2023-04-25 19:59:54 -04:00
# pragma once
# include "EmberCommonPch.h"
# include "EmberOptions.h"
/// <summary>
/// Global utility classes and functions that are common to all programs that use
/// Ember and its derivatives.
/// </summary>
namespace EmberCommon
{
enum class eXaosPasteStyle : int { NONE , ZERO_TO_ONE , ZERO_TO_VALS , ONE_TO_VALS , VALS_TO_ONE } ;
/// <summary>
/// Derivation of the RenderCallback class to do custom printing action
/// whenever the progress function is internally called inside of Ember
/// and its derivatives.
/// Template argument expected to be float or double.
/// </summary>
template < typename T >
class RenderProgress : public RenderCallback
{
public :
/// <summary>
/// Constructor that initializes the state to zero.
/// </summary>
RenderProgress ( ) = default ;
RenderProgress ( RenderProgress < T > & progress ) = delete ;
~ RenderProgress ( ) = default ;
/// <summary>
/// The progress function which will be called from inside the renderer.
/// </summary>
/// <param name="ember">The ember currently being rendered</param>
/// <param name="foo">An extra dummy parameter</param>
/// <param name="fraction">The progress fraction from 0-100</param>
/// <param name="stage">The stage of iteration. 1 is iterating, 2 is density filtering, 2 is final accumulation.</param>
/// <param name="etaMs">The estimated milliseconds to completion of the current stage</param>
/// <returns>The value of m_Running, which is always true since this is intended to run in an environment where the render runs to completion, unlike interactive rendering.</returns>
virtual int ProgressFunc ( Ember < T > & ember , void * foo , double fraction , int stage , double etaMs )
{
if ( stage = = 0 | | stage = = 1 )
{
if ( m_LastStage ! = stage )
cout < < " \n " ;
cout < < " \r " < < string ( m_S . length ( ) * 2 , ' ' ) ; //Clear what was previously here, * 2 just to be safe because the end parts of previous strings might be longer.
m_SS . str ( " " ) ; //Begin new output.
m_SS < < " \r Stage = " < < ( stage ? " filtering " : " iterating " ) ;
m_SS < < " , progress = " < < int ( fraction ) < < " % " ;
m_SS < < " , eta = " < < t . Format ( etaMs ) ;
m_S = m_SS . str ( ) ;
cout < < m_S ;
}
m_LastStage = stage ;
return m_Running ;
}
/// <summary>
/// Reset the state.
/// </summary>
void Clear ( )
{
m_Running = 1 ;
m_LastStage = 0 ;
m_LastLength = 0 ;
m_SS . clear ( ) ;
m_S . clear ( ) ;
}
/// <summary>
/// Stop this instance.
/// </summary>
void Stop ( )
{
m_Running = 0 ;
}
private :
int m_Running = 1 ;
int m_LastStage = 0 ;
int m_LastLength = 0 ;
stringstream m_SS ;
string m_S ;
Timing t ;
} ;
/// <summary>
/// Wrapper for parsing an ember Xml file, storing the embers in a vector and printing
/// any errors that occurred.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="parser">The parser to use</param>
/// <param name="filename">The full path and name of the file</param>
/// <param name="embers">Storage for the embers read from the file</param>
/// <param name="useDefaults">True to use defaults if they are not present in the file, else false to use invalid values as placeholders to indicate the values were not present. Default: true.</param>
/// <returns>True if success, else false.</returns>
template < typename T >
static bool ParseEmberFile ( XmlToEmber < T > & parser , const string & filename , vector < Ember < T > > & embers , bool useDefaults = true )
{
if ( ! parser . Parse ( filename . c_str ( ) , embers , useDefaults ) )
{
cerr < < " Error parsing flame file " < < filename < < " , returning without executing. \n " ;
return false ;
}
if ( embers . empty ( ) )
{
cerr < < " Error: No data present in file " < < filename < < " . Aborting. \n " ;
return false ;
}
return true ;
}
/// <summary>
/// Cross platform wrapper for getting the full path of the current executable.
/// </summary>
/// <param name="programPath">The value of argv[0] passed into main()</param>
/// <returns>The full path of the executable as a string</returns>
static string GetExePath ( const char * argv0 )
{
string fullpath ;
# ifdef _WIN32
fullpath = argv0 ;
# else
vector < char > v ;
v . resize ( 2048 ) ;
# if __APPLE__
uint32_t vs = uint32_t ( v . size ( ) ) ;
if ( _NSGetExecutablePath ( v . data ( ) , & vs ) = = 0 )
fullpath = string ( v . data ( ) ) ;
else
cerr < < " Could not discern full path from executable. \n " ;
# else
readlink ( " /proc/self/exe " , v . data ( ) , v . size ( ) ) ;
fullpath = string ( v . data ( ) ) ;
# endif
# endif
return GetPath ( fullpath ) ;
}
/// <summary>
/// Wrapper for parsing palette Xml file and initializing it's private static members,
/// and printing any errors that occurred.
/// Template argument expected to be float or double.
/// </summary>
/// <param name="programPath">The full path of the folder the program is running in</param>
/// <param name="filename">The full path and name of the file</param>
/// <returns>True if success, else false.</returns>
template < typename T >
static bool InitPaletteList ( const string & programPath , const string & filename )
{
auto paletteList = PaletteList < float > : : Instance ( ) ;
static vector < string > paths =
{
programPath
# ifndef _WIN32
, " ~/ " ,
" ~/.config/fractorium/ " ,
" /usr/share/fractorium/ " ,
" /usr/local/share/fractorium/ "
# endif
} ;
bool added = false ;
for ( auto & p : paths )
{
auto fullpath = p + filename ;
//cout << "Trying: " << fullpath << endl;
if ( ! added )
{
if ( std : : ifstream ( fullpath ) )
added | = paletteList - > Add ( fullpath ) ;
}
else
break ;
}
if ( ! added | | ! paletteList - > Size ( ) )
{
cerr < < " Error parsing palette file " < < filename < < " . Reason: \n "
< < paletteList - > ErrorReportString ( ) < < " \n Returning without executing. \n " ;
return false ;
}
return true ;
}
/// <summary>
/// Formats a filename with digits using the passed in amount of 0 padding.
/// </summary>
/// <param name="result">The ember whose name will be set</param>
/// <param name="os">The ostringstream which will be used to format</param>
/// <param name="padding">The amount of padding to use</param>
template < typename T >
void FormatName ( Ember < T > & result , ostringstream & os , streamsize padding )
{
os < < std : : setw ( padding ) < < result . m_Time ;
result . m_Name = os . str ( ) ;
os . str ( " " ) ;
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an RGB 8-bit buffer.
/// The two buffers can point to the same memory location if needed.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="rgb">The RGB 8-bit buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
static void Rgba32ToRgb8 ( const v4F * rgba , unsigned char * rgb , size_t width , size_t height )
{
if ( rgba ! = nullptr & & rgb ! = nullptr )
{
for ( size_t i = 0 , j = 0 ; i < ( width * height ) ; i + + )
{
rgb [ j + + ] = static_cast < unsigned char > ( Clamp < float > ( rgba [ i ] . r * 255.0f , 0.0f , 255.0f ) ) ;
rgb [ j + + ] = static_cast < unsigned char > ( Clamp < float > ( rgba [ i ] . g * 255.0f , 0.0f , 255.0f ) ) ;
rgb [ j + + ] = static_cast < unsigned char > ( Clamp < float > ( rgba [ i ] . b * 255.0f , 0.0f , 255.0f ) ) ;
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an RGBA 8-bit buffer.
/// The two buffers can point to the same memory location if needed.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="rgb">The RGBA 8-bit buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgba8 ( const v4F * rgba , unsigned char * rgb , size_t width , size_t height , bool doAlpha )
{
if ( rgba ! = nullptr & & rgb ! = nullptr )
{
for ( size_t i = 0 , j = 0 ; i < ( width * height ) ; i + + )
{
rgb [ j + + ] = static_cast < unsigned char > ( Clamp < float > ( rgba [ i ] . r * 255.0f , 0.0f , 255.0f ) ) ;
rgb [ j + + ] = static_cast < unsigned char > ( Clamp < float > ( rgba [ i ] . g * 255.0f , 0.0f , 255.0f ) ) ;
rgb [ j + + ] = static_cast < unsigned char > ( Clamp < float > ( rgba [ i ] . b * 255.0f , 0.0f , 255.0f ) ) ;
rgb [ j + + ] = doAlpha ? static_cast < unsigned char > ( Clamp < float > ( rgba [ i ] . a * 255.0f , 0.0f , 255.0f ) ) : 255 ;
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an RGBA 16-bit buffer.
/// The two buffers can point to the same memory location if needed.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="rgb">The RGBA 16-bit buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgba16 ( const v4F * rgba , glm : : uint16 * rgb , size_t width , size_t height , bool doAlpha )
{
if ( rgba ! = nullptr & & rgb ! = nullptr )
{
for ( size_t i = 0 , j = 0 ; i < ( width * height ) ; i + + )
{
rgb [ j + + ] = static_cast < glm : : uint16 > ( Clamp < float > ( rgba [ i ] . r * 65535.0f , 0.0f , 65535.0f ) ) ;
rgb [ j + + ] = static_cast < glm : : uint16 > ( Clamp < float > ( rgba [ i ] . g * 65535.0f , 0.0f , 65535.0f ) ) ;
rgb [ j + + ] = static_cast < glm : : uint16 > ( Clamp < float > ( rgba [ i ] . b * 65535.0f , 0.0f , 65535.0f ) ) ;
rgb [ j + + ] = doAlpha ? static_cast < glm : : uint16 > ( Clamp < float > ( rgba [ i ] . a * 65535.0f , 0.0f , 65535.0f ) ) : glm : : uint16 { 65535 } ;
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an EXR RGBA 16-bit float buffer.
/// The two buffers can point to the same memory location if needed.
/// Note that this squares the values coming in, for some reason EXR expects that.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="ilmfRgba">The EXR RGBA 16-bit float buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgbaExr ( const v4F * rgba , Rgba * ilmfRgba , size_t width , size_t height , bool doAlpha )
{
if ( rgba ! = nullptr & & ilmfRgba ! = nullptr )
{
for ( size_t i = 0 ; i < ( width * height ) ; i + + )
{
ilmfRgba [ i ] . r = Clamp < float > ( Sqr ( rgba [ i ] . r ) , 0.0f , 1.0f ) ;
ilmfRgba [ i ] . g = Clamp < float > ( Sqr ( rgba [ i ] . g ) , 0.0f , 1.0f ) ;
ilmfRgba [ i ] . b = Clamp < float > ( Sqr ( rgba [ i ] . b ) , 0.0f , 1.0f ) ;
ilmfRgba [ i ] . a = doAlpha ? Clamp < float > ( rgba [ i ] . a * 1.0f , 0.0f , 1.0f ) : 1.0f ;
}
}
}
/// <summary>
/// Convert an RGBA 32-bit float buffer to an EXR RGBA 32-bit float buffer.
/// The two buffers can point to the same memory location if needed.
/// Note that this squares the values coming in, for some reason EXR expects that.
/// </summary>
/// <param name="rgba">The RGBA 32-bit float buffer</param>
/// <param name="r">The EXR red 32-bit float buffer</param>
/// <param name="g">The EXR green 32-bit float buffer</param>
/// <param name="b">The EXR blue 32-bit float buffer</param>
/// <param name="a">The EXR alpha 32-bit float buffer</param>
/// <param name="width">The width of the image in pixels</param>
/// <param name="height">The height of the image in pixels</param>
/// <param name="doAlpha">True to use alpha transparency, false to assign the max alpha value to make each pixel fully visible</param>
static void Rgba32ToRgba32Exr ( const v4F * rgba , float * r , float * g , float * b , float * a , size_t width , size_t height , bool doAlpha )
{
if ( rgba ! = nullptr & & r ! = nullptr & & g ! = nullptr & & b ! = nullptr & & a ! = nullptr )
{
for ( size_t i = 0 ; i < ( width * height ) ; i + + )
{
r [ i ] = Clamp < float > ( Sqr ( rgba [ i ] . r ) , 0.0f , 1.0f ) ;
g [ i ] = Clamp < float > ( Sqr ( rgba [ i ] . g ) , 0.0f , 1.0f ) ;
b [ i ] = Clamp < float > ( Sqr ( rgba [ i ] . b ) , 0.0f , 1.0f ) ;
a [ i ] = doAlpha ? Clamp < float > ( rgba [ i ] . a * 1.0f , 0.0f , 1.0f ) : 1.0f ;
}
}
}
/// <summary>
/// Returns a string with all illegal file path characters removed.
/// </summary>
/// <param name="filename">The path to remove illegal characters from</param>
/// <returns>The cleaned full file path and name.</returns>
static string CleanPath ( const string & filename )
{
static string illegalChars = " \\ /:*? \" <>| " ;
auto tempfilename = filename ;
for ( auto & ch : illegalChars )
tempfilename . erase ( remove ( tempfilename . begin ( ) , tempfilename . end ( ) , ch ) , tempfilename . end ( ) ) ;
return tempfilename ;
}
/// <summary>
/// Make a filename for a single render. This is used in EmberRender.
/// </summary>
/// <param name="path">The path portion of where to save the file</param>
/// <param name="out">The full name and path to override everything else</param>
/// <param name="finalName">The name to use when useFinalName is true</param>
/// <param name="prefix">The prefix to prepend to the filename</param>
/// <param name="suffix">True suffix to append to the filename</param>
/// <param name="format">The format extention. This must not contain a period.</param>
/// <param name="padding">The width padding to use, which will be zero filled.</param>
/// <param name="i">The numerical value to use for the filename when useFinalName is false and out is empty</param>
/// <param name="useFinalName">Whether to use the name included in the flame. The i parameter is ignored in this case.</param>
static string MakeSingleFilename ( const string & path , const string & out , const string & finalName , const string & prefix , const string & suffix , const string & format , glm : : uint padding , size_t i , bool useFinalName )
{
string filename ;
if ( ! out . empty ( ) )
{
filename = out ;
}
else if ( useFinalName )
{
filename = path + prefix + CleanPath ( finalName + suffix + " . " + format ) ;
}
else
{
ostringstream fnstream ;
fnstream < < setfill ( ' 0 ' ) < < setprecision ( 0 ) < < fixed < < setw ( padding ) < < i < < suffix < < " . " < < format ;
filename = path + prefix + CleanPath ( fnstream . str ( ) ) ;
}
return filename ;
}
/// <summary>
/// Make a filename for a frame of an animation render. This is used in EmberAnimate.
/// </summary>
/// <param name="path">The path portion of where to save the file</param>
/// <param name="prefix">The prefix to prepend to the filename</param>
/// <param name="suffix">True suffix to append to the filename</param>
/// <param name="format">The format extention. This must contain a period.</param>
/// <param name="padding">The width padding to use, which will be zero filled.</param>
/// <param name="ftime">The numerical value to use for the filename</param>
static string MakeAnimFilename ( const string & path , const string & prefix , const string & suffix , const string & format , glm : : uint padding , size_t ftime )
{
ostringstream fnstream ;
fnstream < < setfill ( ' 0 ' ) < < setprecision ( 0 ) < < fixed < < setw ( padding ) < < ftime < < suffix < < format ;
return path + prefix + CleanPath ( fnstream . str ( ) ) ;
}
/// <summary>
/// Calculate the number of strips required if the needed amount of memory
/// is greater than the system memory, or greater than what the user wants to allow.
/// </summary>
/// <param name="mem">Amount of memory required</param>
/// <param name="memAvailable">Amount of memory available on the system</param>
/// <param name="useMem">The maximum amount of memory to use. Use max if 0.</param>
/// <returns>The number of strips to use</returns>
static uint CalcStrips ( double memRequired , double memAvailable , double useMem ) noexcept
{
if ( useMem > 0 )
memAvailable = useMem ;
else
memAvailable * = 0.8 ;
if ( memAvailable > = memRequired )
return 1 ;
return static_cast < uint > ( ceil ( memRequired / memAvailable ) ) ;
}
/// <summary>
/// Given a numerator and a denominator, find the next highest denominator that divides
/// evenly into the numerator.
/// </summary>
/// <param name="numerator">The numerator</param>
/// <param name="denominator">The denominator</param>
/// <returns>The next highest divisor if found, else 1.</returns>
template < typename T >
static T NextHighestEvenDiv ( T numerator , T denominator ) noexcept
{
T result = 1 ;
T numDiv2 = numerator / 2 ;
do
{
denominator + + ;
if ( numerator % denominator = = 0 )
{
result = denominator ;
break ;
}
}
while ( denominator < = numDiv2 ) ;
return result ;
}
/// <summary>
/// Given a numerator and a denominator, find the next lowest denominator that divides
/// evenly into the numerator.
/// </summary>
/// <param name="numerator">The numerator</param>
/// <param name="denominator">The denominator</param>
/// <returns>The next lowest divisor if found, else 1.</returns>
template < typename T >
static T NextLowestEvenDiv ( T numerator , T denominator ) noexcept
{
T result = 1 ;
T numDiv2 = numerator / 2 ;
denominator - - ;
if ( denominator > numDiv2 )
denominator = numDiv2 ;
while ( denominator > = 1 )
{
if ( numerator % denominator = = 0 )
{
result = denominator ;
break ;
}
denominator - - ;
}
return result ;
}
/// <summary>
/// Wrapper for converting a vector of absolute device indices to a vector
/// of platform,device index pairs.
/// </summary>
/// <param name="selectedDevices">The vector of absolute device indices to convert</param>
/// <returns>The converted vector of platform,device index pairs</returns>
static vector < pair < size_t , size_t > > Devices ( const vector < size_t > & selectedDevices )
{
vector < pair < size_t , size_t > > vec ;
auto info = OpenCLInfo : : Instance ( ) ;
auto & devices = info - > DeviceIndices ( ) ;
vec . reserve ( selectedDevices . size ( ) ) ;
for ( size_t i = 0 ; i < selectedDevices . size ( ) ; i + + )
{
auto index = selectedDevices [ i ] ;
if ( index < devices . size ( ) )
vec . push_back ( devices [ index ] ) ;
}
return vec ;
}
/// <summary>
/// Wrapper for creating a renderer of the specified type.
/// </summary>
/// <param name="renderType">Type of renderer to create</param>
/// <param name="devices">The vector of platform/device indices to use</param>
/// <param name="shared">True if shared with OpenGL, else false.</param>
/// <param name="texId">The texture ID of the shared OpenGL texture if shared</param>
/// <param name="errorReport">The error report for holding errors if anything goes wrong</param>
/// <returns>A pointer to the created renderer if successful, else false.</returns>
template < typename T >
static Renderer < T , float > * CreateRenderer ( eRendererType renderType , const vector < pair < size_t , size_t > > & devices , bool shared , GLuint texId , EmberReport & errorReport )
{
string s ;
unique_ptr < Renderer < T , float > > renderer ;
try
{
if ( renderType = = eRendererType : : OPENCL_RENDERER & & ! devices . empty ( ) )
{
s = " OpenCL " ;
renderer = unique_ptr < Renderer < T , float > > ( new RendererCL < T , float > ( devices , shared , texId ) ) ; //Can't use make_unique here.
if ( ! renderer . get ( ) | | ! renderer - > Ok ( ) )
{
if ( renderer . get ( ) )
errorReport . AddToReport ( renderer - > ErrorReport ( ) ) ;
errorReport . AddToReport ( " Error initializing OpenCL renderer, using CPU renderer instead. " ) ;
renderer = make_unique < Renderer < T , float > > ( ) ;
}
}
else
{
s = " CPU " ;
renderer = make_unique < Renderer < T , float > > ( ) ;
}
}
catch ( const std : : exception & e )
{
errorReport . AddToReport ( " Error creating " + s + " renderer: " + e . what ( ) + " \n " ) ;
}
catch ( . . . )
{
errorReport . AddToReport ( " Error creating " + s + " renderer. \n " ) ;
}
return renderer . release ( ) ;
}
/// <summary>
/// Wrapper for creating a vector of renderers of the specified type for each passed in device.
/// If shared is true, only the first renderer will be shared with OpenGL.
/// Although a fallback GPU renderer will be created if a failure occurs, it doesn't really
/// make sense since the concept of devices only applies to OpenCL renderers.
/// </summary>
/// <param name="renderType">Type of renderer to create</param>
/// <param name="devices">The vector of platform/device indices to use</param>
/// <param name="shared">True if shared with OpenGL, else false.</param>
/// <param name="texId">The texture ID of the shared OpenGL texture if shared</param>
/// <param name="errorReport">The error report for holding errors if anything goes wrong</param>
/// <returns>The vector of created renderers if successful, else false.</returns>
template < typename T >
static vector < unique_ptr < Renderer < T , float > > > CreateRenderers ( eRendererType renderType , const vector < pair < size_t , size_t > > & devices , bool shared , GLuint texId , EmberReport & errorReport )
{
string s ;
vector < unique_ptr < Renderer < T , float > > > v ;
try
{
if ( renderType = = eRendererType : : OPENCL_RENDERER & & ! devices . empty ( ) )
{
s = " OpenCL " ;
v . reserve ( devices . size ( ) ) ;
for ( size_t i = 0 ; i < devices . size ( ) ; i + + )
{
vector < pair < size_t , size_t > > tempDevices { devices [ i ] } ;
auto renderer = unique_ptr < Renderer < T , float > > ( new RendererCL < T , float > ( tempDevices , ! i ? shared : false , texId ) ) ; //Can't use make_unique here.
if ( ! renderer . get ( ) | | ! renderer - > Ok ( ) )
{
ostringstream os ;
if ( renderer . get ( ) )
errorReport . AddToReport ( renderer - > ErrorReport ( ) ) ;
os < < " Error initializing OpenCL renderer for platform " < < devices [ i ] . first < < " , " < < devices [ i ] . second ;
errorReport . AddToReport ( os . str ( ) ) ;
}
else
v . push_back ( std : : move ( renderer ) ) ;
}
}
else
{
s = " CPU " ;
v . push_back ( std : : move ( unique_ptr < Renderer < T , float > > ( EmberCommon : : CreateRenderer < T > ( eRendererType : : CPU_RENDERER , devices , shared , texId , errorReport ) ) ) ) ;
}
}
catch ( const std : : exception & e )
{
errorReport . AddToReport ( " Error creating " + s + " renderer: " + e . what ( ) + " \n " ) ;
}
catch ( . . . )
{
errorReport . AddToReport ( " Error creating " + s + " renderer. \n " ) ;
}
if ( v . empty ( ) & & s ! = " CPU " ) //OpenCL creation failed and CPU creation has not been attempted, so just create one CPU renderer and place it in the vector.
{
try
{
s = " CPU " ;
v . push_back ( std : : move ( unique_ptr < Renderer < T , float > > ( EmberCommon : : CreateRenderer < T > ( eRendererType : : CPU_RENDERER , devices , shared , texId , errorReport ) ) ) ) ;
}
catch ( const std : : exception & e )
{
errorReport . AddToReport ( " Error creating fallback " + s + " renderer: " + e . what ( ) + " \n " ) ;
}
catch ( . . . )
{
errorReport . AddToReport ( " Error creating fallback " + s + " renderer. \n " ) ;
}
}
return v ;
}
/// <summary>
/// Perform a render which allows for using strips or not.
/// If an error occurs while rendering any strip, the rendering process stops.
/// Note this must be called after SetEmber(ember, eProcessAction::FULL_RENDER, true) is called on the renderer.
/// The last parameter to SetEmber must be true to compute the camera, because is caches certain values that need to be
/// retained between strips.
/// </summary>
/// <param name="renderer">The renderer to use</param>
/// <param name="ember">The ember to render</param>
/// <param name="finalImage">The vector to place the final output in</param>
/// <param name="time">The time position to use, only valid for animation</param>
/// <param name="strips">The number of strips to use. This must be validated before calling this function.</param>
/// <param name="yAxisUp">True to flip the Y axis, else false.</param>
/// <param name="perStripStart">Function called before the start of the rendering of each strip</param>
/// <param name="perStripFinish">Function called after the end of the rendering of each strip</param>
/// <param name="perStripError">Function called if there is an error rendering a strip</param>
/// <param name="allStripsFinished">Function called when all strips successfully finish rendering</param>
/// <returns>True if all rendering was successful, else false.</returns>
template < typename T >
static bool StripsRender ( RendererBase * renderer , Ember < T > & ember , vector < v4F > & finalImage , double time , size_t strips , bool yAxisUp ,
std : : function < void ( size_t strip ) > perStripStart ,
std : : function < void ( size_t strip ) > perStripFinish ,
std : : function < void ( size_t strip ) > perStripError ,
std : : function < void ( Ember < T > & finalEmber ) > allStripsFinished )
{
bool success = false ;
size_t origHeight , realHeight = ember . m_FinalRasH ;
T centerY = ember . m_CenterY ;
T floatStripH = T ( ember . m_FinalRasH ) / T ( strips ) ;
T zoomScale = pow ( T ( 2 ) , ember . m_Zoom ) ;
T centerBase = centerY - ( ( strips - 1 ) * floatStripH ) / ( 2 * ember . m_PixelsPerUnit * zoomScale ) ;
vector < QTIsaac < ISAAC_SIZE , ISAAC_INT > > randVec ;
ember . m_Quality * = strips ;
ember . m_FinalRasH = size_t ( ceil ( floatStripH ) ) ;
Memset ( finalImage ) ;
if ( strips > 1 )
randVec = renderer - > RandVec ( ) ;
for ( size_t strip = 0 ; strip < strips ; strip + + )
{
size_t stripOffset ;
if ( yAxisUp )
stripOffset = ember . m_FinalRasH * ( ( strips - strip ) - 1 ) * ember . m_FinalRasW ;
else
stripOffset = ember . m_FinalRasH * strip * ember . m_FinalRasW ;
ember . m_CenterY = centerBase + ember . m_FinalRasH * T ( strip ) / ( ember . m_PixelsPerUnit * zoomScale ) ;
if ( ( ember . m_FinalRasH * ( strip + 1 ) ) > realHeight )
{
origHeight = ember . m_FinalRasH ;
ember . m_FinalRasH = realHeight - origHeight * strip ;
ember . m_CenterY - = ( origHeight - ember . m_FinalRasH ) * T ( 0.5 ) / ( ember . m_PixelsPerUnit * zoomScale ) ;
}
perStripStart ( strip ) ;
if ( strips > 1 )
{
renderer - > RandVec ( randVec ) ; //Use the same vector of ISAAC rands for each strip.
renderer - > SetEmber ( ember ) ; //Set one final time after modifications for strips.
}
if ( ( renderer - > Run ( finalImage , time , 0 , false , stripOffset ) = = eRenderStatus : : RENDER_OK ) & & ! renderer - > Aborted ( ) & & ! finalImage . empty ( ) )
{
perStripFinish ( strip ) ;
}
else
{
perStripError ( strip ) ;
break ;
}
if ( strip = = strips - 1 )
success = true ;
}
//Restore the ember values to their original values.
ember . m_Quality / = strips ;
ember . m_FinalRasH = realHeight ;
ember . m_CenterY = centerY ;
if ( strips > 1 )
renderer - > SetEmber ( ember ) ; //Further processing will require the dimensions to match the original ember, so re-assign.
if ( success )
allStripsFinished ( ember ) ;
return success ;
}
/// <summary>
/// Verify that the specified number of strips is valid for the given height.
/// The passed in error functions will be called if the number of strips needs
/// to be modified for the given height.
/// </summary>
/// <param name="height">The height in pixels of the image to be rendered</param>
/// <param name="strips">The number of strips to split the render into</param>
/// <param name="stripError1">Function called if the number of strips exceeds the height of the image</param>
/// <param name="stripError2">Function called if the number of strips does not divide evently into the height of the image</param>
/// <param name="stripError3">Called if for any reason the number of strips used will differ from the value passed in</param>
/// <returns>The actual number of strips that will be used</returns>
static size_t VerifyStrips ( size_t height , size_t strips ,
std : : function < void ( const string & s ) > stripError1 ,
std : : function < void ( const string & s ) > stripError2 ,
std : : function < void ( const string & s ) > stripError3 )
{
ostringstream os ;
if ( strips > height )
{
os < < " Cannot have more strips than rows: " < < strips < < " > " < < height < < " . Setting strips = rows. " ;
stripError1 ( os . str ( ) ) ; os . str ( " " ) ;
strips = height ;
}
if ( height % strips ! = 0 )
{
os < < " A strips value of " < < strips < < " does not divide evenly into a height of " < < height < < " . " ;
stripError2 ( os . str ( ) ) ; os . str ( " " ) ;
strips = NextHighestEvenDiv ( height , strips ) ;
if ( strips = = 1 ) //No higher divisor, check for a lower one.
strips = NextLowestEvenDiv ( height , strips ) ;
os < < " Setting strips to " < < strips < < " . " ;
stripError3 ( os . str ( ) ) ; os . str ( " " ) ;
}
return strips ;
}
/// <summary>
/// Search the variation's OpenCL string to determine whether it contains any of the search strings in stringVec.
/// This is useful for finding variations with certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
/// </summary>
/// <param name="var">The variation whose OpenCL string will be searched</param>
/// <param name="stringVec">The vector of strings to search for</param>
/// <param name="matchAll">True to find all variations which match any strings, false to break after the first match is found.</param>
/// <returns>True if there was at least one match, else false.</returns>
template < typename T >
bool SearchVar ( const Variation < T > * var , const vector < string > & stringVec , bool matchAll )
{
bool ret = false ;
size_t i ;
auto cl = var - > OpenCLFuncsString ( ) + " \n " + var - > OpenCLString ( ) ;
if ( matchAll )
{
for ( i = 0 ; i < stringVec . size ( ) ; i + + )
if ( cl . find ( stringVec [ i ] ) = = std : : string : : npos )
break ;
ret = ( i = = stringVec . size ( ) ) ;
}
else
{
for ( i = 0 ; i < stringVec . size ( ) ; i + + )
{
if ( cl . find ( stringVec [ i ] ) ! = std : : string : : npos )
{
ret = true ;
break ;
}
}
}
return ret ;
}
template < typename T >
bool SearchVarWWO ( const Variation < T > * var , const vector < string > & withVec , const vector < string > & withoutVec )
{
bool ret = false ;
size_t i , j , k ;
bool onegood = false ;
auto cl = var - > OpenCLFuncsString ( ) + " \n " + var - > OpenCLString ( ) ;
vector < string > clsplits = Split ( cl , ' \n ' ) ;
for ( i = 0 ; i < clsplits . size ( ) ; i + + )
{
for ( j = 0 ; j < withVec . size ( ) ; j + + )
{
if ( clsplits [ i ] . find ( withVec [ j ] ) ! = std : : string : : npos )
{
for ( k = 0 ; k < withoutVec . size ( ) ; k + + )
{
if ( clsplits [ i ] . find ( withoutVec [ k ] ) ! = std : : string : : npos )
{
return false ;
}
}
onegood = true ;
}
}
}
return onegood ;
//return i == clsplits.size() && j == withVec.size() && k == withoutVec.size();
}
/// <summary>
/// Find all variations whose OpenCL string contains any of the search strings in stringVec.
/// This is useful for finding variations with certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
/// </summary>
/// <param name="stringVec">The vector of variation pointers to search</param>
/// <param name="stringVec">The vector of strings to search for</param>
/// <param name="findAll">True to find all variations which match any strings, false to break after the first match is found.</param>
/// <param name="matchAll">True to find all variations which match all strings, false to stop searching a variation after the first match succeeds.</param>
/// <returns>A vector of pointers to variations whose OpenCL string matched at least one string in stringVec</returns>
template < typename T >
static vector < const Variation < T > * > FindVarsWith ( const vector < const Variation < T > * > & vars , const vector < string > & stringVec , bool findAll = true , bool matchAll = false )
{
vector < const Variation < T > * > vec ;
auto vl = VariationList < T > : : Instance ( ) ;
for ( auto & v : vars )
{
if ( SearchVar < T > ( v , stringVec , matchAll ) )
{
vec . push_back ( v ) ;
if ( ! findAll )
break ;
}
}
return vec ;
}
template < typename T >
static vector < const Variation < T > * > FindVarsWithWithout ( const vector < const Variation < T > * > & vars , const vector < string > & withVec , const vector < string > & withoutVec )
{
vector < const Variation < T > * > vec ;
auto vl = VariationList < T > : : Instance ( ) ;
for ( auto & v : vars )
{
if ( SearchVarWWO < T > ( v , withVec , withoutVec ) )
{
vec . push_back ( v ) ;
}
}
return vec ;
}
/// <summary>
/// Find all variations whose OpenCL string does not contain any of the search strings in stringVec.
/// This is useful for finding variations without certain characteristics since it's not possible
/// to query the CPU C++ code at runtime.
/// </summary>
/// <param name="vars">The vector of variation pointers to search</param>
/// <param name="stringVec">The vector of strings to search for</param>
/// <param name="findAll">True to find all variations which don't match any strings, false to break after the first non-match is found.</param>
/// <returns>A vector of pointers to variations whose OpenCL string did not match any string in stringVec</returns>
template < typename T >
static vector < const Variation < T > * > FindVarsWithout ( const vector < const Variation < T > * > & vars , const vector < string > & stringVec , bool findAll = true )
{
vector < const Variation < T > * > vec ;
auto vl = VariationList < T > : : Instance ( ) ;
for ( auto & v : vars )
{
if ( ! SearchVar < T > ( v , stringVec , false ) )
{
vec . push_back ( v ) ;
if ( ! findAll )
break ;
}
}
return vec ;
}
/// <summary>
/// Check whether a file exists, and optionally if it's not empty.
/// </summary>
/// <param name="filename">The full path and file name to check for</param>
/// <param name="notempty">Whether to only return true if the file is found and is not empty. Default: true.</param>
/// <returns>True if the file was found and optionally not empty, else false.</returns>
static bool FileExists ( const string & filename , bool notempty = true )
{
try
{
ifstream ifs ;
ifs . exceptions ( ifstream : : failbit ) ;
ifs . open ( filename , ios : : binary | ios : : ate ) ;
if ( notempty )
return ifs . tellg ( ) > 0 ; //Ensure it exists and wasn't empty.
else
return true ;
}
catch ( . . . )
{
}
return false ;
}
}
/// <summary>
/// Simple macro to print a string if the --verbose options has been specified.
/// </summary>
# define VerbosePrint(s) if (opt.Verbose()) cout << s << "\n"