mirror of
https://github.com/scottdraves/flam3.git
synced 2025-01-21 13:30:04 -05:00
1033 lines
33 KiB
C
1033 lines
33 KiB
C
/*
|
|
FLAM3 - cosmic recursive fractal flames
|
|
Copyright (C) 1992-2009 Spotworks LLC
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "interpolation.h"
|
|
#include "palettes.h"
|
|
|
|
double adjust_percentage(double in) {
|
|
|
|
if (in==0.0)
|
|
return(0.0);
|
|
else
|
|
return(pow(10.0, -log(1.0/in)/log(2)));
|
|
|
|
}
|
|
|
|
double motion_funcs(int funcnum, double timeval) {
|
|
|
|
/* motion funcs should be cyclic, and equal to 0 at integral time values */
|
|
/* abs peak values should be not be greater than 1 */
|
|
if (funcnum==MOTION_SIN) {
|
|
return (sin(2.0*M_PI*timeval));
|
|
} else if (funcnum==MOTION_TRIANGLE) {
|
|
double fr = fmod(timeval,1.0);
|
|
|
|
if (fr<0) fr+= 1.0;
|
|
|
|
if (fr<=.25)
|
|
fr = 4.0 * fr;
|
|
else if (fr<=.75)
|
|
fr = -4.0 * fr + 2.0;
|
|
else
|
|
fr = 4.0 * fr - 4.0;
|
|
|
|
return(fr);
|
|
} else { //if (funcnum==MOTION_HILL) {
|
|
return( (1.0-cos(2.0*M_PI*timeval)) * 0.5);
|
|
}
|
|
|
|
}
|
|
|
|
double det_matrix(double s[2][2]) {
|
|
return s[0][0] * s[1][1] - s[0][1] * s[1][0];
|
|
}
|
|
|
|
int id_matrix(double s[3][2]) {
|
|
return
|
|
(s[0][0] == 1.0) &&
|
|
(s[0][1] == 0.0) &&
|
|
(s[1][0] == 0.0) &&
|
|
(s[1][1] == 1.0) &&
|
|
(s[2][0] == 0.0) &&
|
|
(s[2][1] == 0.0);
|
|
}
|
|
|
|
int zero_matrix(double s[3][2]) {
|
|
return
|
|
(s[0][0] == 0.0) &&
|
|
(s[0][1] == 0.0) &&
|
|
(s[1][0] == 0.0) &&
|
|
(s[1][1] == 0.0) &&
|
|
(s[2][0] == 0.0) &&
|
|
(s[2][1] == 0.0);
|
|
}
|
|
|
|
void copy_matrix(double to[3][2], double from[3][2]) {
|
|
|
|
to[0][0] = from[0][0];
|
|
to[0][1] = from[0][1];
|
|
to[1][0] = from[1][0];
|
|
to[1][1] = from[1][1];
|
|
to[2][0] = from[2][0];
|
|
to[2][1] = from[2][1];
|
|
}
|
|
|
|
|
|
void clear_matrix(double m[3][2]) {
|
|
m[0][0] = 0.0;
|
|
m[0][1] = 0.0;
|
|
m[1][0] = 0.0;
|
|
m[1][1] = 0.0;
|
|
m[2][0] = 0.0;
|
|
m[2][1] = 0.0;
|
|
}
|
|
|
|
void sum_matrix(double s, double m1[3][2], double m2[3][2]) {
|
|
|
|
m2[0][0] += s * m1[0][0];
|
|
m2[0][1] += s * m1[0][1];
|
|
m2[1][0] += s * m1[1][0];
|
|
m2[1][1] += s * m1[1][1];
|
|
m2[2][0] += s * m1[2][0];
|
|
m2[2][1] += s * m1[2][1];
|
|
}
|
|
|
|
void mult_matrix(double s1[2][2], double s2[2][2], double d[2][2]) {
|
|
d[0][0] = s1[0][0] * s2[0][0] + s1[1][0] * s2[0][1];
|
|
d[1][0] = s1[0][0] * s2[1][0] + s1[1][0] * s2[1][1];
|
|
d[0][1] = s1[0][1] * s2[0][0] + s1[1][1] * s2[0][1];
|
|
d[1][1] = s1[0][1] * s2[1][0] + s1[1][1] * s2[1][1];
|
|
}
|
|
|
|
int compare_xforms(const void *av, const void *bv) {
|
|
flam3_xform *a = (flam3_xform *) av;
|
|
flam3_xform *b = (flam3_xform *) bv;
|
|
double aa[2][2];
|
|
double bb[2][2];
|
|
double ad, bd;
|
|
|
|
aa[0][0] = a->c[0][0];
|
|
aa[0][1] = a->c[0][1];
|
|
aa[1][0] = a->c[1][0];
|
|
aa[1][1] = a->c[1][1];
|
|
bb[0][0] = b->c[0][0];
|
|
bb[0][1] = b->c[0][1];
|
|
bb[1][0] = b->c[1][0];
|
|
bb[1][1] = b->c[1][1];
|
|
ad = det_matrix(aa);
|
|
bd = det_matrix(bb);
|
|
|
|
if (a->color_speed > b->color_speed) return 1;
|
|
if (a->color_speed < b->color_speed) return -1;
|
|
if (a->color_speed) {
|
|
if (ad < 0) return -1;
|
|
if (bd < 0) return 1;
|
|
ad = atan2(a->c[0][0], a->c[0][1]);
|
|
bd = atan2(b->c[0][0], b->c[0][1]);
|
|
}
|
|
|
|
if (ad < bd) return -1;
|
|
if (ad > bd) return 1;
|
|
return 0;
|
|
}
|
|
|
|
void interpolate_cmap(flam3_palette cmap, double blend,
|
|
int index0, double hue0, int index1, double hue1) {
|
|
|
|
flam3_palette p0,p1;
|
|
int i, j, rcode;
|
|
|
|
rcode = flam3_get_palette(index0, p0, hue0);
|
|
if (rcode<0)
|
|
fprintf(stderr,"unable to retrieve palette %d, setting to white\n", index0);
|
|
rcode = flam3_get_palette(index1, p1, hue1);
|
|
if (rcode<0)
|
|
fprintf(stderr,"unable to retrieve palette %d, setting to white\n", index1);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
double t[5], s[5];
|
|
|
|
rgb2hsv(p0[i].color, s);
|
|
rgb2hsv(p1[i].color, t);
|
|
|
|
s[3] = p0[i].color[3];
|
|
t[3] = p1[i].color[3];
|
|
|
|
s[4] = p0[i].index;
|
|
t[4] = p1[i].index;
|
|
|
|
/* take the shorter way around the hue circle */
|
|
if (0 == i) {
|
|
fprintf(stderr, "xxx interpolating between hues, %g %g\n", s[0], t[0]);
|
|
}
|
|
if ((s[0] - t[0]) > 3.0)
|
|
s[0] += 6.0;
|
|
if ((t[0] - s[0]) > 3.0)
|
|
t[0] += 6.0;
|
|
|
|
for (j = 0; j < 5; j++)
|
|
t[j] = ((1.0-blend) * s[j]) + (blend * t[j]);
|
|
|
|
hsv2rgb(t, cmap[i].color);
|
|
cmap[i].color[3] = t[3];
|
|
cmap[i].index = t[4];
|
|
}
|
|
}
|
|
|
|
void interp_and_convert_back(double *c, int ncps, int xfi, double cxang[4][2],
|
|
double cxmag[4][2], double cxtrn[4][2],double store_array[3][2]) {
|
|
|
|
int i,col;
|
|
|
|
double accang[2],accmag[2];
|
|
double expmag;
|
|
int accmode[2];
|
|
|
|
accang[0] = 0.0;
|
|
accang[1] = 0.0;
|
|
accmag[0] = 0.0;
|
|
accmag[1] = 0.0;
|
|
|
|
accmode[0]=accmode[1]=0;
|
|
|
|
/* accumulation mode defaults to logarithmic, but in special */
|
|
/* cases we want to switch to linear accumulation */
|
|
for (col=0; col<2; col++) {
|
|
for (i=0; i<ncps; i++) {
|
|
if (log(cxmag[i][col])<-10)
|
|
accmode[col]=1; // Mode set to linear interp
|
|
}
|
|
}
|
|
|
|
for (i=0; i<ncps; i++) {
|
|
for (col=0; col<2; col++) {
|
|
|
|
accang[col] += c[i] * cxang[i][col];
|
|
|
|
if (accmode[col]==0)
|
|
accmag[col] += c[i] * log(cxmag[i][col]);
|
|
else
|
|
accmag[col] += c[i] * (cxmag[i][col]);
|
|
|
|
/* translation is ready to go */
|
|
store_array[2][col] += c[i] * cxtrn[i][col];
|
|
}
|
|
}
|
|
|
|
/* Convert the angle back to rectangular */
|
|
for (col=0;col<2;col++) {
|
|
if (accmode[col]==0)
|
|
expmag = exp(accmag[col]);
|
|
else
|
|
expmag = accmag[col];
|
|
|
|
store_array[col][0] = expmag * cos(accang[col]);
|
|
store_array[col][1] = expmag * sin(accang[col]);
|
|
}
|
|
|
|
}
|
|
|
|
void convert_linear_to_polar(flam3_genome *cp, int ncps, int xfi, int cflag,
|
|
double cxang[4][2], double cxmag[4][2], double cxtrn[4][2]) {
|
|
|
|
double c1[2],d,t,refang;
|
|
int col,k;
|
|
int zlm[2];
|
|
|
|
for (k=0; k<ncps;k++) {
|
|
|
|
/* Establish the angles and magnitudes for each component */
|
|
/* Keep translation linear */
|
|
zlm[0]=zlm[1]=0;
|
|
for (col=0;col<2;col++) {
|
|
|
|
if (cflag==0) {
|
|
c1[0] = cp[k].xform[xfi].c[col][0];
|
|
c1[1] = cp[k].xform[xfi].c[col][1];
|
|
t = cp[k].xform[xfi].c[2][col];
|
|
} else {
|
|
c1[0] = cp[k].xform[xfi].post[col][0];
|
|
c1[1] = cp[k].xform[xfi].post[col][1];
|
|
t = cp[k].xform[xfi].post[2][col];
|
|
}
|
|
|
|
cxang[k][col] = atan2(c1[1],c1[0]);
|
|
cxmag[k][col] = sqrt(c1[0]*c1[0] + c1[1]*c1[1]);
|
|
|
|
if (cxmag[k][col]== 0.0)
|
|
zlm[col]=1;
|
|
|
|
cxtrn[k][col] = t;
|
|
}
|
|
|
|
if (zlm[0]==1 && zlm[1]==0)
|
|
cxang[k][0] = cxang[k][1];
|
|
else if (zlm[0]==0 && zlm[1]==1)
|
|
cxang[k][1] = cxang[k][0];
|
|
|
|
}
|
|
|
|
/* Make sure the rotation is the shorter direction around the circle */
|
|
/* by adjusting each angle in succession, and rotate clockwise if 180 degrees */
|
|
for (col=0; col<2; col++) {
|
|
for (k=1;k<ncps;k++) {
|
|
|
|
/* Adjust angles differently if we have an asymmetric case */
|
|
if (cp[k].xform[xfi].wind[col]>0 && cflag==0) {
|
|
|
|
/* Adjust the angles to make sure that it's within wind:wind+2pi */
|
|
refang = cp[k].xform[xfi].wind[col] - 2*M_PI;
|
|
|
|
/* Make sure both angles are within [refang refang+2*pi] */
|
|
while(cxang[k-1][col] < refang)
|
|
cxang[k-1][col] += 2*M_PI;
|
|
|
|
while(cxang[k-1][col] > refang + 2*M_PI)
|
|
cxang[k-1][col] -= 2*M_PI;
|
|
|
|
while(cxang[k][col] < refang)
|
|
cxang[k][col] += 2*M_PI;
|
|
|
|
while(cxang[k][col] > refang + 2*M_PI)
|
|
cxang[k][col] -= 2*M_PI;
|
|
|
|
} else {
|
|
|
|
/* Normal way of adjusting angles */
|
|
d = cxang[k][col]-cxang[k-1][col];
|
|
|
|
/* Adjust to avoid the -pi/pi discontinuity */
|
|
if (d > M_PI+EPS)
|
|
cxang[k][col] -= 2*M_PI;
|
|
else if (d < -(M_PI-EPS) ) /* Forces clockwise rotation at 180 */
|
|
cxang[k][col] += 2*M_PI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void interpolate_catmull_rom(flam3_genome cps[], double t, flam3_genome *result) {
|
|
double t2 = t * t;
|
|
double t3 = t2 * t;
|
|
double cmc[4];
|
|
|
|
cmc[0] = (2*t2 - t - t3) / 2;
|
|
cmc[1] = (3*t3 - 5*t2 + 2) / 2;
|
|
cmc[2] = (4*t2 - 3*t3 + t) / 2;
|
|
cmc[3] = (t3 - t2) / 2;
|
|
|
|
flam3_interpolate_n(result, 4, cps, cmc, 0);
|
|
}
|
|
|
|
double smoother(double t) {
|
|
return 3*t*t - 2*t*t*t;
|
|
}
|
|
|
|
double get_stagger_coef(double t, double stagger_prc, int num_xforms, int this_xform) {
|
|
|
|
/* max_stag is the spacing between xform start times if stagger_prc = 1.0 */
|
|
double max_stag = (double)(num_xforms-1)/num_xforms;
|
|
|
|
/* scale the spacing by stagger_prc */
|
|
double stag_scaled = stagger_prc * max_stag;
|
|
|
|
/* t ranges from 1 to 0 (the contribution of cp[0] to the blend) */
|
|
/* the first line below makes the first xform interpolate first */
|
|
/* the second line makes the last xform interpolate first */
|
|
double st = stag_scaled * (num_xforms - 1 - this_xform) / (num_xforms-1);
|
|
// double st = stag_scaled * (this_xform) / (num_xforms-1);
|
|
double et = st + (1-stag_scaled);
|
|
|
|
// printf("t=%f xf:%d st=%f et=%f : : %f\n",t,this_xform,st,et,smoother((t-st)/(1-stag_scaled)));
|
|
|
|
if (t <= st)
|
|
return (0);
|
|
else if (t >= et)
|
|
return (1);
|
|
else
|
|
return ( smoother((t-st)/(1-stag_scaled)) );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* all cpi and result must be aligned (have the same number of xforms,
|
|
and have final xform in the same slot) */
|
|
void flam3_interpolate_n(flam3_genome *result, int ncp,
|
|
flam3_genome *cpi, double *c, double stagger) {
|
|
int i, j, k, numstd;
|
|
|
|
fprintf(stderr, "xxx pi=%d\n", cpi[0].palette_interpolation);
|
|
|
|
if (flam3_palette_interpolation_sweep != cpi[0].palette_interpolation) {
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
double t[3], s[5];
|
|
int alpha1 = 1;
|
|
|
|
s[0] = s[1] = s[2] = s[3] = s[4] = 0.0;
|
|
|
|
for (k = 0; k < ncp; k++) {
|
|
if (i == 0) {
|
|
fprintf(stderr, "ncp=%d, k=%d\n", ncp, k);
|
|
fprintf(stderr, "rgb=%g %g %g\n", cpi[k].palette[i].color[0], cpi[k].palette[i].color[1], cpi[k].palette[i].color[2]);
|
|
}
|
|
if (flam3_palette_interpolation_rgb != cpi[0].palette_interpolation)
|
|
rgb2hsv(cpi[k].palette[i].color, t);
|
|
else {
|
|
int l;
|
|
for (l = 0; l < 3; l++)
|
|
t[l] = cpi[k].palette[i].color[l];
|
|
}
|
|
if (i == 0) {
|
|
fprintf(stderr, "hsv=%g %g %g\n", t[0], t[1], t[2]);
|
|
}
|
|
|
|
if (2 == ncp && cpi[0].palette_interpolation == flam3_palette_interpolation_hsv2) {
|
|
/* should also support blending between rgb and hsv,
|
|
and change the color of the cut, so we can keep
|
|
a dominant color but control what it is. */
|
|
double z[3];
|
|
rgb2hsv(cpi[1-k].palette[i].color, z);
|
|
if ((z[0] - t[0]) > 3.0) t[0] += 6.0;
|
|
if (i == 0)
|
|
fprintf(stderr, "adjusted %g %g\n", z[0], t[0]);
|
|
}
|
|
|
|
for (j = 0; j < 3; j++)
|
|
s[j] += c[k] * t[j];
|
|
|
|
s[3] += c[k] * cpi[k].palette[i].color[3];
|
|
if (cpi[k].palette[i].color[3] != 1.0)
|
|
alpha1 = 0;
|
|
s[4] += c[k] * cpi[k].palette[i].index;
|
|
|
|
}
|
|
|
|
if (alpha1 == 1)
|
|
s[3] = 1.0;
|
|
|
|
if (i == 0)
|
|
fprintf(stderr, "s0=%g\n", s[0]);
|
|
|
|
if (flam3_palette_interpolation_rgb != cpi[0].palette_interpolation)
|
|
hsv2rgb(s, result->palette[i].color);
|
|
else {
|
|
int l;
|
|
for (l = 0; l < 3; l++)
|
|
result->palette[i].color[l] = s[l];
|
|
}
|
|
result->palette[i].color[3] = s[3];
|
|
result->palette[i].index = s[4];
|
|
|
|
if (i == 0)
|
|
fprintf(stderr, "result rgb=%g %g %g\n",
|
|
result->palette[0].color[0],
|
|
result->palette[0].color[1],
|
|
result->palette[0].color[2]);
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
if (result->palette[i].color[j] < 0.0)
|
|
result->palette[i].color[j] = 0.0;
|
|
if (result->palette[i].color[j] > 1.0)
|
|
result->palette[i].color[j] = 1.0;
|
|
}
|
|
|
|
if (result->palette[i].index < 0.0)
|
|
result->palette[i].index = 0.0;
|
|
if (result->palette[i].index > 255.0)
|
|
result->palette[i].index = 255.0;
|
|
}
|
|
} else {
|
|
/* Sweep - not the best option for float indices */
|
|
for (i = 0; i < 256; i++) {
|
|
j = (i < (256 * c[0])) ? 0 : 1;
|
|
result->palette[i] = cpi[j].palette[i];
|
|
}
|
|
}
|
|
|
|
result->palette_index = flam3_palette_random;
|
|
result->symmetry = 0;
|
|
result->spatial_filter_select = cpi[0].spatial_filter_select;
|
|
result->temporal_filter_type = cpi[0].temporal_filter_type;
|
|
result->palette_mode = cpi[0].palette_mode;
|
|
|
|
result->interpolation_type = cpi[0].interpolation_type;
|
|
result->palette_interpolation = cpi[0].palette_interpolation;
|
|
INTERP(brightness);
|
|
INTERP(contrast);
|
|
INTERP(highlight_power);
|
|
INTERP(gamma);
|
|
INTERP(vibrancy);
|
|
INTERP(hue_rotation);
|
|
INTERI(width);
|
|
INTERI(height);
|
|
INTERI(spatial_oversample);
|
|
INTERP(center[0]);
|
|
INTERP(center[1]);
|
|
INTERP(rot_center[0]);
|
|
INTERP(rot_center[1]);
|
|
INTERP(background[0]);
|
|
INTERP(background[1]);
|
|
INTERP(background[2]);
|
|
INTERP(pixels_per_unit);
|
|
INTERP(spatial_filter_radius);
|
|
INTERP(temporal_filter_exp);
|
|
INTERP(temporal_filter_width);
|
|
INTERP(sample_density);
|
|
INTERP(zoom);
|
|
INTERP(rotate);
|
|
INTERI(nbatches);
|
|
INTERI(ntemporal_samples);
|
|
INTERP(estimator);
|
|
INTERP(estimator_minimum);
|
|
INTERP(estimator_curve);
|
|
INTERP(gam_lin_thresh);
|
|
|
|
/* Interpolate the chaos array */
|
|
numstd = cpi[0].num_xforms - (cpi[0].final_xform_index >= 0);
|
|
for (i=0;i<numstd;i++) {
|
|
for (j=0;j<numstd;j++) {
|
|
INTERP(chaos[i][j]);
|
|
if (result->chaos[i][j]<0) result->chaos[i][j]=0;
|
|
//chaos can be > 1
|
|
//if (result->chaos[i][j]>1) result->chaos[i][j]=1.0;
|
|
}
|
|
}
|
|
|
|
/* Interpolate each xform */
|
|
for (i = 0; i < cpi[0].num_xforms; i++) {
|
|
|
|
double csave[2] = {0, 0};
|
|
double td;
|
|
int all_id;
|
|
int nx = cpi[0].num_xforms-(cpi[0].final_xform_index>=0);
|
|
|
|
if (ncp==2 && stagger>0 && i!=cpi[0].final_xform_index) {
|
|
csave[0] = c[0];
|
|
csave[1] = c[1];
|
|
c[0] = get_stagger_coef(csave[0],stagger,nx,i);
|
|
c[1] = 1.0-c[0];
|
|
}
|
|
|
|
|
|
INTERP(xform[i].density);
|
|
td = result->xform[i].density;
|
|
result->xform[i].density = (td < 0.0) ? 0.0 : td;
|
|
INTERP(xform[i].color);
|
|
if (result->xform[i].color<0) result->xform[i].color=0;
|
|
if (result->xform[i].color>1) result->xform[i].color=1;
|
|
|
|
INTERP(xform[i].color_speed);
|
|
if (result->xform[i].color_speed<0) result->xform[i].color_speed=0;
|
|
if (result->xform[i].color_speed>1) result->xform[i].color_speed=1;
|
|
|
|
INTERP(xform[i].opacity);
|
|
INTERP(xform[i].animate);
|
|
INTERP(xform[i].blob_low);
|
|
INTERP(xform[i].blob_high);
|
|
INTERP(xform[i].blob_waves);
|
|
INTERP(xform[i].pdj_a);
|
|
INTERP(xform[i].pdj_b);
|
|
INTERP(xform[i].pdj_c);
|
|
INTERP(xform[i].pdj_d);
|
|
INTERP(xform[i].fan2_x);
|
|
INTERP(xform[i].fan2_y);
|
|
INTERP(xform[i].rings2_val);
|
|
INTERP(xform[i].perspective_angle);
|
|
INTERP(xform[i].perspective_dist);
|
|
INTERP(xform[i].julian_power);
|
|
INTERP(xform[i].julian_dist);
|
|
INTERP(xform[i].juliascope_power);
|
|
INTERP(xform[i].juliascope_dist);
|
|
INTERP(xform[i].radial_blur_angle);
|
|
INTERP(xform[i].pie_slices);
|
|
INTERP(xform[i].pie_rotation);
|
|
INTERP(xform[i].pie_thickness);
|
|
INTERP(xform[i].ngon_sides);
|
|
INTERP(xform[i].ngon_power);
|
|
INTERP(xform[i].ngon_circle);
|
|
INTERP(xform[i].ngon_corners);
|
|
INTERP(xform[i].curl_c1);
|
|
INTERP(xform[i].curl_c2);
|
|
INTERP(xform[i].rectangles_x);
|
|
INTERP(xform[i].rectangles_y);
|
|
INTERP(xform[i].amw_amp);
|
|
INTERP(xform[i].disc2_rot);
|
|
INTERP(xform[i].disc2_twist);
|
|
INTERP(xform[i].super_shape_rnd);
|
|
INTERP(xform[i].super_shape_m);
|
|
INTERP(xform[i].super_shape_n1);
|
|
INTERP(xform[i].super_shape_n2);
|
|
INTERP(xform[i].super_shape_n3);
|
|
INTERP(xform[i].super_shape_holes);
|
|
INTERP(xform[i].flower_petals);
|
|
INTERP(xform[i].flower_holes);
|
|
INTERP(xform[i].conic_eccentricity);
|
|
INTERP(xform[i].conic_holes);
|
|
INTERP(xform[i].parabola_height);
|
|
INTERP(xform[i].parabola_width);
|
|
INTERP(xform[i].bent2_x);
|
|
INTERP(xform[i].bent2_y);
|
|
INTERP(xform[i].bipolar_shift);
|
|
INTERP(xform[i].cell_size);
|
|
INTERP(xform[i].cpow_r);
|
|
INTERP(xform[i].cpow_i);
|
|
INTERP(xform[i].cpow_power);
|
|
INTERP(xform[i].curve_xamp);
|
|
INTERP(xform[i].curve_yamp);
|
|
INTERP(xform[i].curve_xlength);
|
|
INTERP(xform[i].curve_ylength);
|
|
INTERP(xform[i].escher_beta);
|
|
INTERP(xform[i].lazysusan_x);
|
|
INTERP(xform[i].lazysusan_y);
|
|
INTERP(xform[i].lazysusan_twist);
|
|
INTERP(xform[i].lazysusan_space);
|
|
INTERP(xform[i].lazysusan_spin);
|
|
INTERP(xform[i].modulus_x);
|
|
INTERP(xform[i].modulus_y);
|
|
INTERP(xform[i].oscope_separation);
|
|
INTERP(xform[i].oscope_frequency);
|
|
INTERP(xform[i].oscope_amplitude);
|
|
INTERP(xform[i].oscope_damping);
|
|
INTERP(xform[i].popcorn2_x);
|
|
INTERP(xform[i].popcorn2_y);
|
|
INTERP(xform[i].popcorn2_c);
|
|
INTERP(xform[i].separation_x);
|
|
INTERP(xform[i].separation_xinside);
|
|
INTERP(xform[i].separation_y);
|
|
INTERP(xform[i].separation_yinside);
|
|
INTERP(xform[i].split_xsize);
|
|
INTERP(xform[i].split_ysize);
|
|
INTERP(xform[i].splits_x);
|
|
INTERP(xform[i].splits_y);
|
|
INTERP(xform[i].stripes_space);
|
|
INTERP(xform[i].stripes_warp);
|
|
INTERP(xform[i].wedge_angle);
|
|
INTERP(xform[i].wedge_hole);
|
|
INTERP(xform[i].wedge_count);
|
|
INTERP(xform[i].wedge_swirl);
|
|
INTERP(xform[i].wedge_julia_angle);
|
|
INTERP(xform[i].wedge_julia_count);
|
|
INTERP(xform[i].wedge_julia_power);
|
|
INTERP(xform[i].wedge_julia_dist);
|
|
INTERP(xform[i].wedge_sph_angle);
|
|
INTERP(xform[i].wedge_sph_hole);
|
|
INTERP(xform[i].wedge_sph_count);
|
|
INTERP(xform[i].wedge_sph_swirl);
|
|
INTERP(xform[i].whorl_inside);
|
|
INTERP(xform[i].whorl_outside);
|
|
INTERP(xform[i].waves2_scalex);
|
|
INTERP(xform[i].waves2_scaley);
|
|
INTERP(xform[i].waves2_freqx);
|
|
INTERP(xform[i].waves2_freqy);
|
|
INTERP(xform[i].auger_sym);
|
|
INTERP(xform[i].auger_weight);
|
|
INTERP(xform[i].auger_freq);
|
|
INTERP(xform[i].auger_scale);
|
|
INTERP(xform[i].flux_spread);
|
|
INTERP(xform[i].mobius_re_a);
|
|
INTERP(xform[i].mobius_im_a);
|
|
INTERP(xform[i].mobius_re_b);
|
|
INTERP(xform[i].mobius_im_b);
|
|
INTERP(xform[i].mobius_re_c);
|
|
INTERP(xform[i].mobius_im_c);
|
|
INTERP(xform[i].mobius_re_d);
|
|
INTERP(xform[i].mobius_im_d);
|
|
|
|
for (j = 0; j < flam3_nvariations; j++)
|
|
INTERP(xform[i].var[j]);
|
|
|
|
if (flam3_inttype_log == cpi[0].interpolation_type) {
|
|
double cxmag[4][2]; // XXX why only 4? should be ncp
|
|
double cxang[4][2];
|
|
double cxtrn[4][2];
|
|
|
|
/* affine part */
|
|
clear_matrix(result->xform[i].c);
|
|
convert_linear_to_polar(cpi,ncp,i,0,cxang,cxmag,cxtrn);
|
|
interp_and_convert_back(c, ncp, i, cxang, cxmag, cxtrn,result->xform[i].c);
|
|
|
|
/* post part */
|
|
all_id = 1;
|
|
for (k=0; k<ncp; k++)
|
|
all_id &= id_matrix(cpi[k].xform[i].post);
|
|
|
|
clear_matrix(result->xform[i].post);
|
|
if (all_id) {
|
|
result->xform[i].post[0][0] = 1.0;
|
|
result->xform[i].post[1][1] = 1.0;
|
|
} else {
|
|
convert_linear_to_polar(cpi,ncp,i,1,cxang,cxmag,cxtrn);
|
|
interp_and_convert_back(c, ncp, i, cxang, cxmag, cxtrn,result->xform[i].post);
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Interpolate c matrix & post */
|
|
clear_matrix(result->xform[i].c);
|
|
clear_matrix(result->xform[i].post);
|
|
all_id = 1;
|
|
for (k = 0; k < ncp; k++) {
|
|
sum_matrix(c[k], cpi[k].xform[i].c, result->xform[i].c);
|
|
sum_matrix(c[k], cpi[k].xform[i].post, result->xform[i].post);
|
|
|
|
all_id &= id_matrix(cpi[k].xform[i].post);
|
|
|
|
}
|
|
if (all_id) {
|
|
clear_matrix(result->xform[i].post);
|
|
result->xform[i].post[0][0] = 1.0;
|
|
result->xform[i].post[1][1] = 1.0;
|
|
}
|
|
}
|
|
|
|
if (ncp==2 && stagger>0 && i!=cpi[0].final_xform_index) {
|
|
c[0] = csave[0];
|
|
c[1] = csave[1];
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void establish_asymmetric_refangles(flam3_genome *cp, int ncps) {
|
|
|
|
int k, xfi, col;
|
|
|
|
double cxang[4][2],d,c1[2];
|
|
|
|
for (xfi=0; xfi<cp[0].num_xforms; xfi++) {
|
|
|
|
/* Final xforms don't rotate regardless of their symmetry */
|
|
if (cp[0].final_xform_enable==1 && xfi==cp[0].final_xform_index)
|
|
continue;
|
|
|
|
for (k=0; k<ncps;k++) {
|
|
|
|
/* Establish the angle for each component */
|
|
/* Should potentially functionalize */
|
|
for (col=0;col<2;col++) {
|
|
|
|
c1[0] = cp[k].xform[xfi].c[col][0];
|
|
c1[1] = cp[k].xform[xfi].c[col][1];
|
|
|
|
cxang[k][col] = atan2(c1[1],c1[0]);
|
|
}
|
|
}
|
|
|
|
for (k=1; k<ncps; k++) {
|
|
|
|
for (col=0;col<2;col++) {
|
|
|
|
int sym0,sym1;
|
|
int padsymflag;
|
|
|
|
d = cxang[k][col]-cxang[k-1][col];
|
|
|
|
/* Adjust to avoid the -pi/pi discontinuity */
|
|
if (d > M_PI+EPS)
|
|
cxang[k][col] -= 2*M_PI;
|
|
else if (d < -(M_PI-EPS) )
|
|
cxang[k][col] += 2*M_PI;
|
|
|
|
/* If this is an asymmetric case, store the NON-symmetric angle */
|
|
/* Check them pairwise and store the reference angle in the second */
|
|
/* to avoid overwriting if asymmetric on both sides */
|
|
padsymflag = 0;
|
|
|
|
sym0 = (cp[k-1].xform[xfi].animate==0 || (cp[k-1].xform[xfi].padding==1 && padsymflag));
|
|
sym1 = (cp[k].xform[xfi].animate==0 || (cp[k].xform[xfi].padding==1 && padsymflag));
|
|
|
|
if ( sym1 && !sym0 )
|
|
cp[k].xform[xfi].wind[col] = cxang[k-1][col] + 2*M_PI;
|
|
else if ( sym0 && !sym1 )
|
|
cp[k].xform[xfi].wind[col] = cxang[k][col] + 2*M_PI;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void flam3_align(flam3_genome *dst, flam3_genome *src, int nsrc) {
|
|
int i, tfx, tnx, max_nx = 0, max_fx = 0;
|
|
int already_aligned=1;
|
|
int xf,j;
|
|
int ii,fnd;
|
|
double normed;
|
|
int usethisone;
|
|
|
|
usethisone = (nsrc/2) - 1;
|
|
|
|
max_nx = src[0].num_xforms - (src[0].final_xform_index >= 0);
|
|
max_fx = src[0].final_xform_enable;
|
|
|
|
for (i = 1; i < nsrc; i++) {
|
|
tnx = src[i].num_xforms - (src[i].final_xform_index >= 0);
|
|
if (max_nx != tnx) {
|
|
already_aligned = 0;
|
|
if (tnx > max_nx) max_nx = tnx;
|
|
}
|
|
|
|
tfx = src[i].final_xform_enable;
|
|
if (max_fx != tfx) {
|
|
already_aligned = 0;
|
|
max_fx |= tfx;
|
|
}
|
|
}
|
|
|
|
/* Pad the cps to equal xforms */
|
|
for (i = 0; i < nsrc; i++) {
|
|
flam3_copyx(&dst[i], &src[i], max_nx, max_fx);
|
|
}
|
|
|
|
/* Skip if this genome is compatibility mode */
|
|
if (dst[usethisone].interpolation_type == flam3_inttype_compat ||
|
|
dst[usethisone].interpolation_type == flam3_inttype_older)
|
|
return;
|
|
|
|
|
|
/* Check to see if there's a parametric variation present in one xform */
|
|
/* but not in an aligned xform. If this is the case, use the parameters */
|
|
/* from the xform with the variation as the defaults for the blank one. */
|
|
|
|
/* All genomes will have the same number of xforms at this point */
|
|
/* num = max_nx + max_fx */
|
|
for (i = 0; i<nsrc; i++) {
|
|
|
|
|
|
for (xf = 0; xf<max_nx+max_fx; xf++) {
|
|
|
|
/* Loop over the variations to see which of them are set to 0 */
|
|
/* Note that there are no parametric variations < 23 */
|
|
for (j = 23; j < flam3_nvariations; j++) {
|
|
|
|
if (dst[i].xform[xf].var[j]==0) {
|
|
|
|
if (i>0) {
|
|
|
|
/* Check to see if the prior genome's xform is populated */
|
|
if (dst[i-1].xform[xf].var[j] != 0) {
|
|
|
|
/* Copy the prior genome's parameters and continue */
|
|
flam3_copy_params(&(dst[i].xform[xf]), &(dst[i-1].xform[xf]), j);
|
|
continue;
|
|
}
|
|
|
|
} else if (i<nsrc-1) {
|
|
|
|
/* Check to see if the next genome's xform is populated */
|
|
if (dst[i+1].xform[xf].var[j] != 0) {
|
|
|
|
/* Copy the next genome's parameters and continue */
|
|
flam3_copy_params(&(dst[i].xform[xf]), &(dst[i+1].xform[xf]), j);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
} /* variations */
|
|
|
|
if (dst[i].xform[xf].padding == 1 && !already_aligned) {
|
|
|
|
/* This is a new xform. Let's see if we can choose a better 'identity' xform. */
|
|
/* Check the neighbors to see if any of these variations are used: */
|
|
/* rings2, fan2, blob, perspective, julian, juliascope, ngon, curl, super_shape, split */
|
|
/* If so, we can use a better starting point for these */
|
|
|
|
/* Remove linear from the list */
|
|
dst[i].xform[xf].var[0] = 0.0;
|
|
|
|
/* Look through all of the 'companion' xforms to see if we get a match on any of these */
|
|
fnd=0;
|
|
|
|
/* Only do the next substitution for log interpolation */
|
|
if ( (i==0 && dst[i].interpolation_type == flam3_inttype_log)
|
|
|| (i>0 && dst[i-1].interpolation_type==flam3_inttype_log) ) {
|
|
|
|
for (ii=-1; ii<=1; ii+=2) {
|
|
|
|
/* Skip if out of bounds */
|
|
if (i+ii<0 || i+ii>=nsrc)
|
|
continue;
|
|
|
|
/* Skip if this is also padding */
|
|
if (dst[i+ii].xform[xf].padding==1)
|
|
continue;
|
|
|
|
/* Spherical / Ngon (trumps all others due to holes) */
|
|
/* Interpolate these against a 180 degree rotated identity */
|
|
/* with weight -1. */
|
|
/* Added JULIAN/JULIASCOPE to get rid of black wedges */
|
|
if (dst[i+ii].xform[xf].var[VAR_SPHERICAL]>0 ||
|
|
dst[i+ii].xform[xf].var[VAR_NGON]>0 ||
|
|
dst[i+ii].xform[xf].var[VAR_JULIAN]>0 ||
|
|
dst[i+ii].xform[xf].var[VAR_JULIASCOPE]>0 ||
|
|
dst[i+ii].xform[xf].var[VAR_POLAR]>0 ||
|
|
dst[i+ii].xform[xf].var[VAR_WEDGE_SPH]>0 ||
|
|
dst[i+ii].xform[xf].var[VAR_WEDGE_JULIA]>0) {
|
|
|
|
dst[i].xform[xf].var[VAR_LINEAR] = -1.0;
|
|
/* Set the coefs appropriately */
|
|
dst[i].xform[xf].c[0][0] = -1.0;
|
|
dst[i].xform[xf].c[0][1] = 0.0;
|
|
dst[i].xform[xf].c[1][0] = 0.0;
|
|
dst[i].xform[xf].c[1][1] = -1.0;
|
|
dst[i].xform[xf].c[2][0] = 0.0;
|
|
dst[i].xform[xf].c[2][1] = 0.0;
|
|
fnd=-1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (fnd==0) {
|
|
|
|
for (ii=-1; ii<=1; ii+=2) {
|
|
|
|
/* Skip if out of bounds */
|
|
if (i+ii<0 || i+ii>=nsrc)
|
|
continue;
|
|
|
|
/* Skip if also padding */
|
|
if (dst[i+ii].xform[xf].padding==1)
|
|
continue;
|
|
|
|
/* Rectangles */
|
|
if (dst[i+ii].xform[xf].var[VAR_RECTANGLES]>0) {
|
|
dst[i].xform[xf].var[VAR_RECTANGLES] = 1.0;
|
|
dst[i].xform[xf].rectangles_x = 0.0;
|
|
dst[i].xform[xf].rectangles_y = 0.0;
|
|
fnd++;
|
|
}
|
|
|
|
/* Rings 2 */
|
|
if (dst[i+ii].xform[xf].var[VAR_RINGS2]>0) {
|
|
dst[i].xform[xf].var[VAR_RINGS2] = 1.0;
|
|
dst[i].xform[xf].rings2_val = 0.0;
|
|
fnd++;
|
|
}
|
|
|
|
/* Fan 2 */
|
|
if (dst[i+ii].xform[xf].var[VAR_FAN2]>0) {
|
|
dst[i].xform[xf].var[VAR_FAN2] = 1.0;
|
|
dst[i].xform[xf].fan2_x = 0.0;
|
|
dst[i].xform[xf].fan2_y = 0.0;
|
|
fnd++;
|
|
}
|
|
|
|
/* Blob */
|
|
if (dst[i+ii].xform[xf].var[VAR_BLOB]>0) {
|
|
dst[i].xform[xf].var[VAR_BLOB] = 1.0;
|
|
dst[i].xform[xf].blob_low = 1.0;
|
|
dst[i].xform[xf].blob_high = 1.0;
|
|
dst[i].xform[xf].blob_waves = 1.0;
|
|
fnd++;
|
|
}
|
|
|
|
/* Perspective */
|
|
if (dst[i+ii].xform[xf].var[VAR_PERSPECTIVE]>0) {
|
|
dst[i].xform[xf].var[VAR_PERSPECTIVE] = 1.0;
|
|
dst[i].xform[xf].perspective_angle = 0.0;
|
|
/* Keep the perspective distance as-is */
|
|
fnd++;
|
|
}
|
|
|
|
/* Curl */
|
|
if (dst[i+ii].xform[xf].var[VAR_CURL]>0) {
|
|
dst[i].xform[xf].var[VAR_CURL] = 1.0;
|
|
dst[i].xform[xf].curl_c1 = 0.0;
|
|
dst[i].xform[xf].curl_c2 = 0.0;
|
|
fnd++;
|
|
}
|
|
|
|
/* Super-Shape */
|
|
if (dst[i+ii].xform[xf].var[VAR_SUPER_SHAPE]>0) {
|
|
dst[i].xform[xf].var[VAR_SUPER_SHAPE] = 1.0;
|
|
/* Keep supershape_m the same */
|
|
dst[i].xform[xf].super_shape_n1 = 2.0;
|
|
dst[i].xform[xf].super_shape_n2 = 2.0;
|
|
dst[i].xform[xf].super_shape_n3 = 2.0;
|
|
dst[i].xform[xf].super_shape_rnd = 0.0;
|
|
dst[i].xform[xf].super_shape_holes = 0.0;
|
|
fnd++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we didn't have any matches with those, */
|
|
/* try the affine ones, fan and rings */
|
|
if (fnd==0) {
|
|
|
|
for (ii=-1; ii<=1; ii+=2) {
|
|
|
|
/* Skip if out of bounds */
|
|
if (i+ii<0 || i+ii>=nsrc)
|
|
continue;
|
|
|
|
/* Skip if also a padding xform */
|
|
if (dst[i+ii].xform[xf].padding==1)
|
|
continue;
|
|
|
|
/* Fan */
|
|
if (dst[i+ii].xform[xf].var[VAR_FAN]>0) {
|
|
dst[i].xform[xf].var[VAR_FAN] = 1.0;
|
|
fnd++;
|
|
}
|
|
|
|
/* Rings */
|
|
if (dst[i+ii].xform[xf].var[VAR_RINGS]>0) {
|
|
dst[i].xform[xf].var[VAR_RINGS] = 1.0;
|
|
fnd++;
|
|
}
|
|
|
|
}
|
|
|
|
if (fnd>0) {
|
|
/* Set the coefs appropriately */
|
|
dst[i].xform[xf].c[0][0] = 0.0;
|
|
dst[i].xform[xf].c[0][1] = 1.0;
|
|
dst[i].xform[xf].c[1][0] = 1.0;
|
|
dst[i].xform[xf].c[1][1] = 0.0;
|
|
dst[i].xform[xf].c[2][0] = 0.0;
|
|
dst[i].xform[xf].c[2][1] = 0.0;
|
|
}
|
|
}
|
|
|
|
/* If we still have no matches, switch back to linear */
|
|
if (fnd==0)
|
|
|
|
dst[i].xform[xf].var[VAR_LINEAR] = 1.0;
|
|
|
|
else if (fnd>0) {
|
|
|
|
/* Otherwise, go through and normalize the weights. */
|
|
normed = 0.0;
|
|
for (j = 0; j < flam3_nvariations; j++)
|
|
normed += dst[i].xform[xf].var[j];
|
|
|
|
for (j = 0; j < flam3_nvariations; j++)
|
|
dst[i].xform[xf].var[j] /= normed;
|
|
|
|
}
|
|
}
|
|
} /* xforms */
|
|
} /* genomes */
|
|
|
|
}
|
|
|