#pragma once
#include "EmberDefines.h"
///
/// C++ TEMPLATE VERSION OF Robert J. Jenkins Jr.'s
/// ISAAC Random Number Generator.
///
/// Ported from vanilla C to to template C++ class
/// by Quinn Tyler Jackson on 16-23 July 1998.
///
/// quinn@qtj.net
///
/// The function for the expected period of this
/// random number generator, according to Jenkins is:
///
/// f(a,b) = 2**((a+b*(3+2^^a)-1)
///
/// (where a is ALPHA and b is bitwidth)
///
/// So, for a bitwidth of 32 and an ALPHA of 8,
/// the expected period of ISAAC is:
///
/// 2^^(8+32*(3+2^^8)-1) = 2^^8295
///
/// Jackson has been able to run implementations
/// with an ALPHA as high as 16, or
///
/// 2^^2097263
///
/// -Modified by Matt Feemster to eliminate needless dynamic memory allocation and virtual functions and bring inline with Ember coding style.
///
#ifndef __ISAAC64
typedef uint ISAAC_INT;
const ISAAC_INT GOLDEN_RATIO = ISAAC_INT(0x9e3779b9);
#else
typedef size_t ISAAC_INT;
const ISAAC_INT GOLDEN_RATIO = ISAAC_INT(0x9e3779b97f4a7c13);
#endif
namespace EmberNs
{
union UintBytes
{
unsigned char Bytes[4];
uint Uint;
};
///
/// QTIsaac class which allows using ISAAC in an OOP manner.
///
template
class EMBER_API QTIsaac
{
public:
enum { N = (1 << ALPHA) };
UintBytes m_Cache;
int m_LastIndex;
///
/// Global ISAAC RNG to be used from anywhere. This is not thread safe, so take caution to only
/// use it when no other threads are.
///
static unique_ptr > GlobalRand;
///
/// The structure which holds all of the random information.
///
struct EMBER_API randctx
{
T randcnt;
T randrsl[N];
T randmem[N];
T randa;
T randb;
T randc;
};
///
/// Constructor which initialized the random context using the values passed in.
/// Leaving these as their defaults is fine, and will still give different
/// results because time is internally used if they are default.
/// However, specifying specific values is useful if you want to duplicate
/// a sequence of random numbers.
///
/// First random seed. Default: 0.
/// Second random seed. Default: 0.
/// Third random seed. Default: 0.
/// Pointer to a buffer of 256 random integer seeds. Default: nullptr.
QTIsaac(T a = 0, T b = 0, T c = 0, T* s = nullptr)
{
Srand(a, b, c, s);
m_LastIndex = 0;
m_Cache.Uint = Rand();
T temp = RandByte();//Need to call at least once so other libraries can link.
}
///
/// Return the next random integer in the range of 0-255.
/// If only a byte is needed, this is a more efficient way because
/// it only calls rand 1/4 of the time.
///
/// The next random integer in the range of 0-255
inline T RandByte()
{
T ret = m_Cache.Bytes[m_LastIndex++];
if (m_LastIndex == 4)
{
m_LastIndex = 0;
m_Cache.Uint = Rand();
}
return ret;
}
///
/// Return the next random integer.
///
/// The next random integer
inline T Rand()
{
#ifdef ISAAC_FLAM3_DEBUG
return (!m_Rc.randcnt-- ? (Isaac(&m_Rc), m_Rc.randcnt=N-1, m_Rc.randrsl[m_Rc.randcnt]) : m_Rc.randrsl[m_Rc.randcnt]);
#else
return (m_Rc.randcnt++ == N ? (Isaac(&m_Rc), m_Rc.randcnt=0, m_Rc.randrsl[m_Rc.randcnt]) : m_Rc.randrsl[m_Rc.randcnt]);
#endif
}
///
/// Return the next random integer between 0 and the value passed in minus 1.
///
/// A value one greater than the maximum value that will be returned
/// A value between 0 and the value passed in minus 1
inline T Rand(T upper)
{
return (upper == 0) ? Rand() : Rand() % upper;
}
///
/// Returns a random floating point value between the specified minimum and maximum.
/// Template argument expected to be float or double.
///
/// The minimum value allowed, inclusive.
/// The maximum value allowed, inclusive.
/// A new random floating point value within the specified range, inclusive.
template
inline floatType Frand(floatType fMin, floatType fMax)
{
floatType f = static_cast(Rand()) / static_cast(std::numeric_limits::max());
return fMin + (f * (fMax - fMin));
}
///
/// Thin wrapper around a call to Frand() with a range of 0-1.
/// Template argument expected to be float or double.
///
/// A new random number in the range of 0-1, inclusive.
template
inline floatType Frand01()
{
#ifdef ISAAC_FLAM3_DEBUG
return (Rand() & 0xfffffff) / (floatType)0xfffffff;
#else
return Frand(floatType(0), floatType(1));
#endif
}
///
/// Thin wrapper around a call to Frand() with a range of -1-1.
/// Template argument expected to be float or double.
///
/// A new random number in the range of -1-1, inclusive.
template
inline floatType Frand11()
{
#ifdef ISAAC_FLAM3_DEBUG
return ((Rand() & 0xfffffff) - 0x7ffffff) / (floatType)0x7ffffff;
#else
return Frand(floatType(-1), floatType(1));
#endif
}
///
/// Not sure what this does.
///
/// Something that is golden
template
inline floatType GoldenBit()
{
return RandBit() ? floatType(0.38196) : floatType(0.61804);
}
///
/// Returns a random 0 or 1.
///
/// A random 0 or 1
inline uint RandBit()
{
return RandByte() & 1;
}
///
/// A different way of getting a floating point rand in the range -1-1.
/// Flam3 used this but it seems unnecessary now, keep around if it's ever needed.
///
/// A new random number in the range of -1-1, inclusive.
//double drand11()
//{
// return (((int)Rand() & 0xfffffff) - 0x7ffffff) / (double) 0x7ffffff;
//}
///
/// Initializes a random context.
/// Unsure exacly how this works, but it does.
///
/// The random context to initialize
/// Whether to use the seeds passed in to the constructor, else zero.
void RandInit(randctx* ctx, bool useSeed)
{
int i;
T a, b, c, d, e, f, g, h;
T* m = ctx->randmem;
T* r = ctx->randrsl;
a = b = c = d = e = f = g = h = GOLDEN_RATIO;
if (!useSeed)
{
ctx->randa = 0;
ctx->randb = 0;
ctx->randc = 0;
}
//Scramble it.
for (i = 0; i < 4; ++i)
{
Shuffle(a, b, c, d, e, f, g, h);
}
if (useSeed)
{
//Initialize using the contents of r[] as the seed.
for (i = 0; i < N; i += 8)
{
a += r[i ]; b += r[i + 1]; c += r[i + 2]; d += r[i + 3];
e += r[i + 4]; f += r[i + 5]; g += r[i + 6]; h += r[i + 7];
Shuffle(a, b, c, d, e, f, g, h);
m[i ] = a; m[i + 1] = b; m[i + 2] = c; m[i + 3] = d;
m[i + 4] = e; m[i + 5] = f; m[i + 6] = g; m[i + 7] = h;
}
//Do a second pass to make all of the seed affect all of m.
for (i = 0; i < N; i += 8)
{
a += m[i ]; b += m[i + 1]; c += m[i + 2]; d += m[i + 3];
e += m[i + 4]; f += m[i + 5]; g += m[i + 6]; h += m[i + 7];
Shuffle(a, b, c, d, e, f, g, h);
m[i ] = a; m[i + 1] = b; m[i + 2] = c; m[i + 3] = d;
m[i + 4] = e; m[i + 5] = f; m[i + 6] = g; m[i + 7] = h;
}
}
else
{
//Fill in mm[] with messy stuff.
Shuffle(a, b, c, d, e, f, g, h);
m[i ] = a; m[i + 1] = b; m[i + 2] = c; m[i + 3] = d;
m[i + 4] = e; m[i + 5] = f; m[i + 6] = g; m[i + 7] = h;
}
Isaac(ctx); //Fill in the first set of results.
ctx->randcnt = N;//0;//Prepare to use the first set of results.
}
///
/// Initialize the seeds of the member random context using the specified seeds.
/// If s is null, time plus index up to 256 is used for the random buffer.
///
/// First random seed. Default: 0.
/// Second random seed. Default: 0.
/// Third random seed. Default: 0.
/// Pointer to a buffer of 256 random integer seeds. Default: nullptr.
void Srand(T a = 0, T b = 0, T c = 0, T* s = nullptr)
{
if (s == nullptr)//Default to using time plus index as the seed if s was nullptr.
{
for (int i = 0; i < N; i++)
m_Rc.randrsl[i] = static_cast(NowMs()) + i;
}
else
{
for (int i = 0; i < N; i++)
m_Rc.randrsl[i] = s[i];
}
#ifndef ISAAC_FLAM3_DEBUG
if (a == 0 && b == 0 && c == 0)
{
m_Rc.randa = static_cast(NowMs());
m_Rc.randb = static_cast(NowMs()) * static_cast(NowMs());
m_Rc.randc = static_cast(NowMs()) * static_cast(NowMs()) * static_cast(NowMs());
}
else
#endif
{
m_Rc.randa = a;
m_Rc.randb = b;
m_Rc.randc = c;
}
RandInit(&m_Rc, true);
}
protected:
///
/// Compute the next batch of random numbers for a random context.
///
/// The context to populate.
void Isaac(randctx* ctx)
{
T x,y;
T* mm = ctx->randmem;
T* r = ctx->randrsl;
T a = (ctx->randa);
T b = (ctx->randb + (++ctx->randc));
T* m = mm;
T* m2 = (m + (N / 2));
T* mend = m2;
for(; m < mend; )
{
#ifndef __ISAAC64
RngStep((a << 13), a, b, mm, m, m2, r, x, y);
RngStep((a >> 6) , a, b, mm, m, m2, r, x, y);
RngStep((a << 2) , a, b, mm, m, m2, r, x, y);
RngStep((a >> 16), a, b, mm, m, m2, r, x, y);
#else // __ISAAC64
RngStep(~(a ^ (a << 21)), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 5) , a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a << 12) , a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 33) , a, b, mm, m, m2, r, x, y);
#endif // __ISAAC64
}
m2 = mm;
for(; m2> 6) , a, b, mm, m, m2, r, x, y);
RngStep((a << 2) , a, b, mm, m, m2, r, x, y);
RngStep((a >> 16), a, b, mm, m, m2, r, x, y);
#else // __ISAAC64
RngStep(~(a ^ (a << 21)), a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 5) , a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a << 12) , a, b, mm, m, m2, r, x, y);
RngStep( a ^ (a >> 33) , a, b, mm, m, m2, r, x, y);
#endif // __ISAAC64
}
ctx->randb = b;
ctx->randa = a;
}
///
/// Retrieves a value using indirection.
///
/// The buffer.
/// The offset.
/// A new value
inline T Ind(T* mm, T x)
{
#ifndef __ISAAC64
return (*reinterpret_cast(reinterpret_cast(mm) + ((x) & ((N - 1) << 2))));
#else // __ISAAC64
return (*reinterpret_cast(reinterpret_cast(mm) + ((x) & ((N - 1) << 3))));
#endif // __ISAAC64
}
///
/// Unsure what this does.
///
void RngStep(T mix, T& a, T& b, T*& mm, T*& m, T*& m2, T*& r, T& x, T& y)
{
x = *m;
a = (a ^ (mix)) + *(m2++);
*(m++) = y = Ind(mm, x) + a + b;
*(r++) = b = Ind(mm, y >> ALPHA) + x;
}
///
/// Unsure what this does.
///
void Shuffle(T& a, T& b, T& c, T& d, T& e, T& f, T& g, T& h)
{
#ifndef __ISAAC64
a ^= b << 11; d += a; b += c;
b ^= c >> 2; e += b; c += d;
c ^= d << 8; f += c; d += e;
d ^= e >> 16; g += d; e += f;
e ^= f << 10; h += e; f += g;
f ^= g >> 4; a += f; g += h;
g ^= h << 8; b += g; h += a;
h ^= a >> 9; c += h; a += b;
#else // __ISAAC64
a -= e; f ^= h >> 9; h += a;
b -= f; g ^= a << 9; a += b;
c -= g; h ^= b >> 23; b += c;
d -= h; a ^= c << 15; c += d;
e -= a; b ^= d >> 14; d += e;
f -= b; c ^= e << 20; e += f;
g -= c; d ^= f >> 17; f += g;
h -= d; e ^= g << 14; g += h;
#endif // __ISAAC64
}
private:
randctx m_Rc;//The random context which holds all of the seed and state information as well as the random number values.
};
}