2023-04-25 19:59:54 -04:00
# pragma once
# include "EmberDefines.h"
# include "Isaac.h"
# include "VariationList.h"
# include "Renderer.h"
/// <summary>
/// SheepTools class.
/// </summary>
namespace EmberNs
{
/// <summary>
/// Mutation mode enum.
/// </summary>
enum class eMutateMode : char
{
MUTATE_NOT_SPECIFIED = - 1 ,
MUTATE_ALL_VARIATIONS = 0 ,
MUTATE_ONE_XFORM_COEFS = 1 ,
MUTATE_ADD_SYMMETRY = 2 ,
MUTATE_POST_XFORMS = 3 ,
MUTATE_COLOR_PALETTE = 4 ,
MUTATE_DELETE_XFORM = 5 ,
MUTATE_ALL_COEFS = 6
} ;
/// <summary>
/// Cross mode enum.
/// </summary>
enum class eCrossMode : char
{
CROSS_NOT_SPECIFIED = - 1 ,
CROSS_UNION = 0 ,
CROSS_INTERPOLATE = 1 ,
CROSS_ALTERNATE = 2
} ;
/// <summary>
/// SheepTools contains miscellaneous functions for mutating, rotating
/// crossing and randomizing embers. It is named so because these functions
/// are used in the electric sheep genome mutation process.
/// Most functions in this class perform a particular action and return
/// a string describing what it did so it can be recorded in an Xml edit doc
/// to be saved with the ember when converting to Xml.
/// Since its members can occupy significant memory space and also have
/// hefty initialization sequences, it's important to declare one instance
/// and reuse it for the duration of the program instead of creating and deleting
/// them as local variables.
/// Template argument expected to be float or double.
/// </summary>
template < typename T , typename bucketT >
class EMBER_API SheepTools
{
public :
/// <summary>
/// Constructor which takes a palette path and pre-constructed renderer.
/// This class will take over ownership of the passed in renderer so the
/// caller should not delete it.
/// </summary>
/// <param name="palettePath">The full path and filename of the palette file</param>
/// <param name="renderer">A pre-constructed renderer to use. The caller should not delete this.</param>
SheepTools ( const string & palettePath , Renderer < T , bucketT > * renderer )
: m_VariationList ( VariationList < T > : : Instance ( ) ) ,
m_PaletteList ( PaletteList < float > : : Instance ( ) )
{
Timing t ;
m_PaletteList - > Add ( palettePath ) ;
m_Renderer = unique_ptr < Renderer < T , bucketT > > ( renderer ) ;
m_Rand = QTIsaac < ISAAC_SIZE , ISAAC_INT > ( ISAAC_INT ( t . Tic ( ) ) , ISAAC_INT ( t . Tic ( ) * 2 ) , ISAAC_INT ( t . Tic ( ) * 3 ) ) ;
}
SheepTools ( const SheepTools & sheepTools ) = delete ;
SheepTools < T , bucketT > & operator = ( const SheepTools < T , bucketT > & sheepTools ) = delete ;
/// <summary>
/// Create the linear default ember with a random palette.
/// </summary>
/// <returns>The newly constructed linear default ember</returns>
Ember < T > CreateLinearDefault ( )
{
Ember < T > ember ;
Xform < T > xform1 ( T ( 0.25 ) , T ( 1 ) , T ( 0.5 ) , T ( 1 ) , T ( 0.5 ) , T ( 0 ) , T ( 0 ) , T ( 0.5 ) , T ( 0.5 ) , T ( 0.25 ) ) ;
Xform < T > xform2 ( T ( 0.25 ) , T ( 0.66 ) , T ( 0.5 ) , T ( 1 ) , T ( 0.5 ) , T ( 0 ) , T ( 0 ) , T ( 0.5 ) , T ( - 0.5 ) , T ( 0.25 ) ) ;
Xform < T > xform3 ( T ( 0.25 ) , T ( 0.33 ) , T ( 0.5 ) , T ( 1 ) , T ( 0.5 ) , T ( 0 ) , T ( 0 ) , T ( 0.5 ) , T ( 0.0 ) , T ( - 0.5 ) ) ;
xform1 . AddVariation ( m_VariationList - > GetVariationCopy ( eVariationId : : VAR_LINEAR ) ) ;
xform2 . AddVariation ( m_VariationList - > GetVariationCopy ( eVariationId : : VAR_LINEAR ) ) ;
xform3 . AddVariation ( m_VariationList - > GetVariationCopy ( eVariationId : : VAR_LINEAR ) ) ;
ember . AddXform ( xform1 ) ;
ember . AddXform ( xform2 ) ;
ember . AddXform ( xform3 ) ;
if ( m_PaletteList - > Size ( ) )
ember . m_Palette = * m_PaletteList - > GetRandomPalette ( ) ;
return ember ;
}
/// <summary>
/// Ensure all xforms, including final, have no more than the specified number of variations.
/// Remove variations in order of smallest weight to largest weight.
/// Also remove all xforms whose density is less than 0.001.
/// </summary>
/// <param name="ember">The ember whose xforms will be truncated</param>
/// <param name="maxVars">The maximum number of variations each xform can have</param>
/// <returns>A string describing what was done</returns>
string TruncateVariations ( Ember < T > & ember , size_t maxVars )
{
intmax_t smallest ;
size_t i = 0 , j , numVars ;
T sv = 0 ;
ostringstream os ;
//First clear out any xforms that are not the final, and have a density of less than 0.001.
while ( const auto xform = ember . GetXform ( i ) )
{
if ( xform - > m_Weight < T ( 0.001 ) )
{
os < < " trunc_density " < < i ;
ember . DeleteXform ( i ) ;
i = 0 ; //Size will have changed, so start over.
continue ;
}
i + + ;
}
//Now consider all xforms, including final.
i = 0 ;
while ( const auto xform = ember . GetTotalXform ( i ) )
{
do
{
Variation < T > * smallestVar = nullptr ;
numVars = 0 ;
smallest = - 1 ;
for ( j = 0 ; j < xform - > TotalVariationCount ( ) ; j + + )
{
const auto var = xform - > GetVariation ( j ) ;
if ( var & & var - > m_Weight ! = 0.0 )
{
T v = var - > m_Weight ;
numVars + + ;
if ( smallest = = - 1 | | fabs ( v ) < sv )
{
smallest = j ;
smallestVar = var ;
sv = fabs ( v ) ;
}
}
}
if ( numVars > maxVars )
{
os < < " trunc " < < i < < " " < < smallest ;
if ( smallestVar )
xform - > DeleteVariationById ( smallestVar - > VariationId ( ) ) ;
}
}
while ( numVars > maxVars ) ;
i + + ;
}
return os . str ( ) ;
}
/// <summary>
/// Mutate the ember using the specified mode.
/// </summary>
/// <param name="ember">The ember to mutate</param>
/// <param name="mode">The mutation mode</param>
/// <param name="useVars">The variations to use if the mutation mode is random</param>
/// <param name="sym">The type of symmetry to add if random specified. If 0, it will be added randomly.</param>
/// <param name="speed">The speed to multiply the pre affine transforms by if the mutate mode is eMutateMode::MUTATE_ALL_COEFS, else ignored.</param>
/// <param name="maxVars">The maximum number of variations to allow in any single xform in the ember.</param>
/// <returns>A string describing what was done</returns>
string Mutate ( Ember < T > & ember , eMutateMode mode , vector < eVariationId > & useVars , intmax_t sym , T speed , size_t maxVars )
{
bool done = false ;
size_t modXform ;
T randSelect ;
ostringstream os ;
Ember < T > mutation ;
mutation . Clear ( ) ;
//If mutate_mode = -1, choose a random mutation mode.
if ( mode = = eMutateMode : : MUTATE_NOT_SPECIFIED )
{
randSelect = m_Rand . Frand01 < T > ( ) ;
if ( randSelect < T ( 0.1 ) )
mode = eMutateMode : : MUTATE_ALL_VARIATIONS ;
else if ( randSelect < T ( 0.3 ) )
mode = eMutateMode : : MUTATE_ONE_XFORM_COEFS ;
else if ( randSelect < T ( 0.5 ) )
mode = eMutateMode : : MUTATE_ADD_SYMMETRY ;
else if ( randSelect < T ( 0.6 ) )
mode = eMutateMode : : MUTATE_POST_XFORMS ;
else if ( randSelect < T ( 0.7 ) )
mode = eMutateMode : : MUTATE_COLOR_PALETTE ;
else if ( randSelect < T ( 0.8 ) )
mode = eMutateMode : : MUTATE_DELETE_XFORM ;
else
mode = eMutateMode : : MUTATE_ALL_COEFS ;
}
if ( mode = = eMutateMode : : MUTATE_ALL_VARIATIONS )
{
os < < " mutate all variations " ;
do
{
//Create a random flame, and use the variations to replace those in the original.
Random ( mutation , useVars , sym , ember . TotalXformCount ( ) , maxVars ) ;
for ( size_t i = 0 ; i < ember . TotalXformCount ( ) ; i + + )
{
const auto xform1 = ember . GetTotalXform ( i ) ;
const auto xform2 = mutation . GetTotalXform ( i ) ;
if ( xform1 & & xform2 )
{
for ( size_t j = 0 ; j < xform1 - > TotalVariationCount ( ) ; j + + )
{
const auto var1 = xform1 - > GetVariation ( j ) ;
const auto var2 = xform2 - > GetVariationById ( var1 - > VariationId ( ) ) ;
if ( ( var1 = = nullptr ) ^ ( var2 = = nullptr ) ) //If any of them are different, clear the first and copy all of the second and exit the while loop.
{
xform1 - > ClearAndDeleteVariations ( ) ;
for ( size_t k = 0 ; k < xform2 - > TotalVariationCount ( ) ; k + + )
xform1 - > AddVariation ( xform2 - > GetVariation ( k ) - > Copy ( ) ) ;
done = true ;
}
}
}
}
}
while ( ! done ) ;
}
else if ( mode = = eMutateMode : : MUTATE_ONE_XFORM_COEFS )
{
//Generate a 2-xform random.
Random ( mutation , useVars , sym , 2 , maxVars ) ;
//Which xform to mutate?
modXform = m_Rand . Rand ( ember . TotalXformCount ( ) ) ;
const auto xform1 = ember . GetTotalXform ( modXform ) ;
const auto xform2 = mutation . GetTotalXform ( 0 ) ;
os < < " mutate xform " < < modXform < < " coefs " ;
//If less than 3 xforms, then change only the translation part.
if ( ember . TotalXformCount ( ) < 2 )
{
xform1 - > m_Affine . C ( xform2 - > m_Affine . C ( ) ) ;
xform1 - > m_Affine . F ( xform2 - > m_Affine . F ( ) ) ;
}
else
{
for ( glm : : length_t i = 0 ; i < 2 ; i + + )
for ( glm : : length_t j = 0 ; j < 3 ; j + + )
xform1 - > m_Affine . m_Mat [ i ] [ j ] = xform2 - > m_Affine . m_Mat [ i ] [ j ] ;
}
}
else if ( mode = = eMutateMode : : MUTATE_ADD_SYMMETRY )
{
os < < " mutate symmetry " ;
ember . AddSymmetry ( 0 , m_Rand ) ;
}
else if ( mode = = eMutateMode : : MUTATE_POST_XFORMS )
{
const auto same = ( m_Rand . Rand ( ) & 3 ) > 0 ; //25% chance of using the same post for all of them.
size_t b = 1 + m_Rand . Rand ( 6 ) ;
os < < " mutate post xforms " < < b < < ( same ? " same " : " " ) ;
for ( size_t i = 0 ; i < ember . TotalXformCount ( ) ; i + + )
{
const auto copy = ( i > 0 ) & & same ;
const auto xform = ember . GetTotalXform ( i ) ;
if ( copy ) //Copy the post from the first xform to the rest of them.
{
xform - > m_Post = ember . GetTotalXform ( 0 ) - > m_Post ;
}
else
{
//50% chance.
if ( b & 1 )
{
auto f = static_cast < T > ( M_PI ) * m_Rand . Frand11 < T > ( ) ;
T ra , rb , rd , re ;
ra = ( xform - > m_Affine . A ( ) * std : : cos ( f ) + xform - > m_Affine . B ( ) * - std : : sin ( f ) ) ;
rd = ( xform - > m_Affine . A ( ) * std : : sin ( f ) + xform - > m_Affine . D ( ) * std : : cos ( f ) ) ;
rb = ( xform - > m_Affine . B ( ) * std : : cos ( f ) + xform - > m_Affine . E ( ) * - std : : sin ( f ) ) ;
re = ( xform - > m_Affine . B ( ) * std : : sin ( f ) + xform - > m_Affine . E ( ) * std : : cos ( f ) ) ;
xform - > m_Affine . A ( ra ) ;
xform - > m_Affine . B ( rb ) ;
xform - > m_Affine . D ( rd ) ;
xform - > m_Affine . E ( re ) ;
f * = - 1 ;
ra = ( xform - > m_Post . A ( ) * std : : cos ( f ) + xform - > m_Post . B ( ) * - std : : sin ( f ) ) ;
rd = ( xform - > m_Post . A ( ) * std : : sin ( f ) + xform - > m_Post . D ( ) * std : : cos ( f ) ) ;
rb = ( xform - > m_Post . B ( ) * std : : cos ( f ) + xform - > m_Post . E ( ) * - std : : sin ( f ) ) ;
re = ( xform - > m_Post . B ( ) * std : : sin ( f ) + xform - > m_Post . E ( ) * std : : cos ( f ) ) ;
xform - > m_Post . A ( ra ) ;
xform - > m_Post . B ( rb ) ;
xform - > m_Post . D ( rd ) ;
xform - > m_Post . E ( re ) ;
}
//33% chance.
if ( b & 2 )
{
auto f = static_cast < T > ( 0.2 ) + m_Rand . Frand01 < T > ( ) ;
auto g = static_cast < T > ( 0.2 ) + m_Rand . Frand01 < T > ( ) ;
if ( m_Rand . RandBit ( ) )
f = 1 / f ;
if ( m_Rand . RandBit ( ) )
g = f ;
else if ( m_Rand . RandBit ( ) )
g = 1 / g ;
xform - > m_Affine . A ( xform - > m_Affine . A ( ) / f ) ;
xform - > m_Affine . D ( xform - > m_Affine . D ( ) / f ) ;
xform - > m_Affine . B ( xform - > m_Affine . B ( ) / g ) ;
xform - > m_Affine . E ( xform - > m_Affine . E ( ) / g ) ;
xform - > m_Post . A ( xform - > m_Post . A ( ) * f ) ;
xform - > m_Post . B ( xform - > m_Post . B ( ) * f ) ;
xform - > m_Post . D ( xform - > m_Post . D ( ) * g ) ;
xform - > m_Post . E ( xform - > m_Post . E ( ) * g ) ;
}
if ( b & 4 ) //16% chance.
{
const auto f = m_Rand . Frand11 < T > ( ) ;
const auto g = m_Rand . Frand11 < T > ( ) ;
xform - > m_Affine . C ( xform - > m_Affine . C ( ) - f ) ;
xform - > m_Affine . F ( xform - > m_Affine . F ( ) - g ) ;
xform - > m_Post . C ( xform - > m_Post . C ( ) + f ) ;
xform - > m_Post . F ( xform - > m_Post . F ( ) + g ) ;
}
}
}
}
else if ( mode = = eMutateMode : : MUTATE_COLOR_PALETTE )
{
const auto s = m_Rand . Frand01 < T > ( ) ;
if ( s < T ( 0.4 ) ) //Randomize xform color coords.
{
ImproveColors ( ember , 100 , false , 10 ) ;
os < < " mutate color coords " ;
}
else if ( s < T ( 0.8 ) ) //Randomize xform color coords and palette.
{
ImproveColors ( ember , 25 , true , 10 ) ;
os < < " mutate color all " ;
}
else //Randomize palette only.
{
if ( m_PaletteList - > Size ( ) )
ember . m_Palette = * m_PaletteList - > GetRandomPalette ( ) ;
//If the palette retrieval fails, skip the mutation.
if ( ember . m_Palette . m_Index > = 0 )
{
os < < " mutate color palette " ;
}
else
{
ember . m_Palette . Clear ( false ) ;
cerr < < " Failure getting random palette, palette set to white \n " ;
}
}
}
else if ( mode = = eMutateMode : : MUTATE_DELETE_XFORM )
{
size_t nx = m_Rand . Rand ( ember . TotalXformCount ( ) ) ;
os < < " mutate delete xform " < < nx ;
if ( ember . TotalXformCount ( ) > 1 )
ember . DeleteTotalXform ( nx ) ;
}
else if ( mode = = eMutateMode : : MUTATE_ALL_COEFS )
{
os < < " mutate all coefs " ;
Random ( mutation , useVars , sym , ember . TotalXformCount ( ) , maxVars ) ;
//Change all the coefs by a fraction of the random.
for ( size_t x = 0 ; x < ember . TotalXformCount ( ) ; x + + )
{
const auto xform1 = ember . GetTotalXform ( x ) ;
const auto xform2 = mutation . GetTotalXform ( x ) ;
for ( glm : : length_t i = 0 ; i < 2 ; i + + )
for ( glm : : length_t j = 0 ; j < 3 ; j + + )
xform1 - > m_Affine . m_Mat [ i ] [ j ] + = speed * xform2 - > m_Affine . m_Mat [ i ] [ j ] ;
//Eventually, mutate the parametric variation parameters here.
}
}
return os . str ( ) ;
}
/// <summary>
/// Crosse the two embers and place the result in emberOut.
/// </summary>
/// <param name="ember0">The first ember to cross</param>
/// <param name="ember1">The second ember to cross</param>
/// <param name="emberOut">The result ember</param>
/// <param name="crossMode">The cross mode</param>
/// <returns>A string describing what was done</returns>
string Cross ( Ember < T > & ember0 , Ember < T > & ember1 , Ember < T > & emberOut , eCrossMode crossMode )
{
uint rb ;
size_t i ;
T t ;
ostringstream os ;
if ( crossMode = = eCrossMode : : CROSS_NOT_SPECIFIED )
{
const auto s = m_Rand . Frand01 < T > ( ) ;
if ( s < 0.1 )
crossMode = eCrossMode : : CROSS_UNION ;
else if ( s < 0.2 )
crossMode = eCrossMode : : CROSS_INTERPOLATE ;
else
crossMode = eCrossMode : : CROSS_ALTERNATE ;
}
if ( crossMode = = eCrossMode : : CROSS_UNION )
{
//Make a copy of the first ember.
emberOut = ember0 ;
//Copy all xforms in the second ember except the final. Default behavior keeps the final from parent0.
for ( i = 0 ; i < ember1 . XformCount ( ) ; i + + )
emberOut . AddXform ( * ember1 . GetXform ( i ) ) ;
os < < " cross union " ;
}
else if ( crossMode = = eCrossMode : : CROSS_INTERPOLATE )
{
//Linearly interpolate somewhere between the two.
//t = 0.5;//If you ever need to test.
t = m_Rand . Frand01 < T > ( ) ;
m_Parents [ 0 ] = ember0 ;
m_Parents [ 1 ] = ember1 ;
m_Parents [ 0 ] . m_Time = T ( 0 ) ;
m_Parents [ 1 ] . m_Time = T ( 1 ) ;
m_Interpolater . Interpolate ( m_Parents , 2 , t , 0 , emberOut ) ;
for ( i = 0 ; i < emberOut . TotalXformCount ( ) ; i + + )
emberOut . GetTotalXform ( i ) - > DeleteMotionElements ( ) ;
os < < " cross interpolate " < < std : : to_string ( t ) ;
}
else //Alternate mode.
{
int got0 , got1 , usedParent ;
string trystr ;
//Each xform comes from a random parent, possible for an entire parent to be excluded.
do
{
got0 = got1 = 0 ;
rb = m_Rand . RandBit ( ) ;
os < < rb < < " : " ;
//Copy the parent, sorting the final xform to the end if it's present.
emberOut = rb ? ember1 : ember0 ;
usedParent = rb ;
//Only replace non-final xforms.
for ( i = 0 ; i < emberOut . XformCount ( ) ; i + + )
{
rb = m_Rand . RandBit ( ) ;
//Replace xform if bit is 1.
if ( rb = = 1 )
{
if ( usedParent = = 0 )
{
if ( i < ember1 . XformCount ( ) & & ember1 . GetXform ( i ) - > m_Weight > 0 )
{
auto xform = emberOut . GetXform ( i ) ;
* xform = * ember1 . GetXform ( i ) ;
os < < " 1 " ;
got1 = 1 ;
}
else
{
os < < " 0 " ;
got0 = 1 ;
}
}
else
{
if ( i < ember0 . XformCount ( ) & & ember0 . GetXform ( i ) - > m_Weight > 0 )
{
auto xform = emberOut . GetXform ( i ) ;
* xform = * ember0 . GetXform ( i ) ;
os < < " 0 " ;
got0 = 1 ;
}
else
{
os < < " 1 " ;
got1 = 1 ;
}
}
}
else
{
os < < " " < < usedParent ;
if ( usedParent )
got1 = 1 ;
else
got0 = 1 ;
}
}
if ( usedParent = = 0 & & ember0 . UseFinalXform ( ) )
got0 = 1 ;
else if ( usedParent = = 1 & & ember1 . UseFinalXform ( ) )
got1 = 1 ;
}
while ( ( i > 1 ) & & ! ( got0 & & got1 ) ) ;
os < < " cross alternate " ;
os < < trystr ;
}
//Reset color coords.
for ( i = 0 ; i < emberOut . TotalXformCount ( ) ; i + + )
{
emberOut . GetTotalXform ( i ) - > m_ColorX = T ( i & 1 ) ; //Original pingponged between 0 and 1, which gives bad coloring but is useful for testing.
//emberOut.GetTotalXform(i)->m_ColorX = m_Rand.Frand01<T>();//Do rand which gives better coloring but produces different results every time it's run.
//emberOut.GetTotalXform(i)->m_ColorY = ?????;//Will need to update this if 2D coordinates are ever supported.
}
//Potentially genetically cross the two palettes together.
if ( m_Rand . Frand01 < T > ( ) < T ( 0.4 ) )
{
//Select the starting parent.
size_t ci ;
auto startParent = m_Rand . RandBit ( ) ;
os < < " cmap_cross " < < startParent < < " : " ;
//Loop over the entries, switching to the other parent 1% of the time.
for ( ci = 0 ; ci < 256 ; ci + + ) //Will need to update this if 2D coordinates are ever supported.
{
if ( m_Rand . Frand01 < T > ( ) < T ( .01 ) )
{
startParent = 1 - startParent ;
os < < " " < < ci ;
}
emberOut . m_Palette . m_Entries [ ci ] = startParent ? ember1 . m_Palette . m_Entries [ ci ] : ember0 . m_Palette . m_Entries [ ci ] ;
}
}
return os . str ( ) ;
}
/// <summary>
/// Thin wrapper around Random() that passes an empty vector for useVars, a random value for symmetry and 0 for max xforms.
/// </summary>
/// <param name="ember">The newly created random ember</param>
/// <param name="maxVars">The maximum number of variations to allow in any single xform in the ember.</param>
void Random ( Ember < T > & ember , size_t maxVars )
{
vector < eVariationId > useVars ;
Random ( ember , useVars , static_cast < intmax_t > ( m_Rand . Frand < T > ( - 2 , 2 ) ) , 0 , maxVars ) ;
}
/// <summary>
/// Create a random ember.
/// </summary>
/// <param name="ember">The newly created random ember</param>
/// <param name="useVars">A list of variations to use. If empty, any variation can be used.</param>
/// <param name="sym">The symmetry type to use from -2 to 2</param>
/// <param name="specXforms">The number of xforms to use. If 0, a quasi random count is used.</param>
/// <param name="maxVars">The maximum number of variations to allow in any single xform in the ember.</param>
void Random ( Ember < T > & ember , vector < eVariationId > & useVars , intmax_t sym , size_t specXforms , size_t maxVars )
{
bool postid , addfinal = false ;
int var , samed , multid , samepost ;
glm : : length_t i , j , k , n ;
size_t varCount = m_VariationList - > Size ( ) ;
static size_t xformDistrib [ ] =
{
2 , 2 , 2 , 2 ,
3 , 3 , 3 , 3 ,
4 , 4 , 4 ,
5 , 5 ,
6
} ;
ember . Clear ( ) ;
if ( m_PaletteList - > Size ( ) )
ember . m_Palette = * m_PaletteList - > GetRandomPalette ( ) ;
ember . m_Time = 0 ;
ember . m_Interp = eInterp : : EMBER_INTERP_LINEAR ;
ember . m_PaletteInterp = ePaletteInterp : : INTERP_HSV ;
//Choose the number of xforms.
if ( specXforms > 0 )
{
ember . AddXforms ( specXforms ) ;
}
else
{
ember . AddXforms ( xformDistrib [ m_Rand . Rand ( Vlen ( xformDistrib ) ) ] ) ;
addfinal = m_Rand . Frand01 < T > ( ) < T ( 0.15 ) ; //Add a final xform 15% of the time.
if ( addfinal )
{
Xform < T > xform ;
xform . m_Affine . A ( T ( 1.1 ) ) ; //Just put something in there so it doesn't show up as being an empty final xform.
ember . SetFinalXform ( xform ) ;
}
}
//If useVars is empty, randomly choose one to use or decide to use multiple.
if ( useVars . empty ( ) )
var = m_Rand . RandBit ( ) ? m_Rand . Rand ( varCount ) : - 1 ;
else
var = - 2 ;
samed = m_Rand . RandBit ( ) ;
multid = m_Rand . RandBit ( ) ;
postid = m_Rand . Frand01 < T > ( ) < T ( 0.6 ) ;
samepost = m_Rand . RandBit ( ) ;
//Loop over xforms.
for ( i = 0 ; i < ember . TotalXformCount ( ) ; i + + )
{
const auto xform = ember . GetTotalXform ( i ) ;
xform - > m_Weight = T ( 1 ) / ember . TotalXformCount ( ) ;
xform - > m_ColorX = m_Rand . Frand01 < T > ( ) ; //Original pingponged between 0 and 1, which gives bad coloring. Ember does random instead.
xform - > m_ColorY = m_Rand . Frand01 < T > ( ) ; //Will need to update this if 2D coordinates are ever supported.
xform - > m_ColorSpeed = T ( 0.5 ) ;
xform - > m_Animate = 1 ;
2024-03-16 12:15:51 -04:00
xform - > m_AnimateOrigin = T ( m_Rand . RandBit ( ) ) ;
2023-04-25 19:59:54 -04:00
xform - > m_Affine . A ( m_Rand . Frand11 < T > ( ) ) ;
xform - > m_Affine . B ( m_Rand . Frand11 < T > ( ) ) ;
xform - > m_Affine . C ( m_Rand . Frand11 < T > ( ) ) ;
xform - > m_Affine . D ( m_Rand . Frand11 < T > ( ) ) ;
xform - > m_Affine . E ( m_Rand . Frand11 < T > ( ) ) ;
xform - > m_Affine . F ( m_Rand . Frand11 < T > ( ) ) ;
xform - > m_Post . MakeID ( ) ;
if ( ! ember . IsFinalXform ( xform ) )
{
if ( ! postid )
{
for ( j = 0 ; j < 2 ; j + + )
{
for ( k = 0 ; k < 3 ; k + + )
{
if ( samepost | | ( i = = 0 ) )
xform - > m_Post . m_Mat [ j ] [ k ] = m_Rand . Frand11 < T > ( ) ;
else
xform - > m_Post . m_Mat [ j ] [ k ] = ember . GetTotalXform ( 0 ) - > m_Post . m_Mat [ j ] [ k ] ;
}
}
}
if ( var > - 1 )
{
if ( xform - > TotalVariationCount ( ) < maxVars )
xform - > AddVariation ( m_VariationList - > GetVariation ( var ) - > Copy ( ) ) ; //Use only one variation specified for all xforms.
}
else if ( multid & & var = = - 1 )
{
if ( xform - > TotalVariationCount ( ) < maxVars )
xform - > AddVariation ( m_VariationList - > GetVariation ( m_Rand . Rand ( varCount ) ) - > Copy ( ) ) ; //Choose a random var for this xform.
}
else
{
if ( samed & & i > 0 )
{
//Copy the same variations from the previous xform.
auto prevXform = ember . GetXform ( i - 1 ) ;
for ( j = 0 ; j < prevXform - > TotalVariationCount ( ) ; j + + )
if ( xform - > TotalVariationCount ( ) < maxVars )
xform - > AddVariation ( prevXform - > GetVariation ( j ) - > Copy ( ) ) ;
}
else
{
//Choose a random number of vars to use, at least 2
//but less than varCount. Probability leans
//towards fewer variations.
n = 2 ;
while ( m_Rand . RandBit ( ) & & ( n < varCount ) )
n + + ;
//Randomly choose n variations, and change their weights.
//A var can be selected more than once, further reducing
//the probability that multiple vars are used.
for ( j = 0 ; j < n ; j + + )
{
if ( xform - > TotalVariationCount ( ) < maxVars )
{
if ( var ! = - 2 )
{
//Pick a random variation and use a random weight from 0-1.
auto v = m_VariationList - > GetVariationCopy ( static_cast < size_t > ( m_Rand . Rand ( varCount ) ) , m_Rand . Frand < T > ( static_cast < T > ( 0.001 ) , 1 ) ) ;
if ( v & & ! xform - > AddVariation ( v ) )
delete v ; //It already existed and therefore was not added.
}
else
{
//Pick a random variation from the suppled IDs and use a random weight from 0-1.
auto v = m_VariationList - > GetVariationCopy ( useVars [ m_Rand . Rand ( useVars . size ( ) ) ] , m_Rand . Frand < T > ( static_cast < T > ( 0.001 ) , 1 ) ) ;
if ( v & & ! xform - > AddVariation ( v ) )
delete v ;
}
}
}
xform - > NormalizeVariationWeights ( ) ; //Normalize weights to 1.0 total.
}
}
}
else
{
//Handle final xform randomness.
n = 1 ;
if ( m_Rand . RandBit ( ) )
n + + ;
//Randomly choose n variations, and change their weights.
//A var can be selected more than once, further reducing
//the probability that multiple vars are used.
for ( j = 0 ; j < n ; j + + )
{
if ( xform - > TotalVariationCount ( ) < maxVars )
{
if ( var ! = - 2 )
{
//Pick a random variation and use a random weight from 0-1.
xform - > AddVariation ( m_VariationList - > GetVariationCopy ( static_cast < size_t > ( m_Rand . Rand ( varCount ) ) , m_Rand . Frand < T > ( static_cast < T > ( 0.001 ) , 1 ) ) ) ;
}
else
{
//Pick a random variation from the suppled IDs and use a random weight from 0-1.
xform - > AddVariation ( m_VariationList - > GetVariationCopy ( useVars [ m_Rand . Rand ( useVars . size ( ) ) ] , m_Rand . Frand < T > ( static_cast < T > ( 0.001 ) , 1 ) ) ) ;
}
}
}
xform - > NormalizeVariationWeights ( ) ; //Normalize weights to 1.0 total.
}
//Randomize parametric variations.
for ( j = 0 ; j < xform - > TotalVariationCount ( ) ; j + + )
xform - > GetVariation ( j ) - > Random ( m_Rand ) ;
}
//Randomly add symmetry (but not if we've already added a final xform).
if ( sym | | ( ! ( m_Rand . Rand ( 4 ) ) & & ! addfinal ) )
ember . AddSymmetry ( sym , m_Rand ) ;
else
ember . m_Symmetry = 0 ;
}
/// <summary>
/// Attempt to make colors better by doing some test renders.
/// </summary>
/// <param name="ember">The ember to render</param>
/// <param name="tries">The number of test renders to try before giving up</param>
/// <param name="changePalette">Change palette if true, else keep trying with the same palette.</param>
/// <param name="colorResolution">The resolution of the test histogram. This value ^ 3 will be used for the total size. Common value is 10.</param>
void ImproveColors ( Ember < T > & ember , size_t tries , bool changePalette , size_t colorResolution )
{
size_t i ;
T best , b ;
Ember < T > bestEmber = ember ;
best = TryColors ( ember , colorResolution ) ;
if ( best < 0 )
{
cerr < < " Error in TryColors(), skipping ImproveColors() \n " ;
return ;
}
for ( i = 0 ; i < tries ; i + + )
{
ChangeColors ( ember , changePalette ) ;
b = TryColors ( ember , colorResolution ) ;
if ( b < 0 )
{
cerr < < " Error in TryColors, aborting tries. \n " ;
break ;
}
if ( b > best )
{
best = b ;
bestEmber = ember ;
}
}
ember = bestEmber ;
}
/// <summary>
/// Run a test render to improve the colors.
/// This checks to see how much of the possible color space is actually used in the final output image.
/// Images which contain a small number or range of colors will return a lower value.
/// </summary>
/// <param name="ember">The ember to render</param>
/// <param name="colorResolution">The color resolution of the test histogram. This value ^ 3 will be used for the total size. Common value is 10.</param>
/// <returns>The percentage possible color values that were present in the final output image</returns>
T TryColors ( Ember < T > & ember , size_t colorResolution )
{
size_t i , hits = 0 , res = colorResolution ;
size_t pixTotal , res3 = res * res * res ;
T scalar ;
Ember < T > adjustedEmber = ember ;
adjustedEmber . m_Quality = 1 ;
adjustedEmber . m_Supersample = 1 ;
adjustedEmber . m_MaxRadDE = 0 ;
//Scale the image so that the total number of pixels is ~10,000.
pixTotal = ember . m_FinalRasW * ember . m_FinalRasH ;
scalar = std : : sqrt ( T ( 10000 ) / pixTotal ) ;
adjustedEmber . m_FinalRasW = static_cast < size_t > ( std : : ceil ( ember . m_FinalRasW * scalar ) ) ;
adjustedEmber . m_FinalRasH = static_cast < size_t > ( std : : ceil ( ember . m_FinalRasH * scalar ) ) ;
adjustedEmber . m_PixelsPerUnit * = scalar ;
adjustedEmber . m_TemporalSamples = 1 ;
m_Renderer - > SetEmber ( adjustedEmber , eProcessAction : : FULL_RENDER , true ) ;
m_Renderer - > EarlyClip ( true ) ;
if ( m_Renderer - > Run ( m_FinalImage ) ! = eRenderStatus : : RENDER_OK )
{
cerr < < " Error rendering test image for TryColors(). Aborting. \n " ;
return - 1 ;
}
m_Hist . resize ( res + res + ( res * res ) + ( res * res * res ) ) ; //Add one extra res just to be safe.
Memset ( m_Hist ) ;
for ( i = 0 ; i < m_FinalImage . size ( ) ; i + + )
{
auto & p = m_FinalImage [ i ] ;
m_Hist [ static_cast < size_t > ( ( p . r * res ) +
2024-03-16 12:15:51 -04:00
( p . g * res ) * res +
( p . b * res ) * res * res ) ] + + ; //A specific histogram index representing the sum of R,G,B values.
2023-04-25 19:59:54 -04:00
}
for ( i = 0 ; i < res3 ; i + + )
if ( m_Hist [ i ] ) //The greater range of RGB values used...
hits + + ;
return static_cast < T > ( hits / res3 ) ; //...the higher this returned ratio will be.
}
/// <summary>
/// Change around color coordinates. Optionally change out the entire palette.
/// </summary>
/// <param name="ember">The ember whose xform's color coordinates will be changed</param>
/// <param name="changePalette">Change palette if true, else don't</param>
void ChangeColors ( Ember < T > & ember , bool changePalette )
{
if ( changePalette )
{
if ( m_PaletteList - > Size ( ) )
{
ember . m_Palette = * m_PaletteList - > GetRandomPalette ( ) ;
}
else
{
ember . m_Palette . Clear ( false ) ;
cerr < < " Error retrieving random palette, setting to all white. \n " ;
}
}
for ( size_t i = 0 ; i < ember . TotalXformCount ( ) ; i + + )
{
ember . GetTotalXform ( i ) - > m_ColorX = m_Rand . Frand01 < T > ( ) ;
ember . GetTotalXform ( i ) - > m_ColorY = m_Rand . Frand01 < T > ( ) ;
}
const auto xform0 = RandomXform ( ember , - 1 ) ;
const auto xform1 = RandomXform ( ember , ember . GetXformIndex ( xform0 ) ) ;
if ( xform0 & & ( m_Rand . RandBit ( ) ) )
{
xform0 - > m_ColorX = 0 ;
xform0 - > m_ColorY = 0 ;
}
if ( xform1 & & ( m_Rand . RandBit ( ) ) )
{
xform1 - > m_ColorX = 1 ;
xform1 - > m_ColorY = 1 ;
}
}
/// <summary>
/// Try to get a random xform from the ember, including final, whose density is non-zero.
/// Give up after 100 tries.
/// </summary>
/// <param name="ember">The ember to get a random xform from</param>
/// <param name="excluded">Optionally exclude an xform. Pass -1 to include all for consideration.</param>
/// <returns>The random xform if successful, else nullptr.</returns>
Xform < T > * RandomXform ( Ember < T > & ember , intmax_t excluded )
{
size_t ntries = 0 ;
while ( ntries + + < 100 )
{
size_t i = m_Rand . Rand ( ember . TotalXformCount ( ) ) ;
if ( i ! = excluded )
{
if ( const auto xform = ember . GetTotalXform ( i ) )
if ( xform - > m_Weight > 0 )
return xform ;
}
}
return nullptr ;
}
/// <summary>
/// Rotate affine transforms and optionally apply motion elements,
/// and store the result in rotated.
/// </summary>
/// <param name="ember">The ember to rotate</param>
/// <param name="rotated">The rotated xform</param>
/// <param name="blend">The time percentage value which dictates how much of a percentage of 360 degrees it should be rotated and the time position for the motion elements</param>
/// <param name="cw">True to rotate clockwise, else rotate counter clockwise. Ignored if rotations is 0.</param>
void Loop ( Ember < T > & ember , Ember < T > & rotated , T blend , bool cw )
{
rotated = ember ;
//Insert motion magic here :
//If there are motion elements, modify the contents of
//the result xforms before rotate is called.
for ( size_t i = 0 ; i < ember . TotalXformCount ( ) ; i + + )
{
const auto xform1 = ember . GetTotalXform ( i ) ;
const auto xform2 = rotated . GetTotalXform ( i ) ;
if ( xform1 & & xform2 & & ! xform1 - > m_Motion . empty ( ) )
xform2 - > ApplyMotion ( * xform1 , blend ) ;
}
rotated . ApplyFlameMotion ( blend ) ;
rotated . RotateAffines ( ( cw ? blend : - blend ) * 360 ) ; //Rotate the affines.
rotated . DeleteMotionElements ( ) ; //Delete all motion elements from the looped ember, at the xform level and at the parent ember level.
}
/// <summary>
/// Interpolate two embers and place the output in result.
/// The embers parameter is expected to be a pointer to an array of at least 2 elements.
/// </summary>
/// <param name="embers">The embers to interpolate</param>
/// <param name="result">The result of the interpolation</param>
/// <param name="blend">The interpolation time</param>
/// <param name="rotations">The number of times to rotate within the interpolation</param>
/// <param name="cw">True to rotate clockwise, else rotate counter clockwise. Ignored if rotations is 0.</param>
/// <param name="seqFlag">True if embers points to the first or last ember in the entire sequence, else false.</param>
void Edge ( Ember < T > * embers , Ember < T > & result , T blend , size_t rotations , bool cw , bool seqFlag )
{
size_t i , si ;
//Insert motion magic here :
//If there are motion elements, modify the contents of
//the result xforms before rotate is called.
for ( si = 0 ; si < 2 ; si + + )
{
m_EdgePrealign [ si ] = embers [ si ] ;
for ( i = 0 ; i < m_EdgePrealign [ si ] . TotalXformCount ( ) ; i + + )
{
const auto xform = embers [ si ] . GetTotalXform ( i ) ;
const auto prealignxform = m_EdgePrealign [ si ] . GetTotalXform ( i ) ;
if ( xform & & prealignxform & & ! xform - > m_Motion . empty ( ) )
prealignxform - > ApplyMotion ( * xform , blend ) ; //Apply motion parameters to result.xform[i] using blend parameter.
}
}
//Use the un-padded original for blend=0 when creating a sequence.
//This keeps the original interpolation type intact.
if ( seqFlag & & blend = = 0 )
{
result = m_EdgePrealign [ 0 ] ;
}
else
{
//Align what's going to be interpolated.
Interpolater < T > : : Align ( m_EdgePrealign , m_EdgeSpun , 2 ) ;
m_EdgeSpun [ 0 ] . m_Time = 0 ;
m_EdgeSpun [ 1 ] . m_Time = 1 ;
//Call this first to establish the asymmetric reference angles.
Interpolater < T > : : AsymmetricRefAngles ( m_EdgeSpun , 2 ) ;
//Rotate the aligned xforms.
if ( rotations )
{
const auto cwblend = cw ? blend : - blend ;
m_EdgeSpun [ 0 ] . RotateAffines ( cwblend * ( 360 * rotations ) ) ;
m_EdgeSpun [ 1 ] . RotateAffines ( cwblend * ( 360 * rotations ) ) ;
}
m_Interpolater . Interpolate ( m_EdgeSpun , 2 , m_Smooth ? Interpolater < T > : : Smoother ( blend ) : blend , m_Stagger , result ) ;
}
//Make sure there are no motion elements in the result.
result . DeleteMotionElements ( ) ;
}
/// <summary>
/// Spin the specified ember, optionally apply a template ember, and place the output in result.
/// Create auto-generated name
/// Append edits using the Nick, Url and Id members.
/// Apply subpixel jitter to center using offset members.
/// </summary>
/// <param name="parent">The ember to spin</param>
/// <param name="templ">The template to apply if not nullptr, else ignore.</param>
/// <param name="result">The result of the spin</param>
/// <param name="frame">The frame in the sequence to be stored in the m_Time member of result</param>
/// <param name="blend">The interpolation time</param>
/// <param name="cw">True to rotate clockwise, else rotate counter clockwise. Ignored if rotations is 0.</param>
void Spin ( Ember < T > & parent , Ember < T > * templ , Ember < T > & result , size_t frame , T blend , bool cw )
{
const auto cwblend = cw ? blend : - blend ;
const string temp = " rotate " + std : : to_string ( cwblend * 360.0 ) ;
//Spin the parent blend degrees.
Loop ( parent , result , blend , cw ) ;
//Apply the template if necessary.
if ( templ )
ApplyTemplate ( result , * templ ) ;
//Set ember parameters accordingly.
result . m_Time = T ( frame ) ;
result . m_Interp = eInterp : : EMBER_INTERP_LINEAR ;
result . m_PaletteInterp = ePaletteInterp : : INTERP_HSV ;
//Create the edit doc xml.
result . ClearEdit ( ) ;
result . m_Edits = m_EmberToXml . CreateNewEditdoc ( & parent , nullptr , temp , m_Nick , m_Url , m_Id , m_Comment , m_SheepGen , m_SheepId ) ;
//Subpixel jitter.
Offset ( result , m_OffsetX , m_OffsetY ) ;
//Need to set these to be equal so rendering works correctly for off center embers.
result . m_RotCenterY = result . m_CenterY ;
//Make the name of the flame the time.
result . m_Name = std : : to_string ( result . m_Time ) ;
}
/// <summary>
/// Call Edge() on parents, optionally apply a template ember, and place the output in result.
/// Create auto-generated name
/// Append edits using the Nick, Url and Id members.
/// Apply subpixel jitter to center using offset members.
/// </summary>
/// <param name="parents">The embers to interpolate</param>
/// <param name="templ">The template to apply if not nullptr, else ignore.</param>
/// <param name="result">The result of the spin</param>
/// <param name="frame">The frame in the sequence to be stored in the m_Time member of result</param>
/// <param name="seqFlag">True if embers points to the first or last ember in the entire sequence, else false.</param>
/// <param name="blend">The interpolation time</param>
/// <param name="rotations">The number of times to rotate within the interpolation</param>
/// <param name="cw">True to rotate clockwise, else rotate counter clockwise. Ignored if rotations is 0.</param>
void SpinInter ( Ember < T > * parents , Ember < T > * templ , Ember < T > & result , size_t frame , bool seqFlag , T blend , size_t rotations , bool cw )
{
const auto cwblend = cw ? blend : - blend ;
const string temp = " interpolate " + std : : to_string ( cwblend * 360.0 ) ;
//Interpolate between spun parents.
Edge ( parents , result , blend , rotations , cw , seqFlag ) ;
//Original did an interpolated palette hack here for random palettes, but it was never used anywhere so ember omits it.//ORIG
//Apply the template if necessary.
if ( templ )
ApplyTemplate ( result , * templ ) ;
//Set ember parameters accordingly.
result . m_Time = T ( frame ) ;
//Create the edit doc xml.
result . ClearEdit ( ) ;
result . m_Edits = m_EmberToXml . CreateNewEditdoc ( & parents [ 0 ] , & parents [ 1 ] , temp , m_Nick , m_Url , m_Id , m_Comment , m_SheepGen , m_SheepId ) ;
//Subpixel jitter.
Offset ( result , m_OffsetX , m_OffsetY ) ;
//Need to set these to be equal so rendering works correctly for off center embers.
result . m_RotCenterY = result . m_CenterY ;
//Make the name of the flame the time.
result . m_Name = std : : to_string ( result . m_Time ) ;
}
/// <summary>
/// Apply a template to an ember.
/// </summary>
/// <param name="ember">The ember to apply the template to</param>
/// <param name="templ">The template to apply</param>
void ApplyTemplate ( Ember < T > & ember , Ember < T > & templ )
{
//Check for invalid values - only replace those with valid ones.
for ( glm : : length_t i = 0 ; i < 3 ; i + + )
if ( templ . m_Background [ i ] > = 0 )
ember . m_Background [ i ] = templ . m_Background [ i ] ;
if ( templ . m_Zoom < 999999 )
ember . m_Zoom = templ . m_Zoom ;
if ( templ . m_Supersample > 0 )
ember . m_Supersample = templ . m_Supersample ;
if ( templ . m_SpatialFilterRadius > = 0 )
ember . m_SpatialFilterRadius = templ . m_SpatialFilterRadius ;
if ( templ . m_Quality > 0 )
ember . m_Quality = templ . m_Quality ;
if ( templ . m_SubBatchSize > 0 )
ember . m_SubBatchSize = templ . m_SubBatchSize ;
if ( templ . m_FuseCount > 0 )
ember . m_FuseCount = templ . m_FuseCount ;
if ( templ . m_TemporalSamples > 0 )
ember . m_TemporalSamples = templ . m_TemporalSamples ;
if ( templ . m_FinalRasW > 0 )
{
//Preserving scale should be an option.
ember . m_PixelsPerUnit = ember . m_PixelsPerUnit * templ . m_FinalRasW / ember . m_FinalRasW ;
ember . m_FinalRasW = templ . m_FinalRasW ;
}
if ( templ . m_FinalRasH > 0 )
ember . m_FinalRasH = templ . m_FinalRasH ;
if ( templ . m_MaxRadDE > = 0 )
ember . m_MaxRadDE = templ . m_MaxRadDE ;
if ( templ . m_MinRadDE > = 0 )
ember . m_MinRadDE = templ . m_MinRadDE ;
if ( templ . m_CurveDE > = 0 )
ember . m_CurveDE = templ . m_CurveDE ;
if ( templ . m_GammaThresh > = 0 )
ember . m_GammaThresh = templ . m_GammaThresh ;
if ( templ . m_SpatialFilterType > eSpatialFilterType : : GAUSSIAN_SPATIAL_FILTER )
ember . m_SpatialFilterType = templ . m_SpatialFilterType ;
if ( templ . m_Interp ! = eInterp : : EMBER_INTERP_SMOOTH )
ember . m_Interp = templ . m_Interp ;
if ( templ . m_AffineInterp ! = eAffineInterp : : AFFINE_INTERP_LOG )
ember . m_AffineInterp = templ . m_AffineInterp ;
if ( templ . m_TemporalFilterType > = eTemporalFilterType : : BOX_TEMPORAL_FILTER )
ember . m_TemporalFilterType = templ . m_TemporalFilterType ;
if ( templ . m_TemporalFilterWidth > 0 )
ember . m_TemporalFilterWidth = templ . m_TemporalFilterWidth ;
if ( templ . m_TemporalFilterExp > - 999 )
ember . m_TemporalFilterExp = templ . m_TemporalFilterExp ;
if ( templ . m_HighlightPower ! = 1 )
ember . m_HighlightPower = templ . m_HighlightPower ;
if ( templ . m_PaletteMode ! = ePaletteMode : : PALETTE_LINEAR )
ember . m_PaletteMode = templ . m_PaletteMode ;
}
/// <summary>
/// Move the center of the ember by the specified amount.
/// </summary>
/// <param name="ember">The ember to move</param>
/// <param name="offsetX">The x offset.</param>
/// <param name="offsetY">The y offset.</param>
void Offset ( Ember < T > & ember , T offsetX , T offsetY )
{
if ( ! IsNearZero < T > ( offsetX ) )
ember . m_CenterX + = offsetX / ( ember . m_PixelsPerUnit * ember . m_Supersample ) ;
if ( ! IsNearZero < T > ( offsetY ) )
ember . m_CenterY + = offsetY / ( ember . m_PixelsPerUnit * ember . m_Supersample ) ;
}
/// <summary>
/// Translate the first center point by the second, rotate it, translate back.
/// </summary>
/// <param name="newCenterX">The new center x</param>
/// <param name="newCenterY">The new center y</param>
/// <param name="oldCenterX">The old center x</param>
/// <param name="oldCenterY">The old center y</param>
/// <param name="by">The angle to rotate by</param>
void RotateOldCenterBy ( T & newCenterX , T & newCenterY , T oldCenterX , T oldCenterY , T by )
{
T r [ 2 ] ;
const T th = by * 2 * static_cast < T > ( M_PI ) / 360 ;
const T c = std : : cos ( th ) ;
const T s = - std : : sin ( th ) ;
newCenterX - = oldCenterX ;
newCenterY - = oldCenterY ;
r [ 0 ] = c * newCenterX - s * newCenterY ;
r [ 1 ] = s * newCenterX + c * newCenterY ;
newCenterX = r [ 0 ] + oldCenterX ;
newCenterY = r [ 1 ] + oldCenterY ;
}
/// <summary>
/// Find a 2D bounding box that does not enclose eps of the fractal density in each compass direction.
/// This will run the inner loops of iteration without all of the surrounding interpolation and filtering.
/// </summary>
/// <param name="ember">The ember to iterate</param>
/// <param name="eps">The eps</param>
/// <param name="samples">The number samples to iterate</param>
/// <param name="bmin">The bmin[0] and bmin[1] will be the minimum x and y values.</param>
/// <param name="bmax">The bmax[0] and bmax[1] will be the maximum x and y values.</param>
/// <returns>The number of iterations ran</returns>
size_t EstimateBoundingBox ( Ember < T > & ember , T eps , size_t samples , T * bmin , T * bmax )
{
size_t i , lowTarget , highTarget ;
T min [ 2 ] , max [ 2 ] ;
IterParams < T > params ;
m_Renderer - > SetEmber ( ember , eProcessAction : : FULL_RENDER , true ) ;
if ( ember . XaosPresent ( ) )
m_Iterator = m_XaosIterator . get ( ) ;
else
m_Iterator = m_StandardIterator . get ( ) ;
m_Iterator - > InitDistributions ( ember ) ;
m_Samples . resize ( samples ) ;
params . m_Count = samples ;
params . m_Skip = 20 ;
auto & ctr = m_Renderer - > CoordMap ( ) ;
//params.m_OneColDiv2 = m_Renderer->CoordMap().OneCol() / 2;
//params.m_OneRowDiv2 = m_Renderer->CoordMap().OneRow() / 2;
size_t bv = m_Iterator - > Iterate ( ember , params , ctr , m_Samples . data ( ) , m_Rand ) ; //Use a special fuse of 20, all other calls to this will use 15, or 100.
if ( bv / static_cast < T > ( samples ) > eps )
eps = 3 * bv / T ( samples ) ;
if ( eps > static_cast < T > ( 0.3 ) )
eps = static_cast < T > ( 0.3 ) ;
lowTarget = static_cast < size_t > ( samples * eps ) ;
highTarget = samples - lowTarget ;
min [ 0 ] = min [ 1 ] = 1e10 ;
max [ 0 ] = max [ 1 ] = - 1e10 ;
for ( i = 0 ; i < samples ; i + + )
{
if ( m_Samples [ i ] . m_X < min [ 0 ] ) min [ 0 ] = m_Samples [ i ] . m_X ;
if ( m_Samples [ i ] . m_Y < min [ 1 ] ) min [ 1 ] = m_Samples [ i ] . m_Y ;
if ( m_Samples [ i ] . m_X > max [ 0 ] ) max [ 0 ] = m_Samples [ i ] . m_X ;
if ( m_Samples [ i ] . m_Y > max [ 1 ] ) max [ 1 ] = m_Samples [ i ] . m_Y ;
}
if ( lowTarget = = 0 )
{
bmin [ 0 ] = min [ 0 ] ;
bmin [ 1 ] = min [ 1 ] ;
bmax [ 0 ] = max [ 0 ] ;
bmax [ 1 ] = max [ 1 ] ;
return bv ;
}
std : : sort ( m_Samples . begin ( ) , m_Samples . end ( ) , & SortPointByX < T > ) ;
bmin [ 0 ] = m_Samples [ lowTarget ] . m_X ;
bmax [ 0 ] = m_Samples [ highTarget ] . m_X ;
std : : sort ( m_Samples . begin ( ) , m_Samples . end ( ) , & SortPointByY < T > ) ;
bmin [ 1 ] = m_Samples [ lowTarget + 1 ] . m_Y ;
bmax [ 1 ] = m_Samples [ highTarget + 1 ] . m_Y ;
return bv ;
}
/// <summary>
/// When doing spin or edge, an edit doc is made to record what was done.
/// Doing so takes many extra parameters such as name and url. Passing these every
/// time is cumbersome and are unlikely to change for the duration of a program run, so
/// they are made to be member variables. After setting these, their values will be used
/// in all edits within this class.
/// </summary>
/// <param name="smooth">Use smoothing if true, else false</param>
/// <param name="stagger">Use stagger if > 0, else false</param>
/// <param name="offsetX">X amount of subpixel jitter to apply in Spin() and Edge()</param>
/// <param name="offsetY">Y amount of subpixel jitter to apply in Spin() and Edge()</param>
/// <param name="nick">The nickname of the author</param>
/// <param name="url">The Url of the author</param>
/// <param name="id">The id of the author</param>
/// <param name="comment">The comment to include</param>
/// <param name="sheepGen">The sheep generation used if > 0. Default: 0.</param>
/// <param name="sheepId">The sheep id used if > 0. Default: 0.</param>
void SetSpinParams ( bool smooth , T stagger , T offsetX , T offsetY , const string & nick , const string & url , const string & id , const string & comment , intmax_t sheepGen , intmax_t sheepId )
{
m_Smooth = smooth ;
m_SheepGen = sheepGen ;
m_SheepId = sheepId ;
m_Stagger = stagger ;
m_OffsetX = offsetX ;
m_OffsetY = offsetY ;
m_Nick = nick ;
m_Url = url ;
m_Id = id ;
m_Comment = comment ;
}
/// <summary>
/// Set stagger value.
/// Greater than 0 means interpolate xforms one at a time, else interpolate all at once.
/// </summary>
/// <param name="stagger">The stagger value to set.</param>
void Stagger ( T stagger )
{
m_Stagger = stagger ;
}
private :
bool m_Smooth = true ;
intmax_t m_SheepGen = - 1 ;
intmax_t m_SheepId = - 1 ;
T m_Stagger = 0 ;
T m_OffsetX = 0 ;
T m_OffsetY = 0 ;
string m_Nick ;
string m_Url ;
string m_Id ;
string m_Comment ;
vector < Point < T > > m_Samples ;
vector < v4F > m_FinalImage ;
vector < uint > m_Hist ;
EmberToXml < T > m_EmberToXml ;
Iterator < T > * m_Iterator ;
Interpolater < T > m_Interpolater ;
Ember < T > m_Parents [ 2 ] ;
Ember < T > m_EdgeSpun [ 2 ] ;
Ember < T > m_EdgePrealign [ 2 ] ;
unique_ptr < StandardIterator < T > > m_StandardIterator = make_unique < StandardIterator < T > > ( ) ;
unique_ptr < XaosIterator < T > > m_XaosIterator = make_unique < XaosIterator < T > > ( ) ;
unique_ptr < Renderer < T , bucketT > > m_Renderer ;
QTIsaac < ISAAC_SIZE , ISAAC_INT > m_Rand ;
shared_ptr < PaletteList < float > > m_PaletteList ;
shared_ptr < VariationList < T > > m_VariationList ;
} ;
}