloc, std::addressof(*ptr)); std::allocator_traits::deallocate(tmpAlloc, ptr, copies_); } }; } // namespace detail /** * Allocation operation compatible with std::allocate_ptr. * Creates a unique_ptr by default. * This requirement is to ensure that the control block is not * allocated in memory inaccessible to the host. */ template cl::pointer> allocate_pointer(const Alloc &alloc_, Args&&... args) { Alloc alloc(alloc_); static const size_type copies = 1; // Ensure that creation of the management block and the // object are dealt with separately such that we only provide a deleter T* tmp = std::allocator_traits::allocate(alloc, copies); if (!tmp) { std::bad_alloc excep; throw excep; } try { std::allocator_traits::construct( alloc, std::addressof(*tmp), std::forward(args)...); return cl::pointer>(tmp, detail::Deleter{alloc, copies}); } catch (std::bad_alloc&) { std::allocator_traits::deallocate(alloc, tmp, copies); throw; } } template< class T, class SVMTrait, class... Args > cl::pointer>> allocate_svm(Args... args) { SVMAllocator alloc; return cl::allocate_pointer(alloc, args...); } template< class T, class SVMTrait, class... Args > cl::pointer>> allocate_svm(const cl::Context &c, Args... args) { SVMAllocator alloc(c); return cl::allocate_pointer(alloc, args...); } #endif // #if !defined(CL_HPP_NO_STD_UNIQUE_PTR) /*! \brief Vector alias to simplify contruction of coarse-grained SVM containers. * */ template < class T > using coarse_svm_vector = vector>>; /*! \brief Vector alias to simplify contruction of fine-grained SVM containers. * */ template < class T > using fine_svm_vector = vector>>; /*! \brief Vector alias to simplify contruction of fine-grained SVM containers that support platform atomics. * */ template < class T > using atomic_svm_vector = vector>>; #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /*! \brief Class interface for Buffer Memory Objects. * * See Memory for details about copy semantics, etc. * * \see Memory */ class Buffer : public Memory { public: /*! \brief Constructs a Buffer in a specified context. * * Wraps clCreateBuffer(). * * \param host_ptr Storage to be used if the CL_MEM_USE_HOST_PTR flag was * specified. Note alignment & exclusivity requirements. */ Buffer( const Context& context, cl_mem_flags flags, size_type size, void* host_ptr = nullptr, cl_int* err = nullptr) { cl_int error; object_ = ::clCreateBuffer(context(), flags, size, host_ptr, &error); detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } } /*! \brief Constructs a Buffer in the default context. * * Wraps clCreateBuffer(). * * \param host_ptr Storage to be used if the CL_MEM_USE_HOST_PTR flag was * specified. Note alignment & exclusivity requirements. * * \see Context::getDefault() */ Buffer( cl_mem_flags flags, size_type size, void* host_ptr = nullptr, cl_int* err = nullptr) { cl_int error; Context context = Context::getDefault(err); object_ = ::clCreateBuffer(context(), flags, size, host_ptr, &error); detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } } /*! * \brief Construct a Buffer from a host container via iterators. * IteratorType must be random access. * If useHostPtr is specified iterators must represent contiguous data. */ template< typename IteratorType > Buffer( IteratorType startIterator, IteratorType endIterator, bool readOnly, bool useHostPtr = false, cl_int* err = nullptr) { typedef typename std::iterator_traits::value_type DataType; cl_int error; cl_mem_flags flags = 0; if( readOnly ) { flags |= CL_MEM_READ_ONLY; } else { flags |= CL_MEM_READ_WRITE; } if( useHostPtr ) { flags |= CL_MEM_USE_HOST_PTR; } size_type size = sizeof(DataType)*(endIterator - startIterator); Context context = Context::getDefault(err); if( useHostPtr ) { object_ = ::clCreateBuffer(context(), flags, size, const_cast(&*startIterator), &error); } else { object_ = ::clCreateBuffer(context(), flags, size, 0, &error); } detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } if( !useHostPtr ) { error = cl::copy(startIterator, endIterator, *this); detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } } } /*! * \brief Construct a Buffer from a host container via iterators using a specified context. * IteratorType must be random access. * If useHostPtr is specified iterators must represent contiguous data. */ template< typename IteratorType > Buffer(const Context &context, IteratorType startIterator, IteratorType endIterator, bool readOnly, bool useHostPtr = false, cl_int* err = nullptr); /*! * \brief Construct a Buffer from a host container via iterators using a specified queue. * If useHostPtr is specified iterators must be random access. */ template< typename IteratorType > Buffer(const CommandQueue &queue, IteratorType startIterator, IteratorType endIterator, bool readOnly, bool useHostPtr = false, cl_int* err = nullptr); //! \brief Default constructor - initializes to nullptr. Buffer() : Memory() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with earlier versions. * * See Memory for further details. */ explicit Buffer(const cl_mem& buffer, bool retainObject = false) : Memory(buffer, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ Buffer& operator = (const cl_mem& rhs) { Memory::operator=(rhs); return *this; } #if CL_HPP_TARGET_OPENCL_VERSION >= 110 /*! \brief Creates a new buffer object from this. * * Wraps clCreateSubBuffer(). */ Buffer createSubBuffer( cl_mem_flags flags, cl_buffer_create_type buffer_create_type, const void * buffer_create_info, cl_int * err = nullptr) { Buffer result; cl_int error; result.object_ = ::clCreateSubBuffer( object_, flags, buffer_create_type, buffer_create_info, &error); detail::errHandler(error, __CREATE_SUBBUFFER_ERR); if (err != nullptr) { *err = error; } return result; } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 110 }; #if defined (CL_HPP_USE_DX_INTEROP) /*! \brief Class interface for creating OpenCL buffers from ID3D10Buffer's. * * This is provided to facilitate interoperability with Direct3D. * * See Memory for details about copy semantics, etc. * * \see Memory */ class BufferD3D10 : public Buffer { public: /*! \brief Constructs a BufferD3D10, in a specified context, from a * given ID3D10Buffer. * * Wraps clCreateFromD3D10BufferKHR(). */ BufferD3D10( const Context& context, cl_mem_flags flags, ID3D10Buffer* bufobj, cl_int * err = nullptr) : pfn_clCreateFromD3D10BufferKHR(nullptr) { typedef CL_API_ENTRY cl_mem (CL_API_CALL *PFN_clCreateFromD3D10BufferKHR)( cl_context context, cl_mem_flags flags, ID3D10Buffer* buffer, cl_int* errcode_ret); PFN_clCreateFromD3D10BufferKHR pfn_clCreateFromD3D10BufferKHR; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 vector props = context.getInfo(); cl_platform platform = nullptr; for( int i = 0; i < props.size(); ++i ) { if( props[i] == CL_CONTEXT_PLATFORM ) { platform = props[i+1]; } } CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCreateFromD3D10BufferKHR); #endif #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 CL_HPP_INIT_CL_EXT_FCN_PTR_(clCreateFromD3D10BufferKHR); #endif cl_int error; object_ = pfn_clCreateFromD3D10BufferKHR( context(), flags, bufobj, &error); // TODO: This should really have a D3D10 rerror code! detail::errHandler(error, __CREATE_GL_BUFFER_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. BufferD3D10() : Buffer() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit BufferD3D10(const cl_mem& buffer, bool retainObject = false) : Buffer(buffer, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ BufferD3D10& operator = (const cl_mem& rhs) { Buffer::operator=(rhs); return *this; } }; #endif /*! \brief Class interface for GL Buffer Memory Objects. * * This is provided to facilitate interoperability with OpenGL. * * See Memory for details about copy semantics, etc. * * \see Memory */ class BufferGL : public Buffer { public: /*! \brief Constructs a BufferGL in a specified context, from a given * GL buffer. * * Wraps clCreateFromGLBuffer(). */ BufferGL( const Context& context, cl_mem_flags flags, cl_GLuint bufobj, cl_int * err = nullptr) { cl_int error; object_ = ::clCreateFromGLBuffer( context(), flags, bufobj, &error); detail::errHandler(error, __CREATE_GL_BUFFER_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. BufferGL() : Buffer() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit BufferGL(const cl_mem& buffer, bool retainObject = false) : Buffer(buffer, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ BufferGL& operator = (const cl_mem& rhs) { Buffer::operator=(rhs); return *this; } //! \brief Wrapper for clGetGLObjectInfo(). cl_int getObjectInfo( cl_gl_object_type *type, cl_GLuint * gl_object_name) { return detail::errHandler( ::clGetGLObjectInfo(object_,type,gl_object_name), __GET_GL_OBJECT_INFO_ERR); } }; /*! \brief Class interface for GL Render Buffer Memory Objects. * * This is provided to facilitate interoperability with OpenGL. * * See Memory for details about copy semantics, etc. * * \see Memory */ class BufferRenderGL : public Buffer { public: /*! \brief Constructs a BufferRenderGL in a specified context, from a given * GL Renderbuffer. * * Wraps clCreateFromGLRenderbuffer(). */ BufferRenderGL( const Context& context, cl_mem_flags flags, cl_GLuint bufobj, cl_int * err = nullptr) { cl_int error; object_ = ::clCreateFromGLRenderbuffer( context(), flags, bufobj, &error); detail::errHandler(error, __CREATE_GL_RENDER_BUFFER_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. BufferRenderGL() : Buffer() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit BufferRenderGL(const cl_mem& buffer, bool retainObject = false) : Buffer(buffer, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ BufferRenderGL& operator = (const cl_mem& rhs) { Buffer::operator=(rhs); return *this; } //! \brief Wrapper for clGetGLObjectInfo(). cl_int getObjectInfo( cl_gl_object_type *type, cl_GLuint * gl_object_name) { return detail::errHandler( ::clGetGLObjectInfo(object_,type,gl_object_name), __GET_GL_OBJECT_INFO_ERR); } }; /*! \brief C++ base class for Image Memory objects. * * See Memory for details about copy semantics, etc. * * \see Memory */ class Image : public Memory { protected: //! \brief Default constructor - initializes to nullptr. Image() : Memory() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image(const cl_mem& image, bool retainObject = false) : Memory(image, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ Image& operator = (const cl_mem& rhs) { Memory::operator=(rhs); return *this; } public: //! \brief Wrapper for clGetImageInfo(). template cl_int getImageInfo(cl_image_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetImageInfo, object_, name, param), __GET_IMAGE_INFO_ERR); } //! \brief Wrapper for clGetImageInfo() that returns by value. template typename detail::param_traits::param_type getImageInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_image_info, name>::param_type param; cl_int result = getImageInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } }; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /*! \brief Class interface for 1D Image Memory objects. * * See Memory for details about copy semantics, etc. * * \see Memory */ class Image1D : public Image { public: /*! \brief Constructs a 1D Image in a specified context. * * Wraps clCreateImage(). */ Image1D( const Context& context, cl_mem_flags flags, ImageFormat format, size_type width, void* host_ptr = nullptr, cl_int* err = nullptr) { cl_int error; cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE1D; desc.image_width = width; object_ = ::clCreateImage( context(), flags, &format, &desc, host_ptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. Image1D() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image1D(const cl_mem& image1D, bool retainObject = false) : Image(image1D, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ Image1D& operator = (const cl_mem& rhs) { Image::operator=(rhs); return *this; } }; /*! \class Image1DBuffer * \brief Image interface for 1D buffer images. */ class Image1DBuffer : public Image { public: Image1DBuffer( const Context& context, cl_mem_flags flags, ImageFormat format, size_type width, const Buffer &buffer, cl_int* err = nullptr) { cl_int error; cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER; desc.image_width = width; desc.buffer = buffer(); object_ = ::clCreateImage( context(), flags, &format, &desc, nullptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } Image1DBuffer() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image1DBuffer(const cl_mem& image1D, bool retainObject = false) : Image(image1D, retainObject) { } Image1DBuffer& operator = (const cl_mem& rhs) { Image::operator=(rhs); return *this; } }; /*! \class Image1DArray * \brief Image interface for arrays of 1D images. */ class Image1DArray : public Image { public: Image1DArray( const Context& context, cl_mem_flags flags, ImageFormat format, size_type arraySize, size_type width, size_type rowPitch, void* host_ptr = nullptr, cl_int* err = nullptr) { cl_int error; cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE1D_ARRAY; desc.image_width = width; desc.image_array_size = arraySize; desc.image_row_pitch = rowPitch; object_ = ::clCreateImage( context(), flags, &format, &desc, host_ptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } Image1DArray() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image1DArray(const cl_mem& imageArray, bool retainObject = false) : Image(imageArray, retainObject) { } Image1DArray& operator = (const cl_mem& rhs) { Image::operator=(rhs); return *this; } }; #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /*! \brief Class interface for 2D Image Memory objects. * * See Memory for details about copy semantics, etc. * * \see Memory */ class Image2D : public Image { public: /*! \brief Constructs a 2D Image in a specified context. * * Wraps clCreateImage(). */ Image2D( const Context& context, cl_mem_flags flags, ImageFormat format, size_type width, size_type height, size_type row_pitch = 0, void* host_ptr = nullptr, cl_int* err = nullptr) { cl_int error; bool useCreateImage; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 120 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useCreateImage = (version >= 0x10002); // OpenCL 1.2 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 120 useCreateImage = true; #else useCreateImage = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 120 if (useCreateImage) { cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = width; desc.image_height = height; desc.image_row_pitch = row_pitch; object_ = ::clCreateImage( context(), flags, &format, &desc, host_ptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 if (!useCreateImage) { object_ = ::clCreateImage2D( context(), flags,&format, width, height, row_pitch, host_ptr, &error); detail::errHandler(error, __CREATE_IMAGE2D_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 120 } #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /*! \brief Constructs a 2D Image from a buffer. * \note This will share storage with the underlying buffer. * * Requires OpenCL 2.0 or newer or OpenCL 1.2 and the * cl_khr_image2d_from_buffer extension. * * Wraps clCreateImage(). */ Image2D( const Context& context, ImageFormat format, const Buffer &sourceBuffer, size_type width, size_type height, size_type row_pitch = 0, cl_int* err = nullptr) { cl_int error; cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = width; desc.image_height = height; desc.image_row_pitch = row_pitch; desc.buffer = sourceBuffer(); object_ = ::clCreateImage( context(), 0, // flags inherited from buffer &format, &desc, nullptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /*! \brief Constructs a 2D Image from an image. * \note This will share storage with the underlying image but may * reinterpret the channel order and type. * * The image will be created matching with a descriptor matching the source. * * \param order is the channel order to reinterpret the image data as. * The channel order may differ as described in the OpenCL * 2.0 API specification. * * Wraps clCreateImage(). */ Image2D( const Context& context, cl_channel_order order, const Image &sourceImage, cl_int* err = nullptr) { cl_int error; // Descriptor fields have to match source image size_type sourceWidth = sourceImage.getImageInfo(); size_type sourceHeight = sourceImage.getImageInfo(); size_type sourceRowPitch = sourceImage.getImageInfo(); cl_uint sourceNumMIPLevels = sourceImage.getImageInfo(); cl_uint sourceNumSamples = sourceImage.getImageInfo(); cl_image_format sourceFormat = sourceImage.getImageInfo(); // Update only the channel order. // Channel format inherited from source. sourceFormat.image_channel_order = order; cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = sourceWidth; desc.image_height = sourceHeight; desc.image_row_pitch = sourceRowPitch; desc.num_mip_levels = sourceNumMIPLevels; desc.num_samples = sourceNumSamples; desc.buffer = sourceImage(); object_ = ::clCreateImage( context(), 0, // flags should be inherited from mem_object &sourceFormat, &desc, nullptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } #endif //#if CL_HPP_TARGET_OPENCL_VERSION >= 200 //! \brief Default constructor - initializes to nullptr. Image2D() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image2D(const cl_mem& image2D, bool retainObject = false) : Image(image2D, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ Image2D& operator = (const cl_mem& rhs) { Image::operator=(rhs); return *this; } }; #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) /*! \brief Class interface for GL 2D Image Memory objects. * * This is provided to facilitate interoperability with OpenGL. * * See Memory for details about copy semantics, etc. * * \see Memory * \note Deprecated for OpenCL 1.2. Please use ImageGL instead. */ class CL_API_PREFIX__VERSION_1_1_DEPRECATED Image2DGL : public Image2D { public: /*! \brief Constructs an Image2DGL in a specified context, from a given * GL Texture. * * Wraps clCreateFromGLTexture2D(). */ Image2DGL( const Context& context, cl_mem_flags flags, cl_GLenum target, cl_GLint miplevel, cl_GLuint texobj, cl_int * err = nullptr) { cl_int error; object_ = ::clCreateFromGLTexture2D( context(), flags, target, miplevel, texobj, &error); detail::errHandler(error, __CREATE_GL_TEXTURE_2D_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. Image2DGL() : Image2D() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image2DGL(const cl_mem& image, bool retainObject = false) : Image2D(image, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. *c * See Memory for further details. */ Image2DGL& operator = (const cl_mem& rhs) { Image2D::operator=(rhs); return *this; } } CL_API_SUFFIX__VERSION_1_1_DEPRECATED; #endif // CL_USE_DEPRECATED_OPENCL_1_1_APIS #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /*! \class Image2DArray * \brief Image interface for arrays of 2D images. */ class Image2DArray : public Image { public: Image2DArray( const Context& context, cl_mem_flags flags, ImageFormat format, size_type arraySize, size_type width, size_type height, size_type rowPitch, size_type slicePitch, void* host_ptr = nullptr, cl_int* err = nullptr) { cl_int error; cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE2D_ARRAY; desc.image_width = width; desc.image_height = height; desc.image_array_size = arraySize; desc.image_row_pitch = rowPitch; desc.image_slice_pitch = slicePitch; object_ = ::clCreateImage( context(), flags, &format, &desc, host_ptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } Image2DArray() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image2DArray(const cl_mem& imageArray, bool retainObject = false) : Image(imageArray, retainObject) { } Image2DArray& operator = (const cl_mem& rhs) { Image::operator=(rhs); return *this; } }; #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /*! \brief Class interface for 3D Image Memory objects. * * See Memory for details about copy semantics, etc. * * \see Memory */ class Image3D : public Image { public: /*! \brief Constructs a 3D Image in a specified context. * * Wraps clCreateImage(). */ Image3D( const Context& context, cl_mem_flags flags, ImageFormat format, size_type width, size_type height, size_type depth, size_type row_pitch = 0, size_type slice_pitch = 0, void* host_ptr = nullptr, cl_int* err = nullptr) { cl_int error; bool useCreateImage; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 && CL_HPP_MINIMUM_OPENCL_VERSION < 120 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useCreateImage = (version >= 0x10002); // OpenCL 1.2 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 120 useCreateImage = true; #else useCreateImage = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 120 if (useCreateImage) { cl_image_desc desc = {}; desc.image_type = CL_MEM_OBJECT_IMAGE3D; desc.image_width = width; desc.image_height = height; desc.image_depth = depth; desc.image_row_pitch = row_pitch; desc.image_slice_pitch = slice_pitch; object_ = ::clCreateImage( context(), flags, &format, &desc, host_ptr, &error); detail::errHandler(error, __CREATE_IMAGE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 if (!useCreateImage) { object_ = ::clCreateImage3D( context(), flags, &format, width, height, depth, row_pitch, slice_pitch, host_ptr, &error); detail::errHandler(error, __CREATE_IMAGE3D_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 120 } //! \brief Default constructor - initializes to nullptr. Image3D() : Image() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image3D(const cl_mem& image3D, bool retainObject = false) : Image(image3D, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ Image3D& operator = (const cl_mem& rhs) { Image::operator=(rhs); return *this; } }; #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) /*! \brief Class interface for GL 3D Image Memory objects. * * This is provided to facilitate interoperability with OpenGL. * * See Memory for details about copy semantics, etc. * * \see Memory */ class Image3DGL : public Image3D { public: /*! \brief Constructs an Image3DGL in a specified context, from a given * GL Texture. * * Wraps clCreateFromGLTexture3D(). */ Image3DGL( const Context& context, cl_mem_flags flags, cl_GLenum target, cl_GLint miplevel, cl_GLuint texobj, cl_int * err = nullptr) { cl_int error; object_ = ::clCreateFromGLTexture3D( context(), flags, target, miplevel, texobj, &error); detail::errHandler(error, __CREATE_GL_TEXTURE_3D_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. Image3DGL() : Image3D() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit Image3DGL(const cl_mem& image, bool retainObject = false) : Image3D(image, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ Image3DGL& operator = (const cl_mem& rhs) { Image3D::operator=(rhs); return *this; } }; #endif // CL_USE_DEPRECATED_OPENCL_1_1_APIS #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /*! \class ImageGL * \brief general image interface for GL interop. * We abstract the 2D and 3D GL images into a single instance here * that wraps all GL sourced images on the grounds that setup information * was performed by OpenCL anyway. */ class ImageGL : public Image { public: ImageGL( const Context& context, cl_mem_flags flags, cl_GLenum target, cl_GLint miplevel, cl_GLuint texobj, cl_int * err = nullptr) { cl_int error; object_ = ::clCreateFromGLTexture( context(), flags, target, miplevel, texobj, &error); detail::errHandler(error, __CREATE_GL_TEXTURE_ERR); if (err != nullptr) { *err = error; } } ImageGL() : Image() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * See Memory for further details. */ explicit ImageGL(const cl_mem& image, bool retainObject = false) : Image(image, retainObject) { } ImageGL& operator = (const cl_mem& rhs) { Image::operator=(rhs); return *this; } }; #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /*! \brief Class interface for Pipe Memory Objects. * * See Memory for details about copy semantics, etc. * * \see Memory */ class Pipe : public Memory { public: /*! \brief Constructs a Pipe in a specified context. * * Wraps clCreatePipe(). * @param context Context in which to create the pipe. * @param flags Bitfield. Only CL_MEM_READ_WRITE and CL_MEM_HOST_NO_ACCESS are valid. * @param packet_size Size in bytes of a single packet of the pipe. * @param max_packets Number of packets that may be stored in the pipe. * */ Pipe( const Context& context, cl_uint packet_size, cl_uint max_packets, cl_int* err = nullptr) { cl_int error; cl_mem_flags flags = CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS; object_ = ::clCreatePipe(context(), flags, packet_size, max_packets, nullptr, &error); detail::errHandler(error, __CREATE_PIPE_ERR); if (err != nullptr) { *err = error; } } /*! \brief Constructs a Pipe in a the default context. * * Wraps clCreatePipe(). * @param flags Bitfield. Only CL_MEM_READ_WRITE and CL_MEM_HOST_NO_ACCESS are valid. * @param packet_size Size in bytes of a single packet of the pipe. * @param max_packets Number of packets that may be stored in the pipe. * */ Pipe( cl_uint packet_size, cl_uint max_packets, cl_int* err = nullptr) { cl_int error; Context context = Context::getDefault(err); cl_mem_flags flags = CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS; object_ = ::clCreatePipe(context(), flags, packet_size, max_packets, nullptr, &error); detail::errHandler(error, __CREATE_PIPE_ERR); if (err != nullptr) { *err = error; } } //! \brief Default constructor - initializes to nullptr. Pipe() : Memory() { } /*! \brief Constructor from cl_mem - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with earlier versions. * * See Memory for further details. */ explicit Pipe(const cl_mem& pipe, bool retainObject = false) : Memory(pipe, retainObject) { } /*! \brief Assignment from cl_mem - performs shallow copy. * * See Memory for further details. */ Pipe& operator = (const cl_mem& rhs) { Memory::operator=(rhs); return *this; } //! \brief Wrapper for clGetMemObjectInfo(). template cl_int getInfo(cl_pipe_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetPipeInfo, object_, name, param), __GET_PIPE_INFO_ERR); } //! \brief Wrapper for clGetMemObjectInfo() that returns by value. template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_pipe_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } }; // class Pipe #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 /*! \brief Class interface for cl_sampler. * * \note Copies of these objects are shallow, meaning that the copy will refer * to the same underlying cl_sampler as the original. For details, see * clRetainSampler() and clReleaseSampler(). * * \see cl_sampler */ class Sampler : public detail::Wrapper { public: //! \brief Default constructor - initializes to nullptr. Sampler() { } /*! \brief Constructs a Sampler in a specified context. * * Wraps clCreateSampler(). */ Sampler( const Context& context, cl_bool normalized_coords, cl_addressing_mode addressing_mode, cl_filter_mode filter_mode, cl_int* err = nullptr) { cl_int error; #if CL_HPP_TARGET_OPENCL_VERSION >= 200 cl_sampler_properties sampler_properties[] = { CL_SAMPLER_NORMALIZED_COORDS, normalized_coords, CL_SAMPLER_ADDRESSING_MODE, addressing_mode, CL_SAMPLER_FILTER_MODE, filter_mode, 0 }; object_ = ::clCreateSamplerWithProperties( context(), sampler_properties, &error); detail::errHandler(error, __CREATE_SAMPLER_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } #else object_ = ::clCreateSampler( context(), normalized_coords, addressing_mode, filter_mode, &error); detail::errHandler(error, __CREATE_SAMPLER_ERR); if (err != nullptr) { *err = error; } #endif } /*! \brief Constructor from cl_sampler - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * This effectively transfers ownership of a refcount on the cl_sampler * into the new Sampler object. */ explicit Sampler(const cl_sampler& sampler, bool retainObject = false) : detail::Wrapper(sampler, retainObject) { } /*! \brief Assignment operator from cl_sampler - takes ownership. * * This effectively transfers ownership of a refcount on the rhs and calls * clReleaseSampler() on the value previously held by this instance. */ Sampler& operator = (const cl_sampler& rhs) { detail::Wrapper::operator=(rhs); return *this; } //! \brief Wrapper for clGetSamplerInfo(). template cl_int getInfo(cl_sampler_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetSamplerInfo, object_, name, param), __GET_SAMPLER_INFO_ERR); } //! \brief Wrapper for clGetSamplerInfo() that returns by value. template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_sampler_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } }; class Program; class CommandQueue; class DeviceCommandQueue; class Kernel; //! \brief Class interface for specifying NDRange values. class NDRange { private: size_type sizes_[3]; cl_uint dimensions_; public: //! \brief Default constructor - resulting range has zero dimensions. NDRange() : dimensions_(0) { sizes_[0] = 0; sizes_[1] = 0; sizes_[2] = 0; } //! \brief Constructs one-dimensional range. NDRange(size_type size0) : dimensions_(1) { sizes_[0] = size0; sizes_[1] = 1; sizes_[2] = 1; } //! \brief Constructs two-dimensional range. NDRange(size_type size0, size_type size1) : dimensions_(2) { sizes_[0] = size0; sizes_[1] = size1; sizes_[2] = 1; } //! \brief Constructs three-dimensional range. NDRange(size_type size0, size_type size1, size_type size2) : dimensions_(3) { sizes_[0] = size0; sizes_[1] = size1; sizes_[2] = size2; } //! \brief Constructs one-dimensional range. NDRange(array a) : NDRange(a[0]){} //! \brief Constructs two-dimensional range. NDRange(array a) : NDRange(a[0], a[1]){} //! \brief Constructs three-dimensional range. NDRange(array a) : NDRange(a[0], a[1], a[2]){} /*! \brief Conversion operator to const size_type *. * * \returns a pointer to the size of the first dimension. */ operator const size_type*() const { return sizes_; } //! \brief Queries the number of dimensions in the range. size_type dimensions() const { return dimensions_; } //! \brief Returns the size of the object in bytes based on the // runtime number of dimensions size_type size() const { return dimensions_*sizeof(size_type); } size_type* get() { return sizes_; } const size_type* get() const { return sizes_; } }; //! \brief A zero-dimensional range. static const NDRange NullRange; //! \brief Local address wrapper for use with Kernel::setArg struct LocalSpaceArg { size_type size_; }; namespace detail { template struct KernelArgumentHandler; // Enable for objects that are not subclasses of memory // Pointers, constants etc template struct KernelArgumentHandler::value>::type> { static size_type size(const T&) { return sizeof(T); } static const T* ptr(const T& value) { return &value; } }; // Enable for subclasses of memory where we want to get a reference to the cl_mem out // and pass that in for safety template struct KernelArgumentHandler::value>::type> { static size_type size(const T&) { return sizeof(cl_mem); } static const cl_mem* ptr(const T& value) { return &(value()); } }; // Specialization for DeviceCommandQueue defined later template <> struct KernelArgumentHandler { static size_type size(const LocalSpaceArg& value) { return value.size_; } static const void* ptr(const LocalSpaceArg&) { return nullptr; } }; } //! \endcond /*! Local * \brief Helper function for generating LocalSpaceArg objects. */ inline LocalSpaceArg Local(size_type size) { LocalSpaceArg ret = { size }; return ret; } /*! \brief Class interface for cl_kernel. * * \note Copies of these objects are shallow, meaning that the copy will refer * to the same underlying cl_kernel as the original. For details, see * clRetainKernel() and clReleaseKernel(). * * \see cl_kernel */ class Kernel : public detail::Wrapper { public: inline Kernel(const Program& program, const char* name, cl_int* err = nullptr); //! \brief Default constructor - initializes to nullptr. Kernel() { } /*! \brief Constructor from cl_kernel - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. * This effectively transfers ownership of a refcount on the cl_kernel * into the new Kernel object. */ explicit Kernel(const cl_kernel& kernel, bool retainObject = false) : detail::Wrapper(kernel, retainObject) { } /*! \brief Assignment operator from cl_kernel - takes ownership. * * This effectively transfers ownership of a refcount on the rhs and calls * clReleaseKernel() on the value previously held by this instance. */ Kernel& operator = (const cl_kernel& rhs) { detail::Wrapper::operator=(rhs); return *this; } template cl_int getInfo(cl_kernel_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetKernelInfo, object_, name, param), __GET_KERNEL_INFO_ERR); } template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_kernel_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } #if CL_HPP_TARGET_OPENCL_VERSION >= 120 template cl_int getArgInfo(cl_uint argIndex, cl_kernel_arg_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetKernelArgInfo, object_, argIndex, name, param), __GET_KERNEL_ARG_INFO_ERR); } template typename detail::param_traits::param_type getArgInfo(cl_uint argIndex, cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_kernel_arg_info, name>::param_type param; cl_int result = getArgInfo(argIndex, name, ¶m); if (err != nullptr) { *err = result; } return param; } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 template cl_int getWorkGroupInfo( const Device& device, cl_kernel_work_group_info name, T* param) const { return detail::errHandler( detail::getInfo( &::clGetKernelWorkGroupInfo, object_, device(), name, param), __GET_KERNEL_WORK_GROUP_INFO_ERR); } template typename detail::param_traits::param_type getWorkGroupInfo(const Device& device, cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_kernel_work_group_info, name>::param_type param; cl_int result = getWorkGroupInfo(device, name, ¶m); if (err != nullptr) { *err = result; } return param; } #if defined(CL_HPP_USE_CL_SUB_GROUPS_KHR) || CL_HPP_TARGET_OPENCL_VERSION >= 210 cl_int getSubGroupInfo(const cl::Device &dev, cl_kernel_sub_group_info name, const cl::NDRange &range, size_type* param) const { #if CL_HPP_TARGET_OPENCL_VERSION >= 210 return detail::errHandler( clGetKernelSubGroupInfo(object_, dev(), name, range.size(), range.get(), sizeof(size_type), param, nullptr), __GET_KERNEL_SUB_GROUP_INFO_ERR); #else // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 typedef clGetKernelSubGroupInfoKHR_fn PFN_clGetKernelSubGroupInfoKHR; static PFN_clGetKernelSubGroupInfoKHR pfn_clGetKernelSubGroupInfoKHR = nullptr; CL_HPP_INIT_CL_EXT_FCN_PTR_(clGetKernelSubGroupInfoKHR); return detail::errHandler( pfn_clGetKernelSubGroupInfoKHR(object_, dev(), name, range.size(), range.get(), sizeof(size_type), param, nullptr), __GET_KERNEL_SUB_GROUP_INFO_ERR); #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 } template size_type getSubGroupInfo(const cl::Device &dev, const cl::NDRange &range, cl_int* err = nullptr) const { size_type param; cl_int result = getSubGroupInfo(dev, name, range, ¶m); if (err != nullptr) { *err = result; } return param; } #endif // defined(CL_HPP_USE_CL_SUB_GROUPS_KHR) || CL_HPP_TARGET_OPENCL_VERSION >= 210 #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /*! \brief setArg overload taking a shared_ptr type */ template cl_int setArg(cl_uint index, const cl::pointer &argPtr) { return detail::errHandler( ::clSetKernelArgSVMPointer(object_, index, argPtr.get()), __SET_KERNEL_ARGS_ERR); } /*! \brief setArg overload taking a vector type. */ template cl_int setArg(cl_uint index, const cl::vector &argPtr) { return detail::errHandler( ::clSetKernelArgSVMPointer(object_, index, argPtr.data()), __SET_KERNEL_ARGS_ERR); } /*! \brief setArg overload taking a pointer type */ template typename std::enable_if::value, cl_int>::type setArg(cl_uint index, const T argPtr) { return detail::errHandler( ::clSetKernelArgSVMPointer(object_, index, argPtr), __SET_KERNEL_ARGS_ERR); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /*! \brief setArg overload taking a POD type */ template typename std::enable_if::value, cl_int>::type setArg(cl_uint index, const T &value) { return detail::errHandler( ::clSetKernelArg( object_, index, detail::KernelArgumentHandler::size(value), detail::KernelArgumentHandler::ptr(value)), __SET_KERNEL_ARGS_ERR); } cl_int setArg(cl_uint index, size_type size, const void* argPtr) { return detail::errHandler( ::clSetKernelArg(object_, index, size, argPtr), __SET_KERNEL_ARGS_ERR); } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /*! * Specify a vector of SVM pointers that the kernel may access in * addition to its arguments. */ cl_int setSVMPointers(const vector &pointerList) { return detail::errHandler( ::clSetKernelExecInfo( object_, CL_KERNEL_EXEC_INFO_SVM_PTRS, sizeof(void*)*pointerList.size(), pointerList.data())); } /*! * Specify a std::array of SVM pointers that the kernel may access in * addition to its arguments. */ template cl_int setSVMPointers(const std::array &pointerList) { return detail::errHandler( ::clSetKernelExecInfo( object_, CL_KERNEL_EXEC_INFO_SVM_PTRS, sizeof(void*)*pointerList.size(), pointerList.data())); } /*! \brief Enable fine-grained system SVM. * * \note It is only possible to enable fine-grained system SVM if all devices * in the context associated with kernel support it. * * \param svmEnabled True if fine-grained system SVM is requested. False otherwise. * \return CL_SUCCESS if the function was executed succesfully. CL_INVALID_OPERATION * if no devices in the context support fine-grained system SVM. * * \see clSetKernelExecInfo */ cl_int enableFineGrainedSystemSVM(bool svmEnabled) { cl_bool svmEnabled_ = svmEnabled ? CL_TRUE : CL_FALSE; return detail::errHandler( ::clSetKernelExecInfo( object_, CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM, sizeof(cl_bool), &svmEnabled_ ) ); } template void setSVMPointersHelper(std::array &pointerList, const pointer &t0, const pointer &t1, Ts & ... ts) { pointerList[index] = static_cast(t0.get()); setSVMPointersHelper(pointerList, t1, ts...); } template typename std::enable_if::value, void>::type setSVMPointersHelper(std::array &pointerList, T0 t0, T1 t1, Ts... ts) { pointerList[index] = static_cast(t0); setSVMPointersHelper(pointerList, t1, ts...); } template void setSVMPointersHelper(std::array &pointerList, const pointer &t0) { pointerList[index] = static_cast(t0.get()); } template typename std::enable_if::value, void>::type setSVMPointersHelper(std::array &pointerList, T0 t0) { pointerList[index] = static_cast(t0); } template cl_int setSVMPointers(const T0 &t0, Ts & ... ts) { std::array pointerList; setSVMPointersHelper<0, 1 + sizeof...(Ts)>(pointerList, t0, ts...); return detail::errHandler( ::clSetKernelExecInfo( object_, CL_KERNEL_EXEC_INFO_SVM_PTRS, sizeof(void*)*(1 + sizeof...(Ts)), pointerList.data())); } template cl_int setExecInfo(cl_kernel_exec_info param_name, const T& val) { return detail::errHandler( ::clSetKernelExecInfo( object_, param_name, sizeof(T), &val)); } template cl_int setExecInfo(typename detail::param_traits::param_type& val) { return setExecInfo(name, val); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_TARGET_OPENCL_VERSION >= 210 /** * Make a deep copy of the kernel object including its arguments. * @return A new kernel object with internal state entirely separate from that * of the original but with any arguments set on the original intact. */ Kernel clone() { cl_int error; Kernel retValue(clCloneKernel(this->get(), &error)); detail::errHandler(error, __CLONE_KERNEL_ERR); return retValue; } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 }; /*! \class Program * \brief Program interface that implements cl_program. */ class Program : public detail::Wrapper { public: #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) typedef vector> Binaries; typedef vector Sources; #else // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) typedef vector > Binaries; typedef vector > Sources; #endif // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) Program( const string& source, bool build = false, cl_int* err = nullptr) { cl_int error; const char * strings = source.c_str(); const size_type length = source.size(); Context context = Context::getDefault(err); object_ = ::clCreateProgramWithSource( context(), (cl_uint)1, &strings, &length, &error); detail::errHandler(error, __CREATE_PROGRAM_WITH_SOURCE_ERR); if (error == CL_SUCCESS && build) { error = ::clBuildProgram( object_, 0, nullptr, #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) "-cl-std=CL2.0", #else "", #endif // #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) nullptr, nullptr); detail::buildErrHandler(error, __BUILD_PROGRAM_ERR, getBuildInfo()); } if (err != nullptr) { *err = error; } } Program( const Context& context, const string& source, bool build = false, cl_int* err = nullptr) { cl_int error; const char * strings = source.c_str(); const size_type length = source.size(); object_ = ::clCreateProgramWithSource( context(), (cl_uint)1, &strings, &length, &error); detail::errHandler(error, __CREATE_PROGRAM_WITH_SOURCE_ERR); if (error == CL_SUCCESS && build) { error = ::clBuildProgram( object_, 0, nullptr, #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) "-cl-std=CL2.0", #else "", #endif // #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) nullptr, nullptr); detail::buildErrHandler(error, __BUILD_PROGRAM_ERR, getBuildInfo()); } if (err != nullptr) { *err = error; } } /** * Create a program from a vector of source strings and the default context. * Does not compile or link the program. */ Program( const Sources& sources, cl_int* err = nullptr) { cl_int error; Context context = Context::getDefault(err); const size_type n = (size_type)sources.size(); vector lengths(n); vector strings(n); for (size_type i = 0; i < n; ++i) { #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) strings[i] = sources[(int)i].data(); lengths[i] = sources[(int)i].length(); #else // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) strings[i] = sources[(int)i].first; lengths[i] = sources[(int)i].second; #endif // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) } object_ = ::clCreateProgramWithSource( context(), (cl_uint)n, strings.data(), lengths.data(), &error); detail::errHandler(error, __CREATE_PROGRAM_WITH_SOURCE_ERR); if (err != nullptr) { *err = error; } } /** * Create a program from a vector of source strings and a provided context. * Does not compile or link the program. */ Program( const Context& context, const Sources& sources, cl_int* err = nullptr) { cl_int error; const size_type n = (size_type)sources.size(); vector lengths(n); vector strings(n); for (size_type i = 0; i < n; ++i) { #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) strings[i] = sources[(int)i].data(); lengths[i] = sources[(int)i].length(); #else // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) strings[i] = sources[(int)i].first; lengths[i] = sources[(int)i].second; #endif // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) } object_ = ::clCreateProgramWithSource( context(), (cl_uint)n, strings.data(), lengths.data(), &error); detail::errHandler(error, __CREATE_PROGRAM_WITH_SOURCE_ERR); if (err != nullptr) { *err = error; } } #if defined(CL_HPP_USE_IL_KHR) || CL_HPP_TARGET_OPENCL_VERSION >= 210 /** * Program constructor to allow construction of program from SPIR-V or another IL. * * Requires OpenCL 2.1 or newer or the cl_khr_il_program extension. */ Program( const vector& IL, bool build = false, cl_int* err = nullptr) { cl_int error; Context context = Context::getDefault(err); #if CL_HPP_TARGET_OPENCL_VERSION >= 210 object_ = ::clCreateProgramWithIL( context(), static_cast(IL.data()), IL.size(), &error); #else // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 typedef clCreateProgramWithILKHR_fn PFN_clCreateProgramWithILKHR; static PFN_clCreateProgramWithILKHR pfn_clCreateProgramWithILKHR = nullptr; CL_HPP_INIT_CL_EXT_FCN_PTR_(clCreateProgramWithILKHR); object_ = pfn_clCreateProgramWithILKHR( context(), static_cast(IL.data()), IL.size(), &error); #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 detail::errHandler(error, __CREATE_PROGRAM_WITH_IL_ERR); if (error == CL_SUCCESS && build) { error = ::clBuildProgram( object_, 0, nullptr, #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) "-cl-std=CL2.0", #else "", #endif // #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) nullptr, nullptr); detail::buildErrHandler(error, __BUILD_PROGRAM_ERR, getBuildInfo()); } if (err != nullptr) { *err = error; } } /** * Program constructor to allow construction of program from SPIR-V or another IL * for a specific context. * * Requires OpenCL 2.1 or newer or the cl_khr_il_program extension. */ Program( const Context& context, const vector& IL, bool build = false, cl_int* err = nullptr) { cl_int error; #if CL_HPP_TARGET_OPENCL_VERSION >= 210 object_ = ::clCreateProgramWithIL( context(), static_cast(IL.data()), IL.size(), &error); #else // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 typedef clCreateProgramWithILKHR_fn PFN_clCreateProgramWithILKHR; static PFN_clCreateProgramWithILKHR pfn_clCreateProgramWithILKHR = nullptr; CL_HPP_INIT_CL_EXT_FCN_PTR_(clCreateProgramWithILKHR); object_ = pfn_clCreateProgramWithILKHR( context(), static_cast(IL.data()), IL.size(), &error); #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 detail::errHandler(error, __CREATE_PROGRAM_WITH_IL_ERR); if (error == CL_SUCCESS && build) { error = ::clBuildProgram( object_, 0, nullptr, #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) "-cl-std=CL2.0", #else "", #endif // #if !defined(CL_HPP_CL_1_2_DEFAULT_BUILD) nullptr, nullptr); detail::buildErrHandler(error, __BUILD_PROGRAM_ERR, getBuildInfo()); } if (err != nullptr) { *err = error; } } #endif // defined(CL_HPP_USE_IL_KHR) || CL_HPP_TARGET_OPENCL_VERSION >= 210 /** * Construct a program object from a list of devices and a per-device list of binaries. * \param context A valid OpenCL context in which to construct the program. * \param devices A vector of OpenCL device objects for which the program will be created. * \param binaries A vector of pairs of a pointer to a binary object and its length. * \param binaryStatus An optional vector that on completion will be resized to * match the size of binaries and filled with values to specify if each binary * was successfully loaded. * Set to CL_SUCCESS if the binary was successfully loaded. * Set to CL_INVALID_VALUE if the length is 0 or the binary pointer is nullptr. * Set to CL_INVALID_BINARY if the binary provided is not valid for the matching device. * \param err if non-nullptr will be set to CL_SUCCESS on successful operation or one of the following errors: * CL_INVALID_CONTEXT if context is not a valid context. * CL_INVALID_VALUE if the length of devices is zero; or if the length of binaries does not match the length of devices; * or if any entry in binaries is nullptr or has length 0. * CL_INVALID_DEVICE if OpenCL devices listed in devices are not in the list of devices associated with context. * CL_INVALID_BINARY if an invalid program binary was encountered for any device. binaryStatus will return specific status for each device. * CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL implementation on the host. */ Program( const Context& context, const vector& devices, const Binaries& binaries, vector* binaryStatus = nullptr, cl_int* err = nullptr) { cl_int error; const size_type numDevices = devices.size(); // Catch size mismatch early and return if(binaries.size() != numDevices) { error = CL_INVALID_VALUE; detail::errHandler(error, __CREATE_PROGRAM_WITH_BINARY_ERR); if (err != nullptr) { *err = error; } return; } vector lengths(numDevices); vector images(numDevices); #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) for (size_type i = 0; i < numDevices; ++i) { images[i] = binaries[i].data(); lengths[i] = binaries[(int)i].size(); } #else // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) for (size_type i = 0; i < numDevices; ++i) { images[i] = (const unsigned char*)binaries[i].first; lengths[i] = binaries[(int)i].second; } #endif // #if !defined(CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY) vector deviceIDs(numDevices); for( size_type deviceIndex = 0; deviceIndex < numDevices; ++deviceIndex ) { deviceIDs[deviceIndex] = (devices[deviceIndex])(); } if(binaryStatus) { binaryStatus->resize(numDevices); } object_ = ::clCreateProgramWithBinary( context(), (cl_uint) devices.size(), deviceIDs.data(), lengths.data(), images.data(), (binaryStatus != nullptr && numDevices > 0) ? &binaryStatus->front() : nullptr, &error); detail::errHandler(error, __CREATE_PROGRAM_WITH_BINARY_ERR); if (err != nullptr) { *err = error; } } #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /** * Create program using builtin kernels. * \param kernelNames Semi-colon separated list of builtin kernel names */ Program( const Context& context, const vector& devices, const string& kernelNames, cl_int* err = nullptr) { cl_int error; size_type numDevices = devices.size(); vector deviceIDs(numDevices); for( size_type deviceIndex = 0; deviceIndex < numDevices; ++deviceIndex ) { deviceIDs[deviceIndex] = (devices[deviceIndex])(); } object_ = ::clCreateProgramWithBuiltInKernels( context(), (cl_uint) devices.size(), deviceIDs.data(), kernelNames.c_str(), &error); detail::errHandler(error, __CREATE_PROGRAM_WITH_BUILT_IN_KERNELS_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 Program() { } /*! \brief Constructor from cl_program - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. */ explicit Program(const cl_program& program, bool retainObject = false) : detail::Wrapper(program, retainObject) { } Program& operator = (const cl_program& rhs) { detail::Wrapper::operator=(rhs); return *this; } cl_int build( const vector& devices, const char* options = nullptr, void (CL_CALLBACK * notifyFptr)(cl_program, void *) = nullptr, void* data = nullptr) const { size_type numDevices = devices.size(); vector deviceIDs(numDevices); for( size_type deviceIndex = 0; deviceIndex < numDevices; ++deviceIndex ) { deviceIDs[deviceIndex] = (devices[deviceIndex])(); } cl_int buildError = ::clBuildProgram( object_, (cl_uint) devices.size(), deviceIDs.data(), options, notifyFptr, data); return detail::buildErrHandler(buildError, __BUILD_PROGRAM_ERR, getBuildInfo()); } cl_int build( const Device& device, const char* options = nullptr, void (CL_CALLBACK * notifyFptr)(cl_program, void *) = nullptr, void* data = nullptr) const { cl_device_id deviceID = device(); cl_int buildError = ::clBuildProgram( object_, 1, &deviceID, options, notifyFptr, data); BuildLogType buildLog(0); buildLog.push_back(std::make_pair(device, getBuildInfo(device))); return detail::buildErrHandler(buildError, __BUILD_PROGRAM_ERR, buildLog); } cl_int build( const char* options = nullptr, void (CL_CALLBACK * notifyFptr)(cl_program, void *) = nullptr, void* data = nullptr) const { cl_int buildError = ::clBuildProgram( object_, 0, nullptr, options, notifyFptr, data); return detail::buildErrHandler(buildError, __BUILD_PROGRAM_ERR, getBuildInfo()); } #if CL_HPP_TARGET_OPENCL_VERSION >= 120 cl_int compile( const char* options = nullptr, void (CL_CALLBACK * notifyFptr)(cl_program, void *) = nullptr, void* data = nullptr) const { cl_int error = ::clCompileProgram( object_, 0, nullptr, options, 0, nullptr, nullptr, notifyFptr, data); return detail::buildErrHandler(error, __COMPILE_PROGRAM_ERR, getBuildInfo()); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 template cl_int getInfo(cl_program_info name, T* param) const { return detail::errHandler( detail::getInfo(&::clGetProgramInfo, object_, name, param), __GET_PROGRAM_INFO_ERR); } template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_program_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } template cl_int getBuildInfo( const Device& device, cl_program_build_info name, T* param) const { return detail::errHandler( detail::getInfo( &::clGetProgramBuildInfo, object_, device(), name, param), __GET_PROGRAM_BUILD_INFO_ERR); } template typename detail::param_traits::param_type getBuildInfo(const Device& device, cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_program_build_info, name>::param_type param; cl_int result = getBuildInfo(device, name, ¶m); if (err != nullptr) { *err = result; } return param; } /** * Build info function that returns a vector of device/info pairs for the specified * info type and for all devices in the program. * On an error reading the info for any device, an empty vector of info will be returned. */ template vector::param_type>> getBuildInfo(cl_int *err = nullptr) const { cl_int result = CL_SUCCESS; auto devs = getInfo(&result); vector::param_type>> devInfo; // If there was an initial error from getInfo return the error if (result != CL_SUCCESS) { if (err != nullptr) { *err = result; } return devInfo; } for (const cl::Device &d : devs) { typename detail::param_traits< detail::cl_program_build_info, name>::param_type param; result = getBuildInfo(d, name, ¶m); devInfo.push_back( std::pair::param_type> (d, param)); if (result != CL_SUCCESS) { // On error, leave the loop and return the error code break; } } if (err != nullptr) { *err = result; } if (result != CL_SUCCESS) { devInfo.clear(); } return devInfo; } cl_int createKernels(vector* kernels) { cl_uint numKernels; cl_int err = ::clCreateKernelsInProgram(object_, 0, nullptr, &numKernels); if (err != CL_SUCCESS) { return detail::errHandler(err, __CREATE_KERNELS_IN_PROGRAM_ERR); } vector value(numKernels); err = ::clCreateKernelsInProgram( object_, numKernels, value.data(), nullptr); if (err != CL_SUCCESS) { return detail::errHandler(err, __CREATE_KERNELS_IN_PROGRAM_ERR); } if (kernels) { kernels->resize(value.size()); // Assign to param, constructing with retain behaviour // to correctly capture each underlying CL object for (size_type i = 0; i < value.size(); i++) { // We do not need to retain because this kernel is being created // by the runtime (*kernels)[i] = Kernel(value[i], false); } } return CL_SUCCESS; } #if CL_HPP_TARGET_OPENCL_VERSION >= 220 #if defined(CL_USE_DEPRECATED_OPENCL_2_2_APIS) /*! \brief Registers a callback function to be called when destructors for * program scope global variables are complete and before the * program is released. * * Wraps clSetProgramReleaseCallback(). * * Each call to this function registers the specified user callback function * on a callback stack associated with program. The registered user callback * functions are called in the reverse order in which they were registered. */ CL_API_PREFIX__VERSION_2_2_DEPRECATED cl_int setReleaseCallback( void (CL_CALLBACK * pfn_notify)(cl_program program, void * user_data), void * user_data = nullptr) CL_API_SUFFIX__VERSION_2_2_DEPRECATED { return detail::errHandler( ::clSetProgramReleaseCallback( object_, pfn_notify, user_data), __SET_PROGRAM_RELEASE_CALLBACK_ERR); } #endif // #if defined(CL_USE_DEPRECATED_OPENCL_2_2_APIS) /*! \brief Sets a SPIR-V specialization constant. * * Wraps clSetProgramSpecializationConstant(). */ template typename std::enable_if::value, cl_int>::type setSpecializationConstant(cl_uint index, const T &value) { return detail::errHandler( ::clSetProgramSpecializationConstant( object_, index, sizeof(value), &value), __SET_PROGRAM_SPECIALIZATION_CONSTANT_ERR); } /*! \brief Sets a SPIR-V specialization constant. * * Wraps clSetProgramSpecializationConstant(). */ cl_int setSpecializationConstant(cl_uint index, size_type size, const void* value) { return detail::errHandler( ::clSetProgramSpecializationConstant( object_, index, size, value), __SET_PROGRAM_SPECIALIZATION_CONSTANT_ERR); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 220 }; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 inline Program linkProgram( const Program& input1, const Program& input2, const char* options = nullptr, void (CL_CALLBACK * notifyFptr)(cl_program, void *) = nullptr, void* data = nullptr, cl_int* err = nullptr) { cl_int error_local = CL_SUCCESS; cl_program programs[2] = { input1(), input2() }; Context ctx = input1.getInfo(&error_local); if(error_local!=CL_SUCCESS) { detail::errHandler(error_local, __LINK_PROGRAM_ERR); } cl_program prog = ::clLinkProgram( ctx(), 0, nullptr, options, 2, programs, notifyFptr, data, &error_local); detail::errHandler(error_local,__COMPILE_PROGRAM_ERR); if (err != nullptr) { *err = error_local; } return Program(prog); } inline Program linkProgram( const vector& inputPrograms, const char* options = nullptr, void (CL_CALLBACK * notifyFptr)(cl_program, void *) = nullptr, void* data = nullptr, cl_int* err = nullptr) { cl_int error_local = CL_SUCCESS; Context ctx; static_assert(sizeof(cl::Program) == sizeof(cl_program), "Size of cl::Program must be equal to size of cl_program"); if(inputPrograms.size() > 0) { ctx = inputPrograms[0].getInfo(&error_local); if(error_local!=CL_SUCCESS) { detail::errHandler(error_local, __LINK_PROGRAM_ERR); } } cl_program prog = ::clLinkProgram( ctx(), 0, nullptr, options, static_cast(inputPrograms.size()), reinterpret_cast(inputPrograms.data()), notifyFptr, data, &error_local); detail::errHandler(error_local,__COMPILE_PROGRAM_ERR); if (err != nullptr) { *err = error_local; } return Program(prog); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 // Template specialization for CL_PROGRAM_BINARIES template <> inline cl_int cl::Program::getInfo(cl_program_info name, vector>* param) const { if (name != CL_PROGRAM_BINARIES) { return CL_INVALID_VALUE; } if (param) { // Resize the parameter array appropriately for each allocation // and pass down to the helper vector sizes = getInfo(); size_type numBinaries = sizes.size(); // Resize the parameter array and constituent arrays param->resize(numBinaries); for (size_type i = 0; i < numBinaries; ++i) { (*param)[i].resize(sizes[i]); } return detail::errHandler( detail::getInfo(&::clGetProgramInfo, object_, name, param), __GET_PROGRAM_INFO_ERR); } return CL_SUCCESS; } template<> inline vector> cl::Program::getInfo(cl_int* err) const { vector> binariesVectors; cl_int result = getInfo(CL_PROGRAM_BINARIES, &binariesVectors); if (err != nullptr) { *err = result; } return binariesVectors; } #if CL_HPP_TARGET_OPENCL_VERSION >= 220 // Template specialization for clSetProgramSpecializationConstant template <> inline cl_int cl::Program::setSpecializationConstant(cl_uint index, const bool &value) { cl_uchar ucValue = value ? CL_UCHAR_MAX : 0; return detail::errHandler( ::clSetProgramSpecializationConstant( object_, index, sizeof(ucValue), &ucValue), __SET_PROGRAM_SPECIALIZATION_CONSTANT_ERR); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 220 inline Kernel::Kernel(const Program& program, const char* name, cl_int* err) { cl_int error; object_ = ::clCreateKernel(program(), name, &error); detail::errHandler(error, __CREATE_KERNEL_ERR); if (err != nullptr) { *err = error; } } enum class QueueProperties : cl_command_queue_properties { None_ = 0,//Had to change this because "None" wouldn't compile in gcc. Profiling = CL_QUEUE_PROFILING_ENABLE, OutOfOrder = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, }; inline QueueProperties operator|(QueueProperties lhs, QueueProperties rhs) { return static_cast(static_cast(lhs) | static_cast(rhs)); } inline QueueProperties operator&(QueueProperties lhs, QueueProperties rhs) { return static_cast(static_cast(lhs) & static_cast(rhs)); } /*! \class CommandQueue * \brief CommandQueue interface for cl_command_queue. */ class CommandQueue : public detail::Wrapper { private: static std::once_flag default_initialized_; static CommandQueue default_; static cl_int default_error_; /*! \brief Create the default command queue returned by @ref getDefault. * * It sets default_error_ to indicate success or failure. It does not throw * @c cl::Error. */ static void makeDefault() { /* We don't want to throw an error from this function, so we have to * catch and set the error flag. */ #if defined(CL_HPP_ENABLE_EXCEPTIONS) try #endif { int error; Context context = Context::getDefault(&error); if (error != CL_SUCCESS) { default_error_ = error; } else { Device device = Device::getDefault(); default_ = CommandQueue(context, device, 0, &default_error_); } } #if defined(CL_HPP_ENABLE_EXCEPTIONS) catch (cl::Error &e) { default_error_ = e.err(); } #endif } /*! \brief Create the default command queue. * * This sets @c default_. It does not throw * @c cl::Error. */ static void makeDefaultProvided(const CommandQueue &c) { default_ = c; } public: #ifdef CL_HPP_UNIT_TEST_ENABLE /*! \brief Reset the default. * * This sets @c default_ to an empty value to support cleanup in * the unit test framework. * This function is not thread safe. */ static void unitTestClearDefault() { default_ = CommandQueue(); } #endif // #ifdef CL_HPP_UNIT_TEST_ENABLE /*! * \brief Constructs a CommandQueue based on passed properties. * Will return an CL_INVALID_QUEUE_PROPERTIES error if CL_QUEUE_ON_DEVICE is specified. */ CommandQueue( cl_command_queue_properties properties, cl_int* err = nullptr) { cl_int error; Context context = Context::getDefault(&error); detail::errHandler(error, __CREATE_CONTEXT_ERR); if (error != CL_SUCCESS) { if (err != nullptr) { *err = error; } } else { Device device = context.getInfo()[0]; bool useWithProperties; #if CL_HPP_TARGET_OPENCL_VERSION >= 200 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useWithProperties = (version >= 0x20000); // OpenCL 2.0 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 200 useWithProperties = true; #else useWithProperties = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 if (useWithProperties) { cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, properties, 0 }; if ((properties & CL_QUEUE_ON_DEVICE) == 0) { object_ = ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error); } else { error = CL_INVALID_QUEUE_PROPERTIES; } detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_MINIMUM_OPENCL_VERSION < 200 if (!useWithProperties) { object_ = ::clCreateCommandQueue( context(), device(), properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200 } } /*! * \brief Constructs a CommandQueue based on passed properties. * Will return an CL_INVALID_QUEUE_PROPERTIES error if CL_QUEUE_ON_DEVICE is specified. */ CommandQueue( QueueProperties properties, cl_int* err = nullptr) { cl_int error; Context context = Context::getDefault(&error); detail::errHandler(error, __CREATE_CONTEXT_ERR); if (error != CL_SUCCESS) { if (err != nullptr) { *err = error; } } else { Device device = context.getInfo()[0]; bool useWithProperties; #if CL_HPP_TARGET_OPENCL_VERSION >= 200 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useWithProperties = (version >= 0x20000); // OpenCL 2.0 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 200 useWithProperties = true; #else useWithProperties = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 if (useWithProperties) { cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, static_cast(properties), 0 }; object_ = ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_MINIMUM_OPENCL_VERSION < 200 if (!useWithProperties) { object_ = ::clCreateCommandQueue( context(), device(), static_cast(properties), &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200 } } /*! * \brief Constructs a CommandQueue for an implementation defined device in the given context * Will return an CL_INVALID_QUEUE_PROPERTIES error if CL_QUEUE_ON_DEVICE is specified. */ explicit CommandQueue( const Context& context, cl_command_queue_properties properties = 0, cl_int* err = nullptr) { cl_int error; bool useWithProperties; vector devices; error = context.getInfo(CL_CONTEXT_DEVICES, &devices); detail::errHandler(error, __CREATE_CONTEXT_ERR); if (error != CL_SUCCESS) { if (err != nullptr) { *err = error; } return; } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useWithProperties = (version >= 0x20000); // OpenCL 2.0 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 200 useWithProperties = true; #else useWithProperties = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 if (useWithProperties) { cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, properties, 0 }; if ((properties & CL_QUEUE_ON_DEVICE) == 0) { object_ = ::clCreateCommandQueueWithProperties( context(), devices[0](), queue_properties, &error); } else { error = CL_INVALID_QUEUE_PROPERTIES; } detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_MINIMUM_OPENCL_VERSION < 200 if (!useWithProperties) { object_ = ::clCreateCommandQueue( context(), devices[0](), properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200 } /*! * \brief Constructs a CommandQueue for an implementation defined device in the given context * Will return an CL_INVALID_QUEUE_PROPERTIES error if CL_QUEUE_ON_DEVICE is specified. */ explicit CommandQueue( const Context& context, QueueProperties properties, cl_int* err = nullptr) { cl_int error; bool useWithProperties; vector devices; error = context.getInfo(CL_CONTEXT_DEVICES, &devices); detail::errHandler(error, __CREATE_CONTEXT_ERR); if (error != CL_SUCCESS) { if (err != nullptr) { *err = error; } return; } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useWithProperties = (version >= 0x20000); // OpenCL 2.0 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 200 useWithProperties = true; #else useWithProperties = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 if (useWithProperties) { cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, static_cast(properties), 0 }; object_ = ::clCreateCommandQueueWithProperties( context(), devices[0](), queue_properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_MINIMUM_OPENCL_VERSION < 200 if (!useWithProperties) { object_ = ::clCreateCommandQueue( context(), devices[0](), static_cast(properties), &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200 } /*! * \brief Constructs a CommandQueue for a passed device and context * Will return an CL_INVALID_QUEUE_PROPERTIES error if CL_QUEUE_ON_DEVICE is specified. */ CommandQueue( const Context& context, const Device& device, cl_command_queue_properties properties = 0, cl_int* err = nullptr) { cl_int error; bool useWithProperties; #if CL_HPP_TARGET_OPENCL_VERSION >= 200 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useWithProperties = (version >= 0x20000); // OpenCL 2.0 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 200 useWithProperties = true; #else useWithProperties = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 if (useWithProperties) { cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, properties, 0 }; object_ = ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_MINIMUM_OPENCL_VERSION < 200 if (!useWithProperties) { object_ = ::clCreateCommandQueue( context(), device(), properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200 } /*! * \brief Constructs a CommandQueue for a passed device and context * Will return an CL_INVALID_QUEUE_PROPERTIES error if CL_QUEUE_ON_DEVICE is specified. */ CommandQueue( const Context& context, const Device& device, QueueProperties properties, cl_int* err = nullptr) { cl_int error; bool useWithProperties; #if CL_HPP_TARGET_OPENCL_VERSION >= 200 && CL_HPP_MINIMUM_OPENCL_VERSION < 200 // Run-time decision based on the actual platform { cl_uint version = detail::getContextPlatformVersion(context()); useWithProperties = (version >= 0x20000); // OpenCL 2.0 or above } #elif CL_HPP_TARGET_OPENCL_VERSION >= 200 useWithProperties = true; #else useWithProperties = false; #endif #if CL_HPP_TARGET_OPENCL_VERSION >= 200 if (useWithProperties) { cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, static_cast(properties), 0 }; object_ = ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_MINIMUM_OPENCL_VERSION < 200 if (!useWithProperties) { object_ = ::clCreateCommandQueue( context(), device(), static_cast(properties), &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_ERR); if (err != nullptr) { *err = error; } } #endif // CL_HPP_MINIMUM_OPENCL_VERSION < 200 } static CommandQueue getDefault(cl_int * err = nullptr) { std::call_once(default_initialized_, makeDefault); #if CL_HPP_TARGET_OPENCL_VERSION >= 200 detail::errHandler(default_error_, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); #else // CL_HPP_TARGET_OPENCL_VERSION >= 200 detail::errHandler(default_error_, __CREATE_COMMAND_QUEUE_ERR); #endif // CL_HPP_TARGET_OPENCL_VERSION >= 200 if (err != nullptr) { *err = default_error_; } return default_; } /** * Modify the default command queue to be used by * subsequent operations. * Will only set the default if no default was previously created. * @return updated default command queue. * Should be compared to the passed value to ensure that it was updated. */ static CommandQueue setDefault(const CommandQueue &default_queue) { std::call_once(default_initialized_, makeDefaultProvided, std::cref(default_queue)); detail::errHandler(default_error_); return default_; } CommandQueue() { } /*! \brief Constructor from cl_command_queue - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. */ explicit CommandQueue(const cl_command_queue& commandQueue, bool retainObject = false) : detail::Wrapper(commandQueue, retainObject) { } CommandQueue& operator = (const cl_command_queue& rhs) { detail::Wrapper::operator=(rhs); return *this; } template cl_int getInfo(cl_command_queue_info name, T* param) const { return detail::errHandler( detail::getInfo( &::clGetCommandQueueInfo, object_, name, param), __GET_COMMAND_QUEUE_INFO_ERR); } template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_command_queue_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } cl_int enqueueReadBuffer( const Buffer& buffer, cl_bool blocking, size_type offset, size_type size, void* ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueReadBuffer( object_, buffer(), blocking, offset, size, ptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_READ_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueWriteBuffer( const Buffer& buffer, cl_bool blocking, size_type offset, size_type size, const void* ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueWriteBuffer( object_, buffer(), blocking, offset, size, ptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_WRITE_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueCopyBuffer( const Buffer& src, const Buffer& dst, size_type src_offset, size_type dst_offset, size_type size, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueCopyBuffer( object_, src(), dst(), src_offset, dst_offset, size, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQEUE_COPY_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #if CL_HPP_TARGET_OPENCL_VERSION >= 110 cl_int enqueueReadBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, void *ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueReadBufferRect( object_, buffer(), blocking, buffer_offset.data(), host_offset.data(), region.data(), buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_READ_BUFFER_RECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueReadBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, void* ptr, const vector* events = nullptr, Event* event = nullptr) const { return enqueueReadBufferRect( buffer, blocking, { buffer_offset[0], buffer_offset[1], 0 }, { host_offset[0], host_offset[1], 0 }, { region[0], region[1], 1 }, buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, events, event); } cl_int enqueueWriteBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, const void *ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueWriteBufferRect( object_, buffer(), blocking, buffer_offset.data(), host_offset.data(), region.data(), buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_WRITE_BUFFER_RECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueWriteBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, const void* ptr, const vector* events = nullptr, Event* event = nullptr) const { return enqueueWriteBufferRect( buffer, blocking, { buffer_offset[0], buffer_offset[1], 0 }, { host_offset[0], host_offset[1], 0 }, { region[0], region[1], 1 }, buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, events, event); } cl_int enqueueCopyBufferRect( const Buffer& src, const Buffer& dst, const array& src_origin, const array& dst_origin, const array& region, size_type src_row_pitch, size_type src_slice_pitch, size_type dst_row_pitch, size_type dst_slice_pitch, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueCopyBufferRect( object_, src(), dst(), src_origin.data(), dst_origin.data(), region.data(), src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQEUE_COPY_BUFFER_RECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueCopyBufferRect( const Buffer& src, const Buffer& dst, const array& src_origin, const array& dst_origin, const array& region, size_type src_row_pitch, size_type src_slice_pitch, size_type dst_row_pitch, size_type dst_slice_pitch, const vector* events = nullptr, Event* event = nullptr) const { return enqueueCopyBufferRect( src, dst, { src_origin[0], src_origin[1], 0 }, { dst_origin[0], dst_origin[1], 0 }, { region[0], region[1], 1 }, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch, events, event); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 110 #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /** * Enqueue a command to fill a buffer object with a pattern * of a given size. The pattern is specified as a vector type. * \tparam PatternType The datatype of the pattern field. * The pattern type must be an accepted OpenCL data type. * \tparam offset Is the offset in bytes into the buffer at * which to start filling. This must be a multiple of * the pattern size. * \tparam size Is the size in bytes of the region to fill. * This must be a multiple of the pattern size. */ template cl_int enqueueFillBuffer( const Buffer& buffer, PatternType pattern, size_type offset, size_type size, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueFillBuffer( object_, buffer(), static_cast(&pattern), sizeof(PatternType), offset, size, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_FILL_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 cl_int enqueueReadImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, void* ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueReadImage( object_, image(), blocking, origin.data(), region.data(), row_pitch, slice_pitch, ptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_READ_IMAGE_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueReadImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, void* ptr, const vector* events = nullptr, Event* event = nullptr) const { return enqueueReadImage( image, blocking, { origin[0], origin[1], 0 }, { region[0], region[1], 1 }, row_pitch, slice_pitch, ptr, events, event); } cl_int enqueueWriteImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, const void* ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueWriteImage( object_, image(), blocking, origin.data(), region.data(), row_pitch, slice_pitch, ptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_WRITE_IMAGE_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueWriteImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, const void* ptr, const vector* events = nullptr, Event* event = nullptr) const { return enqueueWriteImage( image, blocking, { origin[0], origin[1], 0 }, { region[0], region[1], 1 }, row_pitch, slice_pitch, ptr, events, event); } cl_int enqueueCopyImage( const Image& src, const Image& dst, const array& src_origin, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueCopyImage( object_, src(), dst(), src_origin.data(), dst_origin.data(), region.data(), (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_COPY_IMAGE_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueCopyImage( const Image& src, const Image& dst, const array& src_origin, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) const { return enqueueCopyImage( src, dst, { src_origin[0], src_origin[1], 0 }, { dst_origin[0], dst_origin[1], 0 }, { region[0], region[1], 1 }, events, event); } #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /** * Enqueue a command to fill an image object with a specified color. * \param fillColor is the color to use to fill the image. * This is a four component RGBA floating-point, signed integer * or unsigned integer color value if the image channel data * type is an unnormalized signed integer type. */ template typename std::enable_if::value || std::is_same::value || std::is_same::value, cl_int>::type enqueueFillImage( const Image& image, T fillColor, const array& origin, const array& region, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueFillImage( object_, image(), static_cast(&fillColor), origin.data(), region.data(), (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : NULL, (event != NULL) ? &tmp : nullptr), __ENQUEUE_FILL_IMAGE_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Enqueue a command to fill an image object with a specified color. * \param fillColor is the color to use to fill the image. * This is a four component RGBA floating-point, signed integer * or unsigned integer color value if the image channel data * type is an unnormalized signed integer type. */ template typename std::enable_if::value || std::is_same::value || std::is_same::value, cl_int>::type enqueueFillImage( const Image& image, T fillColor, const array& origin, const array& region, const vector* events = nullptr, Event* event = nullptr) const { return enqueueFillImage( image, fillColor, { origin[0], origin[1], 0 }, { region[0], region[1], 1 }, events, event ); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 cl_int enqueueCopyImageToBuffer( const Image& src, const Buffer& dst, const array& src_origin, const array& region, size_type dst_offset, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueCopyImageToBuffer( object_, src(), dst(), src_origin.data(), region.data(), dst_offset, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueCopyImageToBuffer( const Image& src, const Buffer& dst, const array& src_origin, const array& region, size_type dst_offset, const vector* events = nullptr, Event* event = nullptr) const { return enqueueCopyImageToBuffer( src, dst, { src_origin[0], src_origin[1], 0 }, { region[0], region[1], 1 }, dst_offset, events, event); } cl_int enqueueCopyBufferToImage( const Buffer& src, const Image& dst, size_type src_offset, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueCopyBufferToImage( object_, src(), dst(), src_offset, dst_origin.data(), region.data(), (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueCopyBufferToImage( const Buffer& src, const Image& dst, size_type src_offset, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) const { return enqueueCopyBufferToImage( src, dst, src_offset, { dst_origin[0], dst_origin[1], 0 }, { region[0], region[1], 1 }, events, event); } void* enqueueMapBuffer( const Buffer& buffer, cl_bool blocking, cl_map_flags flags, size_type offset, size_type size, const vector* events = nullptr, Event* event = nullptr, cl_int* err = nullptr) const { cl_event tmp; cl_int error; void * result = ::clEnqueueMapBuffer( object_, buffer(), blocking, flags, offset, size, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr, &error); detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR); if (err != nullptr) { *err = error; } if (event != nullptr && error == CL_SUCCESS) *event = tmp; return result; } void* enqueueMapImage( const Image& image, cl_bool blocking, cl_map_flags flags, const array& origin, const array& region, size_type * row_pitch, size_type * slice_pitch, const vector* events = nullptr, Event* event = nullptr, cl_int* err = nullptr) const { cl_event tmp; cl_int error; void * result = ::clEnqueueMapImage( object_, image(), blocking, flags, origin.data(), region.data(), row_pitch, slice_pitch, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr, &error); detail::errHandler(error, __ENQUEUE_MAP_IMAGE_ERR); if (err != nullptr) { *err = error; } if (event != nullptr && error == CL_SUCCESS) *event = tmp; return result; } void* enqueueMapImage( const Image& image, cl_bool blocking, cl_map_flags flags, const array& origin, const array& region, size_type* row_pitch, size_type* slice_pitch, const vector* events = nullptr, Event* event = nullptr, cl_int* err = nullptr) const { return enqueueMapImage(image, blocking, flags, { origin[0], origin[1], 0 }, { region[0], region[1], 1 }, row_pitch, slice_pitch, events, event, err); } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /** * Enqueues a command that will allow the host to update a region of a coarse-grained SVM buffer. * This variant takes a raw SVM pointer. */ template cl_int enqueueMapSVM( T* ptr, cl_bool blocking, cl_map_flags flags, size_type size, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler(::clEnqueueSVMMap( object_, blocking, flags, static_cast(ptr), size, (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_MAP_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Enqueues a command that will allow the host to update a region of a coarse-grained SVM buffer. * This variant takes a cl::pointer instance. */ template cl_int enqueueMapSVM( cl::pointer &ptr, cl_bool blocking, cl_map_flags flags, size_type size, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler(::clEnqueueSVMMap( object_, blocking, flags, static_cast(ptr.get()), size, (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_MAP_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Enqueues a command that will allow the host to update a region of a coarse-grained SVM buffer. * This variant takes a cl::vector instance. */ template cl_int enqueueMapSVM( cl::vector &container, cl_bool blocking, cl_map_flags flags, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler(::clEnqueueSVMMap( object_, blocking, flags, static_cast(container.data()), container.size()*sizeof(T), (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_MAP_BUFFER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 cl_int enqueueUnmapMemObject( const Memory& memory, void* mapped_ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueUnmapMemObject( object_, memory(), mapped_ptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /** * Enqueues a command that will release a coarse-grained SVM buffer back to the OpenCL runtime. * This variant takes a raw SVM pointer. */ template cl_int enqueueUnmapSVM( T* ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueSVMUnmap( object_, static_cast(ptr), (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Enqueues a command that will release a coarse-grained SVM buffer back to the OpenCL runtime. * This variant takes a cl::pointer instance. */ template cl_int enqueueUnmapSVM( cl::pointer &ptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueSVMUnmap( object_, static_cast(ptr.get()), (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Enqueues a command that will release a coarse-grained SVM buffer back to the OpenCL runtime. * This variant takes a cl::vector instance. */ template cl_int enqueueUnmapSVM( cl::vector &container, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueSVMUnmap( object_, static_cast(container.data()), (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_TARGET_OPENCL_VERSION >= 120 /** * Enqueues a marker command which waits for either a list of events to complete, * or all previously enqueued commands to complete. * * Enqueues a marker command which waits for either a list of events to complete, * or if the list is empty it waits for all commands previously enqueued in command_queue * to complete before it completes. This command returns an event which can be waited on, * i.e. this event can be waited on to insure that all events either in the event_wait_list * or all previously enqueued commands, queued before this command to command_queue, * have completed. */ cl_int enqueueMarkerWithWaitList( const vector *events = 0, Event *event = 0) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueMarkerWithWaitList( object_, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_MARKER_WAIT_LIST_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * A synchronization point that enqueues a barrier operation. * * Enqueues a barrier command which waits for either a list of events to complete, * or if the list is empty it waits for all commands previously enqueued in command_queue * to complete before it completes. This command blocks command execution, that is, any * following commands enqueued after it do not execute until it completes. This command * returns an event which can be waited on, i.e. this event can be waited on to insure that * all events either in the event_wait_list or all previously enqueued commands, queued * before this command to command_queue, have completed. */ cl_int enqueueBarrierWithWaitList( const vector *events = 0, Event *event = 0) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueBarrierWithWaitList( object_, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_BARRIER_WAIT_LIST_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Enqueues a command to indicate with which device a set of memory objects * should be associated. */ cl_int enqueueMigrateMemObjects( const vector &memObjects, cl_mem_migration_flags flags, const vector* events = nullptr, Event* event = nullptr ) const { cl_event tmp; vector localMemObjects(memObjects.size()); for( int i = 0; i < (int)memObjects.size(); ++i ) { localMemObjects[i] = memObjects[i](); } cl_int err = detail::errHandler( ::clEnqueueMigrateMemObjects( object_, (cl_uint)memObjects.size(), localMemObjects.data(), flags, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 120 #if CL_HPP_TARGET_OPENCL_VERSION >= 210 /** * Enqueues a command that will allow the host associate ranges within a set of * SVM allocations with a device. * @param sizes - The length from each pointer to migrate. */ template cl_int enqueueMigrateSVM( const cl::vector &svmRawPointers, const cl::vector &sizes, cl_mem_migration_flags flags = 0, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler(::clEnqueueSVMMigrateMem( object_, svmRawPointers.size(), static_cast(svmRawPointers.data()), sizes.data(), // array of sizes not passed flags, (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_MIGRATE_SVM_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Enqueues a command that will allow the host associate a set of SVM allocations with * a device. */ template cl_int enqueueMigrateSVM( const cl::vector &svmRawPointers, cl_mem_migration_flags flags = 0, const vector* events = nullptr, Event* event = nullptr) const { return enqueueMigrateSVM(svmRawPointers, cl::vector(svmRawPointers.size()), flags, events, event); } /** * Enqueues a command that will allow the host associate ranges within a set of * SVM allocations with a device. * @param sizes - The length from each pointer to migrate. */ template cl_int enqueueMigrateSVM( const cl::vector> &svmPointers, const cl::vector &sizes, cl_mem_migration_flags flags = 0, const vector* events = nullptr, Event* event = nullptr) const { cl::vector svmRawPointers; svmRawPointers.reserve(svmPointers.size()); for (auto p : svmPointers) { svmRawPointers.push_back(static_cast(p.get())); } return enqueueMigrateSVM(svmRawPointers, sizes, flags, events, event); } /** * Enqueues a command that will allow the host associate a set of SVM allocations with * a device. */ template cl_int enqueueMigrateSVM( const cl::vector> &svmPointers, cl_mem_migration_flags flags = 0, const vector* events = nullptr, Event* event = nullptr) const { return enqueueMigrateSVM(svmPointers, cl::vector(svmPointers.size()), flags, events, event); } /** * Enqueues a command that will allow the host associate ranges within a set of * SVM allocations with a device. * @param sizes - The length from the beginning of each container to migrate. */ template cl_int enqueueMigrateSVM( const cl::vector> &svmContainers, const cl::vector &sizes, cl_mem_migration_flags flags = 0, const vector* events = nullptr, Event* event = nullptr) const { cl::vector svmRawPointers; svmRawPointers.reserve(svmContainers.size()); for (auto p : svmContainers) { svmRawPointers.push_back(static_cast(p.data())); } return enqueueMigrateSVM(svmRawPointers, sizes, flags, events, event); } /** * Enqueues a command that will allow the host associate a set of SVM allocations with * a device. */ template cl_int enqueueMigrateSVM( const cl::vector> &svmContainers, cl_mem_migration_flags flags = 0, const vector* events = nullptr, Event* event = nullptr) const { return enqueueMigrateSVM(svmContainers, cl::vector(svmContainers.size()), flags, events, event); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 cl_int enqueueNDRangeKernel( const Kernel& kernel, const NDRange& offset, const NDRange& global, const NDRange& local = NullRange, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueNDRangeKernel( object_, kernel(), (cl_uint) global.dimensions(), offset.dimensions() != 0 ? (const size_type*) offset : nullptr, (const size_type*) global, local.dimensions() != 0 ? (const size_type*) local : nullptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_NDRANGE_KERNEL_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #if defined(CL_USE_DEPRECATED_OPENCL_1_2_APIS) CL_API_PREFIX__VERSION_1_2_DEPRECATED cl_int enqueueTask( const Kernel& kernel, const vector* events = nullptr, Event* event = nullptr) const CL_API_SUFFIX__VERSION_1_2_DEPRECATED { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueTask( object_, kernel(), (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_TASK_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #endif // #if defined(CL_USE_DEPRECATED_OPENCL_1_2_APIS) cl_int enqueueNativeKernel( void (CL_CALLBACK *userFptr)(void *), std::pair args, const vector* mem_objects = nullptr, const vector* mem_locs = nullptr, const vector* events = nullptr, Event* event = nullptr) const { size_type elements = 0; if (mem_objects != nullptr) { elements = mem_objects->size(); } vector mems(elements); for (unsigned int i = 0; i < elements; i++) { mems[i] = ((*mem_objects)[i])(); } cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueNativeKernel( object_, userFptr, args.first, args.second, (mem_objects != nullptr) ? (cl_uint) mem_objects->size() : 0, mems.data(), (mem_locs != nullptr && mem_locs->size() > 0) ? (const void **) &mem_locs->front() : nullptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_NATIVE_KERNEL); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } /** * Deprecated APIs for 1.2 */ #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) CL_API_PREFIX__VERSION_1_1_DEPRECATED cl_int enqueueMarker(Event* event = nullptr) const CL_API_SUFFIX__VERSION_1_1_DEPRECATED { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueMarker( object_, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_MARKER_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } CL_API_PREFIX__VERSION_1_1_DEPRECATED cl_int enqueueWaitForEvents(const vector& events) const CL_API_SUFFIX__VERSION_1_1_DEPRECATED { return detail::errHandler( ::clEnqueueWaitForEvents( object_, (cl_uint) events.size(), events.size() > 0 ? (const cl_event*) &events.front() : nullptr), __ENQUEUE_WAIT_FOR_EVENTS_ERR); } #endif // defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) cl_int enqueueAcquireGLObjects( const vector* mem_objects = nullptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueAcquireGLObjects( object_, (mem_objects != nullptr) ? (cl_uint) mem_objects->size() : 0, (mem_objects != nullptr && mem_objects->size() > 0) ? (const cl_mem *) &mem_objects->front(): nullptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_ACQUIRE_GL_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueReleaseGLObjects( const vector* mem_objects = nullptr, const vector* events = nullptr, Event* event = nullptr) const { cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueReleaseGLObjects( object_, (mem_objects != nullptr) ? (cl_uint) mem_objects->size() : 0, (mem_objects != nullptr && mem_objects->size() > 0) ? (const cl_mem *) &mem_objects->front(): nullptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_RELEASE_GL_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #if defined (CL_HPP_USE_DX_INTEROP) typedef CL_API_ENTRY cl_int (CL_API_CALL *PFN_clEnqueueAcquireD3D10ObjectsKHR)( cl_command_queue command_queue, cl_uint num_objects, const cl_mem* mem_objects, cl_uint num_events_in_wait_list, const cl_event* event_wait_list, cl_event* event); typedef CL_API_ENTRY cl_int (CL_API_CALL *PFN_clEnqueueReleaseD3D10ObjectsKHR)( cl_command_queue command_queue, cl_uint num_objects, const cl_mem* mem_objects, cl_uint num_events_in_wait_list, const cl_event* event_wait_list, cl_event* event); cl_int enqueueAcquireD3D10Objects( const vector* mem_objects = nullptr, const vector* events = nullptr, Event* event = nullptr) const { static PFN_clEnqueueAcquireD3D10ObjectsKHR pfn_clEnqueueAcquireD3D10ObjectsKHR = nullptr; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 cl_context context = getInfo(); cl::Device device(getInfo()); cl_platform_id platform = device.getInfo(); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clEnqueueAcquireD3D10ObjectsKHR); #endif #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 CL_HPP_INIT_CL_EXT_FCN_PTR_(clEnqueueAcquireD3D10ObjectsKHR); #endif cl_event tmp; cl_int err = detail::errHandler( pfn_clEnqueueAcquireD3D10ObjectsKHR( object_, (mem_objects != nullptr) ? (cl_uint) mem_objects->size() : 0, (mem_objects != nullptr && mem_objects->size() > 0) ? (const cl_mem *) &mem_objects->front(): nullptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_ACQUIRE_GL_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } cl_int enqueueReleaseD3D10Objects( const vector* mem_objects = nullptr, const vector* events = nullptr, Event* event = nullptr) const { static PFN_clEnqueueReleaseD3D10ObjectsKHR pfn_clEnqueueReleaseD3D10ObjectsKHR = nullptr; #if CL_HPP_TARGET_OPENCL_VERSION >= 120 cl_context context = getInfo(); cl::Device device(getInfo()); cl_platform_id platform = device.getInfo(); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clEnqueueReleaseD3D10ObjectsKHR); #endif #if CL_HPP_MINIMUM_OPENCL_VERSION < 120 CL_HPP_INIT_CL_EXT_FCN_PTR_(clEnqueueReleaseD3D10ObjectsKHR); #endif cl_event tmp; cl_int err = detail::errHandler( pfn_clEnqueueReleaseD3D10ObjectsKHR( object_, (mem_objects != nullptr) ? (cl_uint) mem_objects->size() : 0, (mem_objects != nullptr && mem_objects->size() > 0) ? (const cl_mem *) &mem_objects->front(): nullptr, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_RELEASE_GL_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #endif /** * Deprecated APIs for 1.2 */ #if defined(CL_USE_DEPRECATED_OPENCL_1_1_APIS) CL_API_PREFIX__VERSION_1_1_DEPRECATED cl_int enqueueBarrier() const CL_API_SUFFIX__VERSION_1_1_DEPRECATED { return detail::errHandler( ::clEnqueueBarrier(object_), __ENQUEUE_BARRIER_ERR); } #endif // CL_USE_DEPRECATED_OPENCL_1_1_APIS cl_int flush() const { return detail::errHandler(::clFlush(object_), __FLUSH_ERR); } cl_int finish() const { return detail::errHandler(::clFinish(object_), __FINISH_ERR); } #ifdef cl_khr_semaphore cl_int enqueueWaitSemaphores( const vector &sema_objects, const vector &sema_payloads = {}, const vector* events_wait_list = nullptr, Event *event = nullptr) const; cl_int enqueueSignalSemaphores( const vector &sema_objects, const vector& sema_payloads = {}, const vector* events_wait_list = nullptr, Event* event = nullptr); #endif // cl_khr_semaphore }; // CommandQueue CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag CommandQueue::default_initialized_; CL_HPP_DEFINE_STATIC_MEMBER_ CommandQueue CommandQueue::default_; CL_HPP_DEFINE_STATIC_MEMBER_ cl_int CommandQueue::default_error_ = CL_SUCCESS; #if CL_HPP_TARGET_OPENCL_VERSION >= 200 enum class DeviceQueueProperties : cl_command_queue_properties { None_ = 0,//Had to change this because "None" wouldn't compile in gcc. Profiling = CL_QUEUE_PROFILING_ENABLE, }; inline DeviceQueueProperties operator|(DeviceQueueProperties lhs, DeviceQueueProperties rhs) { return static_cast(static_cast(lhs) | static_cast(rhs)); } /*! \class DeviceCommandQueue * \brief DeviceCommandQueue interface for device cl_command_queues. */ class DeviceCommandQueue : public detail::Wrapper { public: /*! * Trivial empty constructor to create a null queue. */ DeviceCommandQueue() { } /*! * Default construct device command queue on default context and device */ DeviceCommandQueue(DeviceQueueProperties properties, cl_int* err = nullptr) { cl_int error; cl::Context context = cl::Context::getDefault(); cl::Device device = cl::Device::getDefault(); cl_command_queue_properties mergedProperties = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | static_cast(properties); cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, mergedProperties, 0 }; object_ = ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } /*! * Create a device command queue for a specified device in the passed context. */ DeviceCommandQueue( const Context& context, const Device& device, DeviceQueueProperties properties = DeviceQueueProperties::None_, cl_int* err = nullptr) { cl_int error; cl_command_queue_properties mergedProperties = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | static_cast(properties); cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, mergedProperties, 0 }; object_ = ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } /*! * Create a device command queue for a specified device in the passed context. */ DeviceCommandQueue( const Context& context, const Device& device, cl_uint queueSize, DeviceQueueProperties properties = DeviceQueueProperties::None_, cl_int* err = nullptr) { cl_int error; cl_command_queue_properties mergedProperties = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | static_cast(properties); cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, mergedProperties, CL_QUEUE_SIZE, queueSize, 0 }; object_ = ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } /*! \brief Constructor from cl_command_queue - takes ownership. * * \param retainObject will cause the constructor to retain its cl object. * Defaults to false to maintain compatibility with * earlier versions. */ explicit DeviceCommandQueue(const cl_command_queue& commandQueue, bool retainObject = false) : detail::Wrapper(commandQueue, retainObject) { } DeviceCommandQueue& operator = (const cl_command_queue& rhs) { detail::Wrapper::operator=(rhs); return *this; } template cl_int getInfo(cl_command_queue_info name, T* param) const { return detail::errHandler( detail::getInfo( &::clGetCommandQueueInfo, object_, name, param), __GET_COMMAND_QUEUE_INFO_ERR); } template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_command_queue_info, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } /*! * Create a new default device command queue for the default device, * in the default context and of the default size. * If there is already a default queue for the specified device this * function will return the pre-existing queue. */ static DeviceCommandQueue makeDefault( cl_int *err = nullptr) { cl_int error; cl::Context context = cl::Context::getDefault(); cl::Device device = cl::Device::getDefault(); cl_command_queue_properties properties = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | CL_QUEUE_ON_DEVICE_DEFAULT; cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, properties, 0 }; DeviceCommandQueue deviceQueue( ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error)); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } return deviceQueue; } /*! * Create a new default device command queue for the specified device * and of the default size. * If there is already a default queue for the specified device this * function will return the pre-existing queue. */ static DeviceCommandQueue makeDefault( const Context &context, const Device &device, cl_int *err = nullptr) { cl_int error; cl_command_queue_properties properties = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | CL_QUEUE_ON_DEVICE_DEFAULT; cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, properties, 0 }; DeviceCommandQueue deviceQueue( ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error)); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } return deviceQueue; } /*! * Create a new default device command queue for the specified device * and of the requested size in bytes. * If there is already a default queue for the specified device this * function will return the pre-existing queue. */ static DeviceCommandQueue makeDefault( const Context &context, const Device &device, cl_uint queueSize, cl_int *err = nullptr) { cl_int error; cl_command_queue_properties properties = CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | CL_QUEUE_ON_DEVICE_DEFAULT; cl_queue_properties queue_properties[] = { CL_QUEUE_PROPERTIES, properties, CL_QUEUE_SIZE, queueSize, 0 }; DeviceCommandQueue deviceQueue( ::clCreateCommandQueueWithProperties( context(), device(), queue_properties, &error)); detail::errHandler(error, __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } return deviceQueue; } #if CL_HPP_TARGET_OPENCL_VERSION >= 210 /*! * Modify the default device command queue to be used for subsequent kernels. * This can update the default command queue for a device repeatedly to account * for kernels that rely on the default. * @return updated default device command queue. */ static DeviceCommandQueue updateDefault(const Context &context, const Device &device, const DeviceCommandQueue &default_queue, cl_int *err = nullptr) { cl_int error; error = clSetDefaultDeviceCommandQueue(context.get(), device.get(), default_queue.get()); detail::errHandler(error, __SET_DEFAULT_DEVICE_COMMAND_QUEUE_ERR); if (err != nullptr) { *err = error; } return default_queue; } /*! * Return the current default command queue for the specified command queue */ static DeviceCommandQueue getDefault(const CommandQueue &queue, cl_int * err = nullptr) { return queue.getInfo(err); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 210 }; // DeviceCommandQueue namespace detail { // Specialization for device command queue template <> struct KernelArgumentHandler { static size_type size(const cl::DeviceCommandQueue&) { return sizeof(cl_command_queue); } static const cl_command_queue* ptr(const cl::DeviceCommandQueue& value) { return &(value()); } }; } // namespace detail #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 template< typename IteratorType > Buffer::Buffer( const Context &context, IteratorType startIterator, IteratorType endIterator, bool readOnly, bool useHostPtr, cl_int* err) { typedef typename std::iterator_traits::value_type DataType; cl_int error; cl_mem_flags flags = 0; if( readOnly ) { flags |= CL_MEM_READ_ONLY; } else { flags |= CL_MEM_READ_WRITE; } if( useHostPtr ) { flags |= CL_MEM_USE_HOST_PTR; } size_type size = sizeof(DataType)*(endIterator - startIterator); if( useHostPtr ) { object_ = ::clCreateBuffer(context(), flags, size, const_cast(&*startIterator), &error); } else { object_ = ::clCreateBuffer(context(), flags, size, 0, &error); } detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } if( !useHostPtr ) { CommandQueue queue(context, 0, &error); detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } error = cl::copy(queue, startIterator, endIterator, *this); detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } } } template< typename IteratorType > Buffer::Buffer( const CommandQueue &queue, IteratorType startIterator, IteratorType endIterator, bool readOnly, bool useHostPtr, cl_int* err) { typedef typename std::iterator_traits::value_type DataType; cl_int error; cl_mem_flags flags = 0; if (readOnly) { flags |= CL_MEM_READ_ONLY; } else { flags |= CL_MEM_READ_WRITE; } if (useHostPtr) { flags |= CL_MEM_USE_HOST_PTR; } size_type size = sizeof(DataType)*(endIterator - startIterator); Context context = queue.getInfo(); if (useHostPtr) { object_ = ::clCreateBuffer(context(), flags, size, const_cast(&*startIterator), &error); } else { object_ = ::clCreateBuffer(context(), flags, size, 0, &error); } detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } if (!useHostPtr) { error = cl::copy(queue, startIterator, endIterator, *this); detail::errHandler(error, __CREATE_BUFFER_ERR); if (err != nullptr) { *err = error; } } } inline cl_int enqueueReadBuffer( const Buffer& buffer, cl_bool blocking, size_type offset, size_type size, void* ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueReadBuffer(buffer, blocking, offset, size, ptr, events, event); } inline cl_int enqueueWriteBuffer( const Buffer& buffer, cl_bool blocking, size_type offset, size_type size, const void* ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueWriteBuffer(buffer, blocking, offset, size, ptr, events, event); } inline void* enqueueMapBuffer( const Buffer& buffer, cl_bool blocking, cl_map_flags flags, size_type offset, size_type size, const vector* events = nullptr, Event* event = nullptr, cl_int* err = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR); if (err != nullptr) { *err = error; } void * result = ::clEnqueueMapBuffer( queue(), buffer(), blocking, flags, offset, size, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (cl_event*) event, &error); detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR); if (err != nullptr) { *err = error; } return result; } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /** * Enqueues to the default queue a command that will allow the host to * update a region of a coarse-grained SVM buffer. * This variant takes a raw SVM pointer. */ template inline cl_int enqueueMapSVM( T* ptr, cl_bool blocking, cl_map_flags flags, size_type size, const vector* events, Event* event) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR); } return queue.enqueueMapSVM( ptr, blocking, flags, size, events, event); } /** * Enqueues to the default queue a command that will allow the host to * update a region of a coarse-grained SVM buffer. * This variant takes a cl::pointer instance. */ template inline cl_int enqueueMapSVM( cl::pointer &ptr, cl_bool blocking, cl_map_flags flags, size_type size, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR); } return queue.enqueueMapSVM( ptr, blocking, flags, size, events, event); } /** * Enqueues to the default queue a command that will allow the host to * update a region of a coarse-grained SVM buffer. * This variant takes a cl::vector instance. */ template inline cl_int enqueueMapSVM( cl::vector &container, cl_bool blocking, cl_map_flags flags, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR); } return queue.enqueueMapSVM( container, blocking, flags, events, event); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 inline cl_int enqueueUnmapMemObject( const Memory& memory, void* mapped_ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); detail::errHandler(error, __ENQUEUE_MAP_BUFFER_ERR); if (error != CL_SUCCESS) { return error; } cl_event tmp; cl_int err = detail::errHandler( ::clEnqueueUnmapMemObject( queue(), memory(), mapped_ptr, (events != nullptr) ? (cl_uint)events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*)&events->front() : nullptr, (event != nullptr) ? &tmp : nullptr), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /** * Enqueues to the default queue a command that will release a coarse-grained * SVM buffer back to the OpenCL runtime. * This variant takes a raw SVM pointer. */ template inline cl_int enqueueUnmapSVM( T* ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return detail::errHandler(error, __ENQUEUE_UNMAP_MEM_OBJECT_ERR); } return detail::errHandler(queue.enqueueUnmapSVM(ptr, events, event), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); } /** * Enqueues to the default queue a command that will release a coarse-grained * SVM buffer back to the OpenCL runtime. * This variant takes a cl::pointer instance. */ template inline cl_int enqueueUnmapSVM( cl::pointer &ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return detail::errHandler(error, __ENQUEUE_UNMAP_MEM_OBJECT_ERR); } return detail::errHandler(queue.enqueueUnmapSVM(ptr, events, event), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); } /** * Enqueues to the default queue a command that will release a coarse-grained * SVM buffer back to the OpenCL runtime. * This variant takes a cl::vector instance. */ template inline cl_int enqueueUnmapSVM( cl::vector &container, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return detail::errHandler(error, __ENQUEUE_UNMAP_MEM_OBJECT_ERR); } return detail::errHandler(queue.enqueueUnmapSVM(container, events, event), __ENQUEUE_UNMAP_MEM_OBJECT_ERR); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 inline cl_int enqueueCopyBuffer( const Buffer& src, const Buffer& dst, size_type src_offset, size_type dst_offset, size_type size, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueCopyBuffer(src, dst, src_offset, dst_offset, size, events, event); } /** * Blocking copy operation between iterators and a buffer. * Host to Device. * Uses default command queue. */ template< typename IteratorType > inline cl_int copy( IteratorType startIterator, IteratorType endIterator, cl::Buffer &buffer ) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) return error; return cl::copy(queue, startIterator, endIterator, buffer); } /** * Blocking copy operation between iterators and a buffer. * Device to Host. * Uses default command queue. */ template< typename IteratorType > inline cl_int copy( const cl::Buffer &buffer, IteratorType startIterator, IteratorType endIterator ) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) return error; return cl::copy(queue, buffer, startIterator, endIterator); } /** * Blocking copy operation between iterators and a buffer. * Host to Device. * Uses specified queue. */ template< typename IteratorType > inline cl_int copy( const CommandQueue &queue, IteratorType startIterator, IteratorType endIterator, cl::Buffer &buffer ) { typedef typename std::iterator_traits::value_type DataType; cl_int error; size_type length = endIterator-startIterator; size_type byteLength = length*sizeof(DataType); DataType *pointer = static_cast(queue.enqueueMapBuffer(buffer, CL_TRUE, CL_MAP_WRITE, 0, byteLength, 0, 0, &error)); // if exceptions enabled, enqueueMapBuffer will throw if( error != CL_SUCCESS ) { return error; } #if defined(_MSC_VER) std::copy( startIterator, endIterator, stdext::checked_array_iterator( pointer, length)); #else std::copy(startIterator, endIterator, pointer); #endif Event endEvent; error = queue.enqueueUnmapMemObject(buffer, pointer, 0, &endEvent); // if exceptions enabled, enqueueUnmapMemObject will throw if( error != CL_SUCCESS ) { return error; } endEvent.wait(); return CL_SUCCESS; } /** * Blocking copy operation between iterators and a buffer. * Device to Host. * Uses specified queue. */ template< typename IteratorType > inline cl_int copy( const CommandQueue &queue, const cl::Buffer &buffer, IteratorType startIterator, IteratorType endIterator ) { typedef typename std::iterator_traits::value_type DataType; cl_int error; size_type length = endIterator-startIterator; size_type byteLength = length*sizeof(DataType); DataType *pointer = static_cast(queue.enqueueMapBuffer(buffer, CL_TRUE, CL_MAP_READ, 0, byteLength, 0, 0, &error)); // if exceptions enabled, enqueueMapBuffer will throw if( error != CL_SUCCESS ) { return error; } std::copy(pointer, pointer + length, startIterator); Event endEvent; error = queue.enqueueUnmapMemObject(buffer, pointer, 0, &endEvent); // if exceptions enabled, enqueueUnmapMemObject will throw if( error != CL_SUCCESS ) { return error; } endEvent.wait(); return CL_SUCCESS; } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 /** * Blocking SVM map operation - performs a blocking map underneath. */ template inline cl_int mapSVM(cl::vector &container) { return enqueueMapSVM(container, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE); } /** * Blocking SVM map operation - performs a blocking map underneath. */ template inline cl_int unmapSVM(cl::vector &container) { return enqueueUnmapSVM(container); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 #if CL_HPP_TARGET_OPENCL_VERSION >= 110 inline cl_int enqueueReadBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, void *ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueReadBufferRect( buffer, blocking, buffer_offset, host_offset, region, buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, events, event); } inline cl_int enqueueReadBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, void* ptr, const vector* events = nullptr, Event* event = nullptr) { return enqueueReadBufferRect( buffer, blocking, { buffer_offset[0], buffer_offset[1], 0 }, { host_offset[0], host_offset[1], 0 }, { region[0], region[1], 1 }, buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, events, event); } inline cl_int enqueueWriteBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, const void *ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueWriteBufferRect( buffer, blocking, buffer_offset, host_offset, region, buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, events, event); } inline cl_int enqueueWriteBufferRect( const Buffer& buffer, cl_bool blocking, const array& buffer_offset, const array& host_offset, const array& region, size_type buffer_row_pitch, size_type buffer_slice_pitch, size_type host_row_pitch, size_type host_slice_pitch, const void* ptr, const vector* events = nullptr, Event* event = nullptr) { return enqueueWriteBufferRect( buffer, blocking, { buffer_offset[0], buffer_offset[1], 0 }, { host_offset[0], host_offset[1], 0 }, { region[0], region[1], 1 }, buffer_row_pitch, buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, events, event); } inline cl_int enqueueCopyBufferRect( const Buffer& src, const Buffer& dst, const array& src_origin, const array& dst_origin, const array& region, size_type src_row_pitch, size_type src_slice_pitch, size_type dst_row_pitch, size_type dst_slice_pitch, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueCopyBufferRect( src, dst, src_origin, dst_origin, region, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch, events, event); } inline cl_int enqueueCopyBufferRect( const Buffer& src, const Buffer& dst, const array& src_origin, const array& dst_origin, const array& region, size_type src_row_pitch, size_type src_slice_pitch, size_type dst_row_pitch, size_type dst_slice_pitch, const vector* events = nullptr, Event* event = nullptr) { return enqueueCopyBufferRect( src, dst, { src_origin[0], src_origin[1], 0 }, { dst_origin[0], dst_origin[1], 0 }, { region[0], region[1], 1 }, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch, events, event); } #endif // CL_HPP_TARGET_OPENCL_VERSION >= 110 inline cl_int enqueueReadImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, void* ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueReadImage( image, blocking, origin, region, row_pitch, slice_pitch, ptr, events, event); } inline cl_int enqueueReadImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, void* ptr, const vector* events = nullptr, Event* event = nullptr) { return enqueueReadImage( image, blocking, { origin[0], origin[1], 0 }, { region[0], region[1], 1 }, row_pitch, slice_pitch, ptr, events, event); } inline cl_int enqueueWriteImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, const void* ptr, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueWriteImage( image, blocking, origin, region, row_pitch, slice_pitch, ptr, events, event); } inline cl_int enqueueWriteImage( const Image& image, cl_bool blocking, const array& origin, const array& region, size_type row_pitch, size_type slice_pitch, const void* ptr, const vector* events = nullptr, Event* event = nullptr) { return enqueueWriteImage( image, blocking, { origin[0], origin[1], 0 }, { region[0], region[1], 1 }, row_pitch, slice_pitch, ptr, events, event); } inline cl_int enqueueCopyImage( const Image& src, const Image& dst, const array& src_origin, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueCopyImage( src, dst, src_origin, dst_origin, region, events, event); } inline cl_int enqueueCopyImage( const Image& src, const Image& dst, const array& src_origin, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) { return enqueueCopyImage( src, dst, { src_origin[0], src_origin[1], 0 }, { dst_origin[0], dst_origin[1], 0 }, { region[0], region[1], 1 }, events, event); } inline cl_int enqueueCopyImageToBuffer( const Image& src, const Buffer& dst, const array& src_origin, const array& region, size_type dst_offset, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueCopyImageToBuffer( src, dst, src_origin, region, dst_offset, events, event); } inline cl_int enqueueCopyImageToBuffer( const Image& src, const Buffer& dst, const array& src_origin, const array& region, size_type dst_offset, const vector* events = nullptr, Event* event = nullptr) { return enqueueCopyImageToBuffer( src, dst, { src_origin[0], src_origin[1], 0 }, { region[0], region[1], 1 }, dst_offset, events, event); } inline cl_int enqueueCopyBufferToImage( const Buffer& src, const Image& dst, size_type src_offset, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.enqueueCopyBufferToImage( src, dst, src_offset, dst_origin, region, events, event); } inline cl_int enqueueCopyBufferToImage( const Buffer& src, const Image& dst, size_type src_offset, const array& dst_origin, const array& region, const vector* events = nullptr, Event* event = nullptr) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return enqueueCopyBufferToImage( src, dst, src_offset, { dst_origin[0], dst_origin[1], 0 }, { region[0], region[1], 1 }, events, event); } inline cl_int flush(void) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.flush(); } inline cl_int finish(void) { cl_int error; CommandQueue queue = CommandQueue::getDefault(&error); if (error != CL_SUCCESS) { return error; } return queue.finish(); } class EnqueueArgs { private: CommandQueue queue_; const NDRange offset_; const NDRange global_; const NDRange local_; vector events_; template friend class KernelFunctor; public: EnqueueArgs(NDRange global) : queue_(CommandQueue::getDefault()), offset_(NullRange), global_(global), local_(NullRange) { } EnqueueArgs(NDRange global, NDRange local) : queue_(CommandQueue::getDefault()), offset_(NullRange), global_(global), local_(local) { } EnqueueArgs(NDRange offset, NDRange global, NDRange local) : queue_(CommandQueue::getDefault()), offset_(offset), global_(global), local_(local) { } EnqueueArgs(Event e, NDRange global) : queue_(CommandQueue::getDefault()), offset_(NullRange), global_(global), local_(NullRange) { events_.push_back(e); } EnqueueArgs(Event e, NDRange global, NDRange local) : queue_(CommandQueue::getDefault()), offset_(NullRange), global_(global), local_(local) { events_.push_back(e); } EnqueueArgs(Event e, NDRange offset, NDRange global, NDRange local) : queue_(CommandQueue::getDefault()), offset_(offset), global_(global), local_(local) { events_.push_back(e); } EnqueueArgs(const vector &events, NDRange global) : queue_(CommandQueue::getDefault()), offset_(NullRange), global_(global), local_(NullRange), events_(events) { } EnqueueArgs(const vector &events, NDRange global, NDRange local) : queue_(CommandQueue::getDefault()), offset_(NullRange), global_(global), local_(local), events_(events) { } EnqueueArgs(const vector &events, NDRange offset, NDRange global, NDRange local) : queue_(CommandQueue::getDefault()), offset_(offset), global_(global), local_(local), events_(events) { } EnqueueArgs(CommandQueue &queue, NDRange global) : queue_(queue), offset_(NullRange), global_(global), local_(NullRange) { } EnqueueArgs(CommandQueue &queue, NDRange global, NDRange local) : queue_(queue), offset_(NullRange), global_(global), local_(local) { } EnqueueArgs(CommandQueue &queue, NDRange offset, NDRange global, NDRange local) : queue_(queue), offset_(offset), global_(global), local_(local) { } EnqueueArgs(CommandQueue &queue, Event e, NDRange global) : queue_(queue), offset_(NullRange), global_(global), local_(NullRange) { events_.push_back(e); } EnqueueArgs(CommandQueue &queue, Event e, NDRange global, NDRange local) : queue_(queue), offset_(NullRange), global_(global), local_(local) { events_.push_back(e); } EnqueueArgs(CommandQueue &queue, Event e, NDRange offset, NDRange global, NDRange local) : queue_(queue), offset_(offset), global_(global), local_(local) { events_.push_back(e); } EnqueueArgs(CommandQueue &queue, const vector &events, NDRange global) : queue_(queue), offset_(NullRange), global_(global), local_(NullRange), events_(events) { } EnqueueArgs(CommandQueue &queue, const vector &events, NDRange global, NDRange local) : queue_(queue), offset_(NullRange), global_(global), local_(local), events_(events) { } EnqueueArgs(CommandQueue &queue, const vector &events, NDRange offset, NDRange global, NDRange local) : queue_(queue), offset_(offset), global_(global), local_(local), events_(events) { } }; //---------------------------------------------------------------------------------------------- /** * Type safe kernel functor. * */ template class KernelFunctor { private: Kernel kernel_; template void setArgs(T0&& t0, T1s&&... t1s) { kernel_.setArg(index, t0); setArgs(std::forward(t1s)...); } template void setArgs(T0&& t0) { kernel_.setArg(index, t0); } template void setArgs() { } public: KernelFunctor(Kernel kernel) : kernel_(kernel) {} KernelFunctor( const Program& program, const string name, cl_int * err = nullptr) : kernel_(program, name.c_str(), err) {} //! \brief Return type of the functor typedef Event result_type; /** * Enqueue kernel. * @param args Launch parameters of the kernel. * @param t0... List of kernel arguments based on the template type of the functor. */ Event operator() ( const EnqueueArgs& args, Ts... ts) { Event event; setArgs<0>(std::forward(ts)...); args.queue_.enqueueNDRangeKernel( kernel_, args.offset_, args.global_, args.local_, &args.events_, &event); return event; } /** * Enqueue kernel with support for error code. * @param args Launch parameters of the kernel. * @param t0... List of kernel arguments based on the template type of the functor. * @param error Out parameter returning the error code from the execution. */ Event operator() ( const EnqueueArgs& args, Ts... ts, cl_int &error) { Event event; setArgs<0>(std::forward(ts)...); error = args.queue_.enqueueNDRangeKernel( kernel_, args.offset_, args.global_, args.local_, &args.events_, &event); return event; } #if CL_HPP_TARGET_OPENCL_VERSION >= 200 cl_int setSVMPointers(const vector &pointerList) { return kernel_.setSVMPointers(pointerList); } template cl_int setSVMPointers(const T0 &t0, T1s &... ts) { return kernel_.setSVMPointers(t0, ts...); } #endif // #if CL_HPP_TARGET_OPENCL_VERSION >= 200 Kernel getKernel() { return kernel_; } }; namespace compatibility { /** * Backward compatibility class to ensure that cl.hpp code works with opencl.hpp. * Please use KernelFunctor directly. */ template struct make_kernel { typedef KernelFunctor FunctorType; FunctorType functor_; make_kernel( const Program& program, const string name, cl_int * err = nullptr) : functor_(FunctorType(program, name, err)) {} make_kernel( const Kernel kernel) : functor_(FunctorType(kernel)) {} //! \brief Return type of the functor typedef Event result_type; //! \brief Function signature of kernel functor with no event dependency. typedef Event type_( const EnqueueArgs&, Ts...); Event operator()( const EnqueueArgs& enqueueArgs, Ts... args) { return functor_( enqueueArgs, args...); } }; } // namespace compatibility #ifdef cl_khr_semaphore class Semaphore : public detail::Wrapper { public: Semaphore() : detail::Wrapper() {} Semaphore( const Context &context, const vector& sema_props, cl_int *err = nullptr) { /* initialization of addresses to extension functions (it is done only once) */ std::call_once(ext_init_, initExtensions, context); cl_int error = CL_INVALID_OPERATION; if (pfn_clCreateSemaphoreWithPropertiesKHR) { object_ = pfn_clCreateSemaphoreWithPropertiesKHR( context(), sema_props.data(), &error); } detail::errHandler(error, __CREATE_SEMAPHORE_KHR_WITH_PROPERTIES_ERR); if (err != nullptr) { *err = error; } } Semaphore( const vector& sema_props, cl_int* err = nullptr):Semaphore(Context::getDefault(err), sema_props, err) {} explicit Semaphore(const cl_semaphore_khr& semaphore, bool retainObject = false) : detail::Wrapper(semaphore, retainObject) {} Semaphore& operator = (const cl_semaphore_khr& rhs) { detail::Wrapper::operator=(rhs); return *this; } template cl_int getInfo(cl_semaphore_info_khr name, T* param) const { if (pfn_clGetSemaphoreInfoKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __GET_SEMAPHORE_KHR_INFO_ERR); } return detail::errHandler( detail::getInfo(&pfn_clGetSemaphoreInfoKHR, object_, name, param), __GET_SEMAPHORE_KHR_INFO_ERR); } template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_semaphore_info_khr, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } cl_int retain() { if (pfn_clRetainSemaphoreKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __RETAIN_SEMAPHORE_KHR_ERR); } return pfn_clRetainSemaphoreKHR(object_); } cl_int release() { if (pfn_clReleaseSemaphoreKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __RELEASE_SEMAPHORE_KHR_ERR); } return pfn_clReleaseSemaphoreKHR(object_); } private: static std::once_flag ext_init_; static void initExtensions(const Context& context) { #if CL_HPP_TARGET_OPENCL_VERSION >= 120 Device device = context.getInfo().at(0); cl_platform_id platform = device.getInfo(); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCreateSemaphoreWithPropertiesKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clReleaseSemaphoreKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clRetainSemaphoreKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clEnqueueWaitSemaphoresKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clEnqueueSignalSemaphoresKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clGetSemaphoreInfoKHR); #else CL_HPP_INIT_CL_EXT_FCN_PTR_(clCreateSemaphoreWithPropertiesKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clReleaseSemaphoreKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clRetainSemaphoreKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clEnqueueWaitSemaphoresKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clEnqueueSignalSemaphoresKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clGetSemaphoreInfoKHR); #endif if ((pfn_clCreateSemaphoreWithPropertiesKHR == nullptr) && (pfn_clReleaseSemaphoreKHR == nullptr) && (pfn_clRetainSemaphoreKHR == nullptr) && (pfn_clEnqueueWaitSemaphoresKHR == nullptr) && (pfn_clEnqueueSignalSemaphoresKHR == nullptr) && (pfn_clGetSemaphoreInfoKHR == nullptr)) { detail::errHandler(CL_INVALID_VALUE, __CREATE_SEMAPHORE_KHR_WITH_PROPERTIES_ERR); } } }; CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag Semaphore::ext_init_; inline cl_int CommandQueue::enqueueWaitSemaphores( const vector &sema_objects, const vector &sema_payloads, const vector* events_wait_list, Event *event) const { cl_event tmp; cl_int err = CL_INVALID_OPERATION; if (pfn_clEnqueueWaitSemaphoresKHR != nullptr) { err = pfn_clEnqueueWaitSemaphoresKHR( object_, (cl_uint)sema_objects.size(), (const cl_semaphore_khr *) &sema_objects.front(), (sema_payloads.size() > 0) ? &sema_payloads.front() : nullptr, (events_wait_list != nullptr) ? (cl_uint) events_wait_list->size() : 0, (events_wait_list != nullptr && events_wait_list->size() > 0) ? (cl_event*) &events_wait_list->front() : nullptr, (event != nullptr) ? &tmp : nullptr); } detail::errHandler(err, __ENQUEUE_WAIT_SEMAPHORE_KHR_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } inline cl_int CommandQueue::enqueueSignalSemaphores( const vector &sema_objects, const vector& sema_payloads, const vector* events_wait_list, Event* event) { cl_event tmp; cl_int err = CL_INVALID_OPERATION; if (pfn_clEnqueueSignalSemaphoresKHR != nullptr) { err = pfn_clEnqueueSignalSemaphoresKHR( object_, (cl_uint)sema_objects.size(), (const cl_semaphore_khr*) &sema_objects.front(), (sema_payloads.size() > 0) ? &sema_payloads.front() : nullptr, (events_wait_list != nullptr) ? (cl_uint) events_wait_list->size() : 0, (events_wait_list != nullptr && events_wait_list->size() > 0) ? (cl_event*) &events_wait_list->front() : nullptr, (event != nullptr) ? &tmp : nullptr); } detail::errHandler(err, __ENQUEUE_SIGNAL_SEMAPHORE_KHR_ERR); if (event != nullptr && err == CL_SUCCESS) *event = tmp; return err; } #endif // cl_khr_semaphore #if defined(cl_khr_command_buffer) /*! \class CommandBufferKhr * \brief CommandBufferKhr interface for cl_command_buffer_khr. */ class CommandBufferKhr : public detail::Wrapper { public: //! \brief Default constructor - initializes to nullptr. CommandBufferKhr() : detail::Wrapper() { } explicit CommandBufferKhr(const vector &queues, cl_command_buffer_properties_khr properties = 0, cl_int* errcode_ret = nullptr) { cl_command_buffer_properties_khr command_buffer_properties[] = { CL_COMMAND_BUFFER_FLAGS_KHR, properties, 0 }; /* initialization of addresses to extension functions (it is done only once) */ std::call_once(ext_init_, [&] { initExtensions(queues[0].getInfo()); }); cl_int error = CL_INVALID_OPERATION; static_assert(sizeof(cl::CommandQueue) == sizeof(cl_command_queue), "Size of cl::CommandQueue must be equal to size of cl_command_queue"); if (pfn_clCreateCommandBufferKHR) { object_ = pfn_clCreateCommandBufferKHR((cl_uint) queues.size(), (cl_command_queue *) &queues.front(), command_buffer_properties, &error); } detail::errHandler(error, __CREATE_COMMAND_BUFFER_KHR_ERR); if (errcode_ret != nullptr) { *errcode_ret = error; } } explicit CommandBufferKhr(const cl_command_buffer_khr& commandBufferKhr, bool retainObject = false) : detail::Wrapper(commandBufferKhr, retainObject) { } CommandBufferKhr& operator=(const cl_command_buffer_khr& rhs) { detail::Wrapper::operator=(rhs); return *this; } template cl_int getInfo(cl_command_buffer_info_khr name, T* param) const { if (pfn_clGetCommandBufferInfoKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __GET_COMMAND_BUFFER_INFO_KHR_ERR); } return detail::errHandler( detail::getInfo(pfn_clGetCommandBufferInfoKHR, object_, name, param), __GET_COMMAND_BUFFER_INFO_KHR_ERR); } template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_command_buffer_info_khr, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } cl_int finalizeCommandBuffer() const { return detail::errHandler(::clFinalizeCommandBufferKHR(object_), __FINALIZE_COMMAND_BUFFER_KHR_ERR); } cl_int enqueueCommandBuffer(vector &queues, const vector* events = nullptr, Event* event = nullptr) { if (pfn_clEnqueueCommandBufferKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __ENQUEUE_COMMAND_BUFFER_KHR_ERR); } static_assert(sizeof(cl::CommandQueue) == sizeof(cl_command_queue), "Size of cl::CommandQueue must be equal to size of cl_command_queue"); return detail::errHandler(pfn_clEnqueueCommandBufferKHR((cl_uint) queues.size(), (cl_command_queue *) &queues.front(), object_, (events != nullptr) ? (cl_uint) events->size() : 0, (events != nullptr && events->size() > 0) ? (cl_event*) &events->front() : nullptr, (cl_event*) event), __ENQUEUE_COMMAND_BUFFER_KHR_ERR); } cl_int commandBarrierWithWaitList(const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandBarrierWithWaitListKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_BARRIER_WITH_WAIT_LIST_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandBarrierWithWaitListKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_BARRIER_WITH_WAIT_LIST_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } cl_int commandCopyBuffer(const Buffer& src, const Buffer& dst, size_type src_offset, size_type dst_offset, size_type size, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandCopyBufferKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_COPY_BUFFER_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandCopyBufferKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, src(), dst(), src_offset, dst_offset, size, (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_COPY_BUFFER_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } cl_int commandCopyBufferRect(const Buffer& src, const Buffer& dst, const array& src_origin, const array& dst_origin, const array& region, size_type src_row_pitch, size_type src_slice_pitch, size_type dst_row_pitch, size_type dst_slice_pitch, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandCopyBufferRectKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_COPY_BUFFER_RECT_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandCopyBufferRectKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, src(), dst(), src_origin.data(), dst_origin.data(), region.data(), src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch, (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_COPY_BUFFER_RECT_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } cl_int commandCopyBufferToImage(const Buffer& src, const Image& dst, size_type src_offset, const array& dst_origin, const array& region, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandCopyBufferToImageKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_COPY_BUFFER_TO_IMAGE_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandCopyBufferToImageKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, src(), dst(), src_offset, dst_origin.data(), region.data(), (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_COPY_BUFFER_TO_IMAGE_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } cl_int commandCopyImage(const Image& src, const Image& dst, const array& src_origin, const array& dst_origin, const array& region, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandCopyImageKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_COPY_IMAGE_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandCopyImageKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, src(), dst(), src_origin.data(), dst_origin.data(), region.data(), (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_COPY_IMAGE_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } cl_int commandCopyImageToBuffer(const Image& src, const Buffer& dst, const array& src_origin, const array& region, size_type dst_offset, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandCopyImageToBufferKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_COPY_IMAGE_TO_BUFFER_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandCopyImageToBufferKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, src(), dst(), src_origin.data(), region.data(), dst_offset, (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_COPY_IMAGE_TO_BUFFER_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } template cl_int commandFillBuffer(const Buffer& buffer, PatternType pattern, size_type offset, size_type size, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandFillBufferKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_FILL_BUFFER_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandFillBufferKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, buffer(), static_cast(&pattern), sizeof(PatternType), offset, size, (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_FILL_BUFFER_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } cl_int commandFillImage(const Image& image, cl_float4 fillColor, const array& origin, const array& region, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandFillImageKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_FILL_IMAGE_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandFillImageKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, image(), static_cast(&fillColor), origin.data(), region.data(), (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_FILL_IMAGE_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } cl_int commandNDRangeKernel(const cl::vector &properties, const Kernel& kernel, const NDRange& offset, const NDRange& global, const NDRange& local = NullRange, const vector* sync_points_vec = nullptr, cl_sync_point_khr* sync_point = nullptr, MutableCommandKhr* mutable_handle = nullptr, const CommandQueue* command_queue = nullptr) { if (pfn_clCommandNDRangeKernelKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __COMMAND_NDRANGE_KERNEL_KHR_ERR); } cl_sync_point_khr tmp_sync_point; cl_int error = detail::errHandler( pfn_clCommandNDRangeKernelKHR(object_, (command_queue != nullptr) ? (*command_queue)() : nullptr, &properties[0], kernel(), (cl_uint) global.dimensions(), offset.dimensions() != 0 ? (const size_type*) offset : nullptr, (const size_type*) global, local.dimensions() != 0 ? (const size_type*) local : nullptr, (sync_points_vec != nullptr) ? (cl_uint) sync_points_vec->size() : 0, (sync_points_vec != nullptr && sync_points_vec->size() > 0) ? &sync_points_vec->front() : nullptr, (sync_point != nullptr) ? &tmp_sync_point : nullptr, (cl_mutable_command_khr*) mutable_handle), __COMMAND_NDRANGE_KERNEL_KHR_ERR); if (sync_point != nullptr && error == CL_SUCCESS) *sync_point = tmp_sync_point; return error; } #if defined(cl_khr_command_buffer_mutable_dispatch) cl_int updateMutableCommands(const cl_mutable_base_config_khr* mutable_config) { if (pfn_clUpdateMutableCommandsKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __UPDATE_MUTABLE_COMMANDS_KHR_ERR); } return detail::errHandler(pfn_clUpdateMutableCommandsKHR(object_, mutable_config), __UPDATE_MUTABLE_COMMANDS_KHR_ERR); } #endif /* cl_khr_command_buffer_mutable_dispatch */ private: static std::once_flag ext_init_; static void initExtensions(const cl::Device& device) { #if CL_HPP_TARGET_OPENCL_VERSION >= 120 cl_platform_id platform = device.getInfo(); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCreateCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clFinalizeCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clRetainCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clReleaseCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clGetCommandBufferInfoKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clEnqueueCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandBarrierWithWaitListKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandCopyBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandCopyBufferRectKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandCopyBufferToImageKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandCopyImageKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandCopyImageToBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandFillBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandFillImageKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clCommandNDRangeKernelKHR); #if defined(cl_khr_command_buffer_mutable_dispatch) CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clUpdateMutableCommandsKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_(platform, clGetMutableCommandInfoKHR); #endif /* cl_khr_command_buffer_mutable_dispatch */ #elif CL_HPP_TARGET_OPENCL_VERSION >= 110 CL_HPP_INIT_CL_EXT_FCN_PTR_(clCreateCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clFinalizeCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clRetainCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clReleaseCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clGetCommandBufferInfoKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clEnqueueCommandBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandBarrierWithWaitListKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandCopyBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandCopyBufferRectKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandCopyBufferToImageKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandCopyImageKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandCopyImageToBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandFillBufferKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandFillImageKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clCommandNDRangeKernelKHR); #if defined(cl_khr_command_buffer_mutable_dispatch) CL_HPP_INIT_CL_EXT_FCN_PTR_(clUpdateMutableCommandsKHR); CL_HPP_INIT_CL_EXT_FCN_PTR_(clGetMutableCommandInfoKHR); #endif /* cl_khr_command_buffer_mutable_dispatch */ #endif if ((pfn_clCreateCommandBufferKHR == nullptr) && (pfn_clFinalizeCommandBufferKHR == nullptr) && (pfn_clRetainCommandBufferKHR == nullptr) && (pfn_clReleaseCommandBufferKHR == nullptr) && (pfn_clGetCommandBufferInfoKHR == nullptr) && (pfn_clEnqueueCommandBufferKHR == nullptr) && (pfn_clCommandBarrierWithWaitListKHR == nullptr) && (pfn_clCommandCopyBufferKHR == nullptr) && (pfn_clCommandCopyBufferRectKHR == nullptr) && (pfn_clCommandCopyBufferToImageKHR == nullptr) && (pfn_clCommandCopyImageKHR == nullptr) && (pfn_clCommandCopyImageToBufferKHR == nullptr) && (pfn_clCommandFillBufferKHR == nullptr) && (pfn_clCommandFillImageKHR == nullptr) && (pfn_clCommandNDRangeKernelKHR == nullptr) #if defined(cl_khr_command_buffer_mutable_dispatch) && (pfn_clUpdateMutableCommandsKHR == nullptr) && (pfn_clGetMutableCommandInfoKHR == nullptr) #endif /* cl_khr_command_buffer_mutable_dispatch */ ) { detail::errHandler(CL_INVALID_VALUE, __CREATE_COMMAND_BUFFER_KHR_ERR); } } }; // CommandBufferKhr CL_HPP_DEFINE_STATIC_MEMBER_ std::once_flag CommandBufferKhr::ext_init_; #if defined(cl_khr_command_buffer_mutable_dispatch) /*! \class MutableCommandKhr * \brief MutableCommandKhr interface for cl_mutable_command_khr. */ class MutableCommandKhr : public detail::Wrapper { public: //! \brief Default constructor - initializes to nullptr. MutableCommandKhr() : detail::Wrapper() { } explicit MutableCommandKhr(const cl_mutable_command_khr& mutableCommandKhr, bool retainObject = false) : detail::Wrapper(mutableCommandKhr, retainObject) { } MutableCommandKhr& operator=(const cl_mutable_command_khr& rhs) { detail::Wrapper::operator=(rhs); return *this; } template cl_int getInfo(cl_mutable_command_info_khr name, T* param) const { if (pfn_clGetMutableCommandInfoKHR == nullptr) { return detail::errHandler(CL_INVALID_OPERATION, __GET_MUTABLE_COMMAND_INFO_KHR_ERR); } return detail::errHandler( detail::getInfo(pfn_clGetMutableCommandInfoKHR, object_, name, param), __GET_MUTABLE_COMMAND_INFO_KHR_ERR); } template typename detail::param_traits::param_type getInfo(cl_int* err = nullptr) const { typename detail::param_traits< detail::cl_mutable_command_info_khr, name>::param_type param; cl_int result = getInfo(name, ¶m); if (err != nullptr) { *err = result; } return param; } }; // MutableCommandKhr #endif /* cl_khr_command_buffer_mutable_dispatch */ #endif // cl_khr_command_buffer //---------------------------------------------------------------------------------------------------------------------- #undef CL_HPP_ERR_STR_ #if !defined(CL_HPP_USER_OVERRIDE_ERROR_STRINGS) #undef __GET_DEVICE_INFO_ERR #undef __GET_PLATFORM_INFO_ERR #undef __GET_DEVICE_IDS_ERR #undef __GET_PLATFORM_IDS_ERR #undef __GET_CONTEXT_INFO_ERR #undef __GET_EVENT_INFO_ERR #undef __GET_EVENT_PROFILE_INFO_ERR #undef __GET_MEM_OBJECT_INFO_ERR #undef __GET_IMAGE_INFO_ERR #undef __GET_SAMPLER_INFO_ERR #undef __GET_KERNEL_INFO_ERR #undef __GET_KERNEL_ARG_INFO_ERR #undef __GET_KERNEL_SUB_GROUP_INFO_ERR #undef __GET_KERNEL_WORK_GROUP_INFO_ERR #undef __GET_PROGRAM_INFO_ERR #undef __GET_PROGRAM_BUILD_INFO_ERR #undef __GET_COMMAND_QUEUE_INFO_ERR #undef __CREATE_CONTEXT_ERR #undef __CREATE_CONTEXT_FROM_TYPE_ERR #undef __CREATE_COMMAND_BUFFER_KHR_ERR #undef __GET_COMMAND_BUFFER_INFO_KHR_ERR #undef __FINALIZE_COMMAND_BUFFER_KHR_ERR #undef __ENQUEUE_COMMAND_BUFFER_KHR_ERR #undef __COMMAND_BARRIER_WITH_WAIT_LIST_KHR_ERR #undef __COMMAND_COPY_BUFFER_KHR_ERR #undef __COMMAND_COPY_BUFFER_RECT_KHR_ERR #undef __COMMAND_COPY_BUFFER_TO_IMAGE_KHR_ERR #undef __COMMAND_COPY_IMAGE_KHR_ERR #undef __COMMAND_COPY_IMAGE_TO_BUFFER_KHR_ERR #undef __COMMAND_FILL_BUFFER_KHR_ERR #undef __COMMAND_FILL_IMAGE_KHR_ERR #undef __COMMAND_NDRANGE_KERNEL_KHR_ERR #undef __UPDATE_MUTABLE_COMMANDS_KHR_ERR #undef __GET_MUTABLE_COMMAND_INFO_KHR_ERR #undef __RETAIN_COMMAND_BUFFER_KHR_ERR #undef __RELEASE_COMMAND_BUFFER_KHR_ERR #undef __GET_SUPPORTED_IMAGE_FORMATS_ERR #undef __SET_CONTEXT_DESCTRUCTOR_CALLBACK_ERR #undef __CREATE_BUFFER_ERR #undef __COPY_ERR #undef __CREATE_SUBBUFFER_ERR #undef __CREATE_GL_BUFFER_ERR #undef __CREATE_GL_RENDER_BUFFER_ERR #undef __GET_GL_OBJECT_INFO_ERR #undef __CREATE_IMAGE_ERR #undef __CREATE_GL_TEXTURE_ERR #undef __IMAGE_DIMENSION_ERR #undef __SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR #undef __CREATE_USER_EVENT_ERR #undef __SET_USER_EVENT_STATUS_ERR #undef __SET_EVENT_CALLBACK_ERR #undef __WAIT_FOR_EVENTS_ERR #undef __CREATE_KERNEL_ERR #undef __SET_KERNEL_ARGS_ERR #undef __CREATE_PROGRAM_WITH_SOURCE_ERR #undef __CREATE_PROGRAM_WITH_BINARY_ERR #undef __CREATE_PROGRAM_WITH_IL_ERR #undef __CREATE_PROGRAM_WITH_BUILT_IN_KERNELS_ERR #undef __BUILD_PROGRAM_ERR #undef __COMPILE_PROGRAM_ERR #undef __LINK_PROGRAM_ERR #undef __CREATE_KERNELS_IN_PROGRAM_ERR #undef __CREATE_COMMAND_QUEUE_WITH_PROPERTIES_ERR #undef __CREATE_SAMPLER_WITH_PROPERTIES_ERR #undef __SET_COMMAND_QUEUE_PROPERTY_ERR #undef __ENQUEUE_READ_BUFFER_ERR #undef __ENQUEUE_READ_BUFFER_RECT_ERR #undef __ENQUEUE_WRITE_BUFFER_ERR #undef __ENQUEUE_WRITE_BUFFER_RECT_ERR #undef __ENQEUE_COPY_BUFFER_ERR #undef __ENQEUE_COPY_BUFFER_RECT_ERR #undef __ENQUEUE_FILL_BUFFER_ERR #undef __ENQUEUE_READ_IMAGE_ERR #undef __ENQUEUE_WRITE_IMAGE_ERR #undef __ENQUEUE_COPY_IMAGE_ERR #undef __ENQUEUE_FILL_IMAGE_ERR #undef __ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR #undef __ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR #undef __ENQUEUE_MAP_BUFFER_ERR #undef __ENQUEUE_MAP_IMAGE_ERR #undef __ENQUEUE_UNMAP_MEM_OBJECT_ERR #undef __ENQUEUE_NDRANGE_KERNEL_ERR #undef __ENQUEUE_NATIVE_KERNEL #undef __ENQUEUE_MIGRATE_MEM_OBJECTS_ERR #undef __ENQUEUE_MIGRATE_SVM_ERR #undef __ENQUEUE_ACQUIRE_GL_ERR #undef __ENQUEUE_RELEASE_GL_ERR #undef __CREATE_PIPE_ERR #undef __GET_PIPE_INFO_ERR #undef __RETAIN_ERR #undef __RELEASE_ERR #undef __FLUSH_ERR #undef __FINISH_ERR #undef __VECTOR_CAPACITY_ERR #undef __CREATE_SUB_DEVICES_ERR #undef __CREATE_SUB_DEVICES_ERR #undef __ENQUEUE_MARKER_ERR #undef __ENQUEUE_WAIT_FOR_EVENTS_ERR #undef __ENQUEUE_BARRIER_ERR #undef __UNLOAD_COMPILER_ERR #undef __CREATE_GL_TEXTURE_2D_ERR #undef __CREATE_GL_TEXTURE_3D_ERR #undef __CREATE_IMAGE2D_ERR #undef __CREATE_IMAGE3D_ERR #undef __CREATE_COMMAND_QUEUE_ERR #undef __ENQUEUE_TASK_ERR #undef __CREATE_SAMPLER_ERR #undef __ENQUEUE_MARKER_WAIT_LIST_ERR #undef __ENQUEUE_BARRIER_WAIT_LIST_ERR #undef __CLONE_KERNEL_ERR #undef __GET_HOST_TIMER_ERR #undef __GET_DEVICE_AND_HOST_TIMER_ERR #undef __GET_SEMAPHORE_KHR_INFO_ERR #undef __CREATE_SEMAPHORE_KHR_WITH_PROPERTIES_ERR #undef __ENQUEUE_WAIT_SEMAPHORE_KHR_ERR #undef __ENQUEUE_SIGNAL_SEMAPHORE_KHR_ERR #endif //CL_HPP_USER_OVERRIDE_ERROR_STRINGS // Extensions #undef CL_HPP_INIT_CL_EXT_FCN_PTR_ #undef CL_HPP_INIT_CL_EXT_FCN_PTR_PLATFORM_ #undef CL_HPP_NOEXCEPT_ #undef CL_HPP_DEFINE_STATIC_MEMBER_ } // namespace cl #endif // CL_HPP_