#pragma once
#include "Ember.h"
///
/// Iterator and derived classes.
///
#define CHOOSE_XFORM_GRAIN 16384//The size of xform random selection buffer. Multiply by the (number of non-final xforms present + 1) if xaos is used.
#define CHOOSE_XFORM_GRAIN_M1 16383//All 1s, so it's logically and-able.
namespace EmberNs
{
#define ITERATORUSINGS \
using Iterator::NextXformFromIndex; \
using Iterator::DoFinalXform; \
using Iterator::DoBadVals;
template class Renderer;
template
struct IterParams
{
size_t m_Count;
size_t m_Skip;
//T m_OneColDiv2;
//T m_OneRowDiv2;
};
///
/// Iterator base class.
/// Iterating is one loop level outside of the inner xform application loop so it's still very important
/// to take every optimization possible here.
/// The original had many temporary assignments in order to feed the output of the current iteration
/// into the input of the next iteration. All unneccessary temporary assignments are eliminated by simply using i and i + 1
/// as the input and output indices on the samples array passed to Xform.Apply().
/// Note that the samples array is assigned to while fusing. Although this technically doesn't make sense
/// since values computed during fusing get thrown out, it doesn't matter because it will get overwritten
/// in the actual loop below it since the index counter is reset to zero when fusing is complete.
/// Flam3 needlessly computed the final xform on each fuse iteration only to throw it away. It's omitted here as an optimization.
/// Rather than place many conditionals inside the iteration loop, they are broken into separate classes depending
/// on what's contained in the ember's xforms.
/// The biggest difference is whether xaos is present or not it requires extra work when picking
/// the next random xform to use. Further, each of those is broken into two loops, one for embers with a final xform
/// and one without.
/// Last, the fuse loop and real loop are separated and duplicated to omit the conditional check for fuse inside the real loop.
/// Although this makes this file about four times as verbose as it would normally be, it does lead to performance improvements.
/// Template argument expected to be float or double.
///
template
class EMBER_API Iterator
{
public:
///
/// Empty constructor.
///
Iterator()
{
}
///
/// Empty virtual destructor so proper derived class destructors get called.
///
virtual ~Iterator()
{
}
///
/// Accessors.
///
const byte* XformDistributions() const { return m_XformDistributions.empty() ? nullptr : &m_XformDistributions[0]; }
size_t XformDistributionsSize() const { return m_XformDistributions.size(); }
///
/// Virtual empty iteration function that will be overidden in derived iterator classes.
///
/// The ember whose xforms will be applied
/// The number of iterations to do
/// The number of times to fuse
/// The buffer to store the output points
/// The random context to use
/// The number of bad values
virtual size_t Iterate(Ember& ember, IterParams& params, Point* samples, QTIsaac& rand) { return 0; }
///
/// Initialize the xform selection vector by normalizing the weights of all xforms and
/// setting the corresponding percentage of elements in the vector to each xform's index in its
/// parent ember.
/// Note that this method of looking up and index in a vector is how flam3 did it and is about 10%
/// faster than using a while loop to check a random number against a normalized weight.
/// Also, the ember used to initialize this must be the same ember, unchanged, used to iterate.
/// If one is passed to this function, its parameters are changed and then it's passed to Iterate(),
/// the behavior is undefined.
///
/// The ember whose xforms will be used to populate the distribution vector
/// True if success, else false.
bool InitDistributions(Ember& ember)
{
size_t i;
size_t distribCount = ember.XaosPresent() ? ember.XformCount() + 1 : 1;
const Xform* xforms = ember.Xforms();
if (m_XformDistributions.size() < CHOOSE_XFORM_GRAIN * distribCount)
m_XformDistributions.resize(CHOOSE_XFORM_GRAIN * distribCount);
if (m_XformDistributions.size() < CHOOSE_XFORM_GRAIN * distribCount)
return false;
for (size_t distrib = 0; distrib < distribCount; distrib++)
{
double totalDensity = 0;
//First find the total densities of all xforms.
for (i = 0; i < ember.XformCount(); i++)
{
double d = xforms[i].m_Weight;
if (distrib > 0)
d *= xforms[distrib - 1].Xaos(i);
totalDensity += d;
}
//Original returned false if all were 0, but it's allowed here
//which will just end up setting all elements to 0 which means
//only the first xform will get used.
//Calculate how much of a fraction of a the total density each element represents.
size_t j = 0;
//These must be double, else roundoff error will prevent the last element of m_XformDistributions from being set.
double tempDensity = 0, currentDensityLimit = 0, densityPerElement = totalDensity / CHOOSE_XFORM_GRAIN;
//Assign xform indices in order to each element of m_XformDistributions.
//The number of elements assigned a given index is proportional to that xform's
//density relative to the sum of all densities.
for (i = 0; i < ember.XformCount(); i++)
{
double temp = xforms[i].m_Weight;
if (distrib > 0)
temp *= xforms[distrib - 1].Xaos(i);
currentDensityLimit += temp;
//Populate points corresponding to this xform's weight/density.
//Also check that j is within the bounds of the distribution array just to be safe in the case of a rounding error.
while (tempDensity < currentDensityLimit && j < CHOOSE_XFORM_GRAIN)
{
#ifdef _DEBUG
//Ensure distribution contains no out of bounds indices.
if (byte(i) >= ember.XformCount())
throw "Out of bounds xform index in selection distribution.";
#endif
//printf("offset = %d, xform = %d, running sum = %f\n", j, i, tempDensity);
m_XformDistributions[(distrib * CHOOSE_XFORM_GRAIN) + j] = byte(i);
tempDensity += densityPerElement;
j++;
}
}
//If probability was zero, then nothing was filled in, so make all zero.
//If it was non zero but for some reason didn't fill all elements, then just make the remaining
//elements have the index of the last xform.
byte val = j ? byte(i - 1) : 0;
for (; j < CHOOSE_XFORM_GRAIN; j++)//Make absolutely sure they are set to a valid value.
m_XformDistributions[(distrib * CHOOSE_XFORM_GRAIN) + j] = val;
//Flam3 did this, which gives the same result.
//T t = xforms[0].m_Weight;
//
//if (distrib > 0)
// t *= xforms[distrib - 1].Xaos(0);
//
//T r = 0;
//
//for (i = 0; i < CHOOSE_XFORM_GRAIN; i++)
//{
// while (r >= t)
// {
// j++;
//
// if (distrib > 0)
// t += xforms[j].m_Weight * xforms[distrib - 1].Xaos(j);
// else
// t += xforms[j].m_Weight;
// }
//
// m_XformDistributions[(distrib * CHOOSE_XFORM_GRAIN) + i] = j;
// r += densityPerElement;
//}
}
return true;
}
protected:
///
/// When iterating, if the computed location of the point is either very close to zero, or very close to infinity,
/// it's considered a bad value. In that case, a new random input point is fed into a new randomly chosen xform. This
/// process is repeated up to 5 times until a good value is computed. If after 5 tries, a good value is not found, then
/// the coordinates of the output point are just set to a random number between -1 and 1.
///
/// The xforms array
/// The counter for the total number of bad values this sub batch
/// The point which initially had the bad values and which will store the newly computed values
/// The random context this iterator is using
/// True if a good value was computed within 5 tries, else false
inline bool DoBadVals(Xform* xforms, size_t& badVals, Point* point, QTIsaac& rand)
{
size_t xformIndex, consec = 0;
Point firstBadPoint;
while (consec < 5)
{
consec++;
badVals++;
firstBadPoint.m_X = rand.Frand11();//Re-randomize points, but keep the computed color and viz.
firstBadPoint.m_Y = rand.Frand11();
firstBadPoint.m_Z = 0;
firstBadPoint.m_ColorX = point->m_ColorX;
firstBadPoint.m_VizAdjusted = point->m_VizAdjusted;
xformIndex = NextXformFromIndex(rand.Rand());
if (!xforms[xformIndex].Apply(&firstBadPoint, point, rand))
return true;
}
//After 5 tries, nothing worked, so just assign random values between -1 and 1.
if (consec == 5)
{
point->m_X = rand.Frand11();
point->m_Y = rand.Frand11();
point->m_Z = 0;
}
return false;
}
///
/// Apply the final xform.
/// Note that as stated in the paper, the output of the final xform is not fed back into the next iteration.
/// Rather, only the value computed from the randomly chosen xform is. However, the output of the final xform
/// is still saved in the output samples buffer and accumulated to the histogram later.
///
/// The ember being iterated
/// The input point
/// The output point
/// The random context to use.
inline void DoFinalXform(Ember& ember, Point& tempPoint, Point* sample, QTIsaac& rand)
{
if (IsClose(ember.FinalXform()->m_Opacity, 1) || rand.Frand01() < ember.FinalXform()->m_Opacity)
{
T tempVizAdjusted = tempPoint.m_VizAdjusted;
ember.NonConstFinalXform()->Apply(&tempPoint, sample, rand);
sample->m_VizAdjusted = tempVizAdjusted;
}
else
{
*sample = tempPoint;
}
}
///
/// Retrieve an element in the distributions vector between 0 and CHOOSE_XFORM_GRAIN which will
/// contain the index of the next xform to use. When xaos is prsent, the offset is the index in
/// the ember of the previous xform used when.
///
/// The index to retrieve
/// When xaos is prsent, the index of the previous xform used. Default: 0 (xaos not present).
///
size_t NextXformFromIndex(size_t index, size_t distribOffset = 0)
{
return size_t(m_XformDistributions[(index & CHOOSE_XFORM_GRAIN_M1) + (CHOOSE_XFORM_GRAIN * distribOffset)]);
}
vector m_XformDistributions;
};
///
/// Derived iterator class for embers whose xforms do not use xaos.
///
template
class EMBER_API StandardIterator : public Iterator
{
ITERATORUSINGS
public:
///
/// Empty constructor.
///
StandardIterator()
{
}
///
/// Overridden virtual function which iterates an ember a given number of times and does not use xaos.
///
/// The ember whose xforms will be applied
/// The number of iterations to do
/// The number of times to fuse
/// The buffer to store the output points
/// The random context to use
/// The number of bad values
virtual size_t Iterate(Ember& ember, IterParams& params, Point* samples, QTIsaac& rand) override
{
size_t i, badVals = 0;
Point tempPoint, p1;
Xform* xforms = ember.NonConstXforms();
if (ember.ProjBits())
{
if (ember.UseFinalXform())
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, badVals, &p1, rand);
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
ember.Proj(samples[i], rand);
}
}
else
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, badVals, &p1, rand);
}
samples[0] = p1;
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &samples[i], rand))
DoBadVals(xforms, badVals, samples + i, rand);
p1 = samples[i];
ember.Proj(samples[i], rand);
}
}
}
else
{
if (ember.UseFinalXform())
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, badVals, &p1, rand);
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
for (i = 1; i < params.m_Count; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))//Feed the resulting value of applying the randomly selected xform back into the next iter, and not the result of applying the final xform.
DoBadVals(xforms, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
}
}
else
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(&p1, &p1, rand))
DoBadVals(xforms, badVals, &p1, rand);
}
samples[0] = p1;
for (i = 0; i < params.m_Count - 1; i++)//Real loop.
{
if (xforms[NextXformFromIndex(rand.Rand())].Apply(samples + i, samples + i + 1, rand))
DoBadVals(xforms, badVals, samples + i + 1, rand);
}
}
}
return badVals;
}
};
///
/// Derived iterator class for embers whose xforms use xaos.
///
template
class EMBER_API XaosIterator : public Iterator
{
ITERATORUSINGS
public:
///
/// Empty constructor.
///
XaosIterator()
{
}
///
/// Handler for bad values similar to the one in the base class, except it takes the last xform used
/// as a parameter and saves the xform used back out because this iterator is meant to be used with xaos.
///
/// The xforms array
/// Index of the last used xform before calling this function
/// The saved index of the last xform used within this function
/// The counter for the total number of bad values this sub batch
/// The point which initially had the bad values and which will store the newly computed values
/// The random context this iterator is using
/// True if a good value was computed within 5 tries, else false
inline bool DoBadVals(Xform* xforms, size_t& xformIndex, size_t lastXformUsed, size_t& badVals, Point* point, QTIsaac& rand)
{
size_t consec = 0;
Point firstBadPoint;
while (consec < 5)
{
consec++;
badVals++;
firstBadPoint.m_X = rand.Frand11();//Re-randomize points, but keep the computed color and viz.
firstBadPoint.m_Y = rand.Frand11();
firstBadPoint.m_Z = 0;
firstBadPoint.m_ColorX = point->m_ColorX;
firstBadPoint.m_VizAdjusted = point->m_VizAdjusted;
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (!xforms[xformIndex].Apply(&firstBadPoint, point, rand))
return true;
}
//After 5 tries, nothing worked, so just assign random.
if (consec == 5)
{
point->m_X = rand.Frand11();
point->m_Y = rand.Frand11();
point->m_Z = 0;
}
return false;
}
///
/// Overridden virtual function which iterates an ember a given number of times and uses xaos.
///
/// The ember whose xforms will be applied
/// The number of iterations to do
/// The number of times to fuse
/// The buffer to store the output points
/// The random context to use
/// The number of bad values
virtual size_t Iterate(Ember& ember, IterParams& params, Point* samples, QTIsaac& rand) override
{
size_t i, xformIndex;
size_t lastXformUsed = 0;
size_t badVals = 0;
Point tempPoint, p1;
Xform* xforms = ember.NonConstXforms();
if (ember.ProjBits())
{
if (ember.UseFinalXform())
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))//Feed the resulting value of applying the randomly selected xform back into the next iter, and not the result of applying the final xform.
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
ember.Proj(samples[i], rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
else
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
samples[0] = p1;
ember.Proj(samples[0], rand);
for (i = 1; i < params.m_Count; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, &p1, rand);
samples[i] = p1;
ember.Proj(samples[i], rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
}
else
{
if (ember.UseFinalXform())
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
DoFinalXform(ember, p1, samples, rand);//Apply to last fuse point and store as the first element in samples.
for (i = 1; i < params.m_Count; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))//Feed the resulting value of applying the randomly selected xform back into the next iter, and not the result of applying the final xform.
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, &p1, rand);
DoFinalXform(ember, p1, samples + i, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
else
{
p1 = samples[0];
for (i = 0; i < params.m_Skip; i++)//Fuse.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(&p1, &p1, rand))
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, &p1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
samples[0] = p1;
for (i = 0; i < params.m_Count - 1; i++)//Real loop.
{
xformIndex = NextXformFromIndex(rand.Rand(), lastXformUsed);
if (xforms[xformIndex].Apply(samples + i, samples + i + 1, rand))
DoBadVals(xforms, xformIndex, lastXformUsed, badVals, samples + i + 1, rand);
lastXformUsed = xformIndex + 1;//Store the last used transform.
}
}
}
return badVals;
}
};
}