#pragma once
#include "EmberCLPch.h"
#include "EmberCLStructs.h"
///
/// OpenCL global function strings.
///
namespace EmberCLns
{
///
/// OpenCL equivalent of Palette::RgbToHsv().
///
static const char* RgbToHsvFunctionString =
//rgb 0 - 1,
//h 0 - 6, s 0 - 1, v 0 - 1
"static inline void RgbToHsv(real4_bucket* rgb, real4_bucket* hsv)\n"
"{\n"
" real_bucket_t max, min, del, rc, gc, bc;\n"
"\n"
//Compute maximum of r, g, b.
" if ((*rgb).x >= (*rgb).y)\n"
" {\n"
" if ((*rgb).x >= (*rgb).z)\n"
" max = (*rgb).x;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y >= (*rgb).z)\n"
" max = (*rgb).y;\n"
" else\n"
" max = (*rgb).z;\n"
" }\n"
"\n"
//Compute minimum of r, g, b.
" if ((*rgb).x <= (*rgb).y)\n"
" {\n"
" if ((*rgb).x <= (*rgb).z)\n"
" min = (*rgb).x;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
" else\n"
" {\n"
" if ((*rgb).y <= (*rgb).z)\n"
" min = (*rgb).y;\n"
" else\n"
" min = (*rgb).z;\n"
" }\n"
"\n"
" del = max - min;\n"
" (*hsv).z = max;\n"
"\n"
" if (max != 0)\n"
" (*hsv).y = del / max;\n"
" else\n"
" (*hsv).y = 0;\n"
"\n"
" (*hsv).x = 0;\n"
" if ((*hsv).y != 0)\n"
" {\n"
" rc = (max - (*rgb).x) / del;\n"
" gc = (max - (*rgb).y) / del;\n"
" bc = (max - (*rgb).z) / del;\n"
"\n"
" if ((*rgb).x == max)\n"
" (*hsv).x = bc - gc;\n"
" else if ((*rgb).y == max)\n"
" (*hsv).x = 2 + rc - bc;\n"
" else if ((*rgb).z == max)\n"
" (*hsv).x = 4 + gc - rc;\n"
"\n"
" if ((*hsv).x < 0)\n"
" (*hsv).x += 6;\n"
" }\n"
"}\n"
"\n";
///
/// OpenCL equivalent of Palette::HsvToRgb().
///
static const char* HsvToRgbFunctionString =
//h 0 - 6, s 0 - 1, v 0 - 1
//rgb 0 - 1
"static inline void HsvToRgb(real4_bucket* hsv, real4_bucket* rgb)\n"
"{\n"
" int j;\n"
" real_bucket_t f, p, q, t;\n"
"\n"
" while ((*hsv).x >= 6)\n"
" (*hsv).x = (*hsv).x - 6;\n"
"\n"
" while ((*hsv).x < 0)\n"
" (*hsv).x = (*hsv).x + 6;\n"
"\n"
" j = (int)floor((*hsv).x);\n"
" f = (*hsv).x - j;\n"
" p = (*hsv).z * (1 - (*hsv).y);\n"
" q = (*hsv).z * (1 - ((*hsv).y * f));\n"
" t = (*hsv).z * (1 - ((*hsv).y * (1 - f)));\n"
"\n"
" switch (j)\n"
" {\n"
" case 0: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" case 1: (*rgb).x = q; (*rgb).y = (*hsv).z; (*rgb).z = p; break;\n"
" case 2: (*rgb).x = p; (*rgb).y = (*hsv).z; (*rgb).z = t; break;\n"
" case 3: (*rgb).x = p; (*rgb).y = q; (*rgb).z = (*hsv).z; break;\n"
" case 4: (*rgb).x = t; (*rgb).y = p; (*rgb).z = (*hsv).z; break;\n"
" case 5: (*rgb).x = (*hsv).z; (*rgb).y = p; (*rgb).z = q; break;\n"
" default: (*rgb).x = (*hsv).z; (*rgb).y = t; (*rgb).z = p; break;\n"
" }\n"
"}\n"
"\n";
///
/// OpenCL equivalent of Palette::CalcAlpha().
///
static const char* CalcAlphaFunctionString =
"static inline real_t CalcAlpha(real_bucket_t density, real_bucket_t gamma, real_bucket_t linrange)\n"//Not the slightest clue what this is doing.//DOC
"{\n"
" real_bucket_t frac, alpha, funcval = pow(linrange, gamma);\n"
"\n"
" if (density > 0)\n"
" {\n"
" if (density < linrange)\n"
" {\n"
" frac = density / linrange;\n"
" alpha = (1.0 - frac) * density * (funcval / linrange) + frac * pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = pow(density, gamma);\n"
" }\n"
" else\n"
" alpha = 0;\n"
"\n"
" return alpha;\n"
"}\n"
"\n";
///
/// OpenCL equivalent of Renderer::CurveAdjust().
/// Only use float here instead of real_t because the output will be passed to write_imagef()
/// during final accumulation, which only takes floats.
///
static const char* CurveAdjustFunctionString =
"static inline void CurveAdjust(__global real4reals_bucket* csa, float* a, uint index)\n"
"{\n"
" uint tempIndex = (uint)clamp(*a * CURVES_LENGTH_M1, 0.0f, CURVES_LENGTH_M1);\n"
" uint tempIndex2 = (uint)clamp(csa[tempIndex].m_Real4.x * CURVES_LENGTH_M1, 0.0f, CURVES_LENGTH_M1);\n"
"\n"
" *a = (float)csa[tempIndex2].m_Reals[index];\n"
"}\n"
"\n";
///
/// Use MWC 64 from David Thomas at the Imperial College of London for
/// random numbers in OpenCL, instead of ISAAC which was used
/// for CPU rendering.
///
static const char* RandFunctionString =
"enum { MWC64X_A = 4294883355u };\n\n"
"inline uint MwcNext(uint2* s)\n"
"{\n"
" uint res = (*s).x ^ (*s).y; \n"//Calculate the result.
" uint hi = mul_hi((*s).x, MWC64X_A); \n"//Step the RNG.
" (*s).x = (*s).x * MWC64X_A + (*s).y;\n"//Pack the state back up.
" (*s).y = hi + ((*s).x < (*s).y); \n"
" return res; \n"//Return the next result.
"}\n"
"\n"
"inline uint MwcNextRange(uint2* s, uint val)\n"
"{\n"
" return (val == 0) ? MwcNext(s) : (MwcNext(s) % val);\n"
"}\n"
"\n"
"inline real_t MwcNext01(uint2* s)\n"
"{\n"
" return MwcNext(s) * (1.0 / 4294967296.0);\n"
"}\n"
"\n"
"inline real_t MwcNextFRange(uint2* s, real_t lower, real_t upper)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return fma(f, upper - lower, lower);\n"
"}\n"
"\n"
"inline real_t MwcNextNeg1Pos1(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return fma(f, 2.0, -1.0);\n"
"}\n"
"\n"
"inline real_t MwcNext0505(uint2* s)\n"
"{\n"
" real_t f = (real_t)MwcNext(s) / (real_t)UINT_MAX;\n"
" return -0.5 + f;\n"
"}\n"
"\n";
///
/// OpenCL equivalent Renderer::AddToAccum().
///
static const char* AddToAccumWithCheckFunctionString =
"inline bool AccumCheck(int superRasW, int superRasH, int i, int ii, int j, int jj)\n"
"{\n"
" return (j + jj >= 0 && j + jj < superRasH && i + ii >= 0 && i + ii < superRasW);\n"
"}\n"
"\n";
///
/// OpenCL equivalent various CarToRas member functions.
/// Normaly would subtract m_RasLlX and m_RasLlY, but they were negated in RendererCL before being passed in, so they could be used with fma().
///
static const char* CarToRasFunctionString =
"inline void CarToRasConvertPointToSingle(__constant CarToRasCL* carToRas, Point* point, uint* singleBufferIndex)\n"
"{\n"
" *singleBufferIndex = (uint)fma(carToRas->m_PixPerImageUnitW, point->m_X, carToRas->m_RasLlX) + (carToRas->m_RasWidth * (uint)fma(carToRas->m_PixPerImageUnitH, point->m_Y, carToRas->m_RasLlY));\n"
"}\n"
"\n"
"inline bool CarToRasInBounds(__constant CarToRasCL* carToRas, Point* point)\n"
"{\n"
" return point->m_X >= carToRas->m_CarLlX &&\n"
" point->m_X < carToRas->m_CarUrX &&\n"
" point->m_Y < carToRas->m_CarUrY &&\n"
" point->m_Y >= carToRas->m_CarLlY;\n"
"}\n"
"\n";
static string AtomicString()
{
ostringstream os;
os <<
"void AtomicAdd(volatile __global real_bucket_t* source, const real_bucket_t operand)\n"
"{\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_bucket_t realVal;\n"
" } newVal;\n"
"\n"
" union\n"
" {\n"
" atomi intVal;\n"
" real_bucket_t realVal;\n"
" } prevVal;\n"
"\n"
" do\n"
" {\n"
" prevVal.realVal = *source;\n"
" newVal.realVal = prevVal.realVal + operand;\n"
" } while (atomic_cmpxchg((volatile __global atomi*)source, prevVal.intVal, newVal.intVal) != prevVal.intVal);\n"
"}\n";
return os.str();
}
}