/* FLAM3 - cosmic recursive fractal flames Copyright (C) 1992-2009 Spotworks LLC This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "interpolation.h" #include "palettes.h" double adjust_percentage(double in) { if (in==0.0) return(0.0); else return(pow(10.0, -log(1.0/in)/log(2))); } double motion_funcs(int funcnum, double timeval) { /* motion funcs should be cyclic, and equal to 0 at integral time values */ /* abs peak values should be not be greater than 1 */ if (funcnum==MOTION_SIN) { return (sin(2.0*M_PI*timeval)); } else if (funcnum==MOTION_TRIANGLE) { double fr = fmod(timeval,1.0); if (fr<0) fr+= 1.0; if (fr<=.25) fr = 4.0 * fr; else if (fr<=.75) fr = -4.0 * fr + 2.0; else fr = 4.0 * fr - 4.0; return(fr); } else { //if (funcnum==MOTION_HILL) { return( (1.0-cos(2.0*M_PI*timeval)) * 0.5); } } double det_matrix(double s[2][2]) { return s[0][0] * s[1][1] - s[0][1] * s[1][0]; } int id_matrix(double s[3][2]) { return (s[0][0] == 1.0) && (s[0][1] == 0.0) && (s[1][0] == 0.0) && (s[1][1] == 1.0) && (s[2][0] == 0.0) && (s[2][1] == 0.0); } int zero_matrix(double s[3][2]) { return (s[0][0] == 0.0) && (s[0][1] == 0.0) && (s[1][0] == 0.0) && (s[1][1] == 0.0) && (s[2][0] == 0.0) && (s[2][1] == 0.0); } void copy_matrix(double to[3][2], double from[3][2]) { to[0][0] = from[0][0]; to[0][1] = from[0][1]; to[1][0] = from[1][0]; to[1][1] = from[1][1]; to[2][0] = from[2][0]; to[2][1] = from[2][1]; } void clear_matrix(double m[3][2]) { m[0][0] = 0.0; m[0][1] = 0.0; m[1][0] = 0.0; m[1][1] = 0.0; m[2][0] = 0.0; m[2][1] = 0.0; } void sum_matrix(double s, double m1[3][2], double m2[3][2]) { m2[0][0] += s * m1[0][0]; m2[0][1] += s * m1[0][1]; m2[1][0] += s * m1[1][0]; m2[1][1] += s * m1[1][1]; m2[2][0] += s * m1[2][0]; m2[2][1] += s * m1[2][1]; } void mult_matrix(double s1[2][2], double s2[2][2], double d[2][2]) { d[0][0] = s1[0][0] * s2[0][0] + s1[1][0] * s2[0][1]; d[1][0] = s1[0][0] * s2[1][0] + s1[1][0] * s2[1][1]; d[0][1] = s1[0][1] * s2[0][0] + s1[1][1] * s2[0][1]; d[1][1] = s1[0][1] * s2[1][0] + s1[1][1] * s2[1][1]; } int compare_xforms(const void *av, const void *bv) { flam3_xform *a = (flam3_xform *) av; flam3_xform *b = (flam3_xform *) bv; double aa[2][2]; double bb[2][2]; double ad, bd; aa[0][0] = a->c[0][0]; aa[0][1] = a->c[0][1]; aa[1][0] = a->c[1][0]; aa[1][1] = a->c[1][1]; bb[0][0] = b->c[0][0]; bb[0][1] = b->c[0][1]; bb[1][0] = b->c[1][0]; bb[1][1] = b->c[1][1]; ad = det_matrix(aa); bd = det_matrix(bb); if (a->color_speed > b->color_speed) return 1; if (a->color_speed < b->color_speed) return -1; if (a->color_speed) { if (ad < 0) return -1; if (bd < 0) return 1; ad = atan2(a->c[0][0], a->c[0][1]); bd = atan2(b->c[0][0], b->c[0][1]); } if (ad < bd) return -1; if (ad > bd) return 1; return 0; } void interpolate_cmap(flam3_palette cmap, double blend, int index0, double hue0, int index1, double hue1) { flam3_palette p0,p1; int i, j, rcode; rcode = flam3_get_palette(index0, p0, hue0); if (rcode<0) fprintf(stderr,"unable to retrieve palette %d, setting to white\n", index0); rcode = flam3_get_palette(index1, p1, hue1); if (rcode<0) fprintf(stderr,"unable to retrieve palette %d, setting to white\n", index1); for (i = 0; i < 256; i++) { double t[5], s[5]; rgb2hsv(p0[i].color, s); rgb2hsv(p1[i].color, t); s[3] = p0[i].color[3]; t[3] = p1[i].color[3]; s[4] = p0[i].index; t[4] = p1[i].index; /* take the shorter way around the hue circle */ if (0 == i) { fprintf(stderr, "xxx interpolating between hues, %g %g\n", s[0], t[0]); } if ((s[0] - t[0]) > 3.0) s[0] += 6.0; if ((t[0] - s[0]) > 3.0) t[0] += 6.0; for (j = 0; j < 5; j++) t[j] = ((1.0-blend) * s[j]) + (blend * t[j]); hsv2rgb(t, cmap[i].color); cmap[i].color[3] = t[3]; cmap[i].index = t[4]; } } void interp_and_convert_back(double *c, int ncps, int xfi, double cxang[4][2], double cxmag[4][2], double cxtrn[4][2],double store_array[3][2]) { int i,col; double accang[2],accmag[2]; double expmag; int accmode[2]; accang[0] = 0.0; accang[1] = 0.0; accmag[0] = 0.0; accmag[1] = 0.0; accmode[0]=accmode[1]=0; /* accumulation mode defaults to logarithmic, but in special */ /* cases we want to switch to linear accumulation */ for (col=0; col<2; col++) { for (i=0; i0 && cflag==0) { /* Adjust the angles to make sure that it's within wind:wind+2pi */ refang = cp[k].xform[xfi].wind[col] - 2*M_PI; /* Make sure both angles are within [refang refang+2*pi] */ while(cxang[k-1][col] < refang) cxang[k-1][col] += 2*M_PI; while(cxang[k-1][col] > refang + 2*M_PI) cxang[k-1][col] -= 2*M_PI; while(cxang[k][col] < refang) cxang[k][col] += 2*M_PI; while(cxang[k][col] > refang + 2*M_PI) cxang[k][col] -= 2*M_PI; } else { /* Normal way of adjusting angles */ d = cxang[k][col]-cxang[k-1][col]; /* Adjust to avoid the -pi/pi discontinuity */ if (d > M_PI+EPS) cxang[k][col] -= 2*M_PI; else if (d < -(M_PI-EPS) ) /* Forces clockwise rotation at 180 */ cxang[k][col] += 2*M_PI; } } } } void interpolate_catmull_rom(flam3_genome cps[], double t, flam3_genome *result) { double t2 = t * t; double t3 = t2 * t; double cmc[4]; cmc[0] = (2*t2 - t - t3) / 2; cmc[1] = (3*t3 - 5*t2 + 2) / 2; cmc[2] = (4*t2 - 3*t3 + t) / 2; cmc[3] = (t3 - t2) / 2; flam3_interpolate_n(result, 4, cps, cmc, 0); } double smoother(double t) { return 3*t*t - 2*t*t*t; } double get_stagger_coef(double t, double stagger_prc, int num_xforms, int this_xform) { /* max_stag is the spacing between xform start times if stagger_prc = 1.0 */ double max_stag = (double)(num_xforms-1)/num_xforms; /* scale the spacing by stagger_prc */ double stag_scaled = stagger_prc * max_stag; /* t ranges from 1 to 0 (the contribution of cp[0] to the blend) */ /* the first line below makes the first xform interpolate first */ /* the second line makes the last xform interpolate first */ double st = stag_scaled * (num_xforms - 1 - this_xform) / (num_xforms-1); // double st = stag_scaled * (this_xform) / (num_xforms-1); double et = st + (1-stag_scaled); // printf("t=%f xf:%d st=%f et=%f : : %f\n",t,this_xform,st,et,smoother((t-st)/(1-stag_scaled))); if (t <= st) return (0); else if (t >= et) return (1); else return ( smoother((t-st)/(1-stag_scaled)) ); } /* all cpi and result must be aligned (have the same number of xforms, and have final xform in the same slot) */ void flam3_interpolate_n(flam3_genome *result, int ncp, flam3_genome *cpi, double *c, double stagger) { int i, j, k, numstd; fprintf(stderr, "xxx pi=%d\n", cpi[0].palette_interpolation); if (flam3_palette_interpolation_sweep != cpi[0].palette_interpolation) { for (i = 0; i < 256; i++) { double t[3], s[5]; int alpha1 = 1; s[0] = s[1] = s[2] = s[3] = s[4] = 0.0; for (k = 0; k < ncp; k++) { if (i == 0) { fprintf(stderr, "ncp=%d, k=%d\n", ncp, k); fprintf(stderr, "rgb=%g %g %g\n", cpi[k].palette[i].color[0], cpi[k].palette[i].color[1], cpi[k].palette[i].color[2]); } if (flam3_palette_interpolation_rgb != cpi[0].palette_interpolation) rgb2hsv(cpi[k].palette[i].color, t); else { int l; for (l = 0; l < 3; l++) t[l] = cpi[k].palette[i].color[l]; } if (i == 0) { fprintf(stderr, "hsv=%g %g %g\n", t[0], t[1], t[2]); } if (2 == ncp && cpi[0].palette_interpolation == flam3_palette_interpolation_hsv2) { /* should also support blending between rgb and hsv, and change the color of the cut, so we can keep a dominant color but control what it is. */ double z[3]; rgb2hsv(cpi[1-k].palette[i].color, z); if ((z[0] - t[0]) > 3.0) t[0] += 6.0; if (i == 0) fprintf(stderr, "adjusted %g %g\n", z[0], t[0]); } for (j = 0; j < 3; j++) s[j] += c[k] * t[j]; s[3] += c[k] * cpi[k].palette[i].color[3]; if (cpi[k].palette[i].color[3] != 1.0) alpha1 = 0; s[4] += c[k] * cpi[k].palette[i].index; } if (alpha1 == 1) s[3] = 1.0; if (i == 0) fprintf(stderr, "s0=%g\n", s[0]); if (flam3_palette_interpolation_rgb != cpi[0].palette_interpolation) hsv2rgb(s, result->palette[i].color); else { int l; for (l = 0; l < 3; l++) result->palette[i].color[l] = s[l]; } result->palette[i].color[3] = s[3]; result->palette[i].index = s[4]; if (i == 0) fprintf(stderr, "result rgb=%g %g %g\n", result->palette[0].color[0], result->palette[0].color[1], result->palette[0].color[2]); for (j = 0; j < 4; j++) { if (result->palette[i].color[j] < 0.0) result->palette[i].color[j] = 0.0; if (result->palette[i].color[j] > 1.0) result->palette[i].color[j] = 1.0; } if (result->palette[i].index < 0.0) result->palette[i].index = 0.0; if (result->palette[i].index > 255.0) result->palette[i].index = 255.0; } } else { /* Sweep - not the best option for float indices */ for (i = 0; i < 256; i++) { j = (i < (256 * c[0])) ? 0 : 1; result->palette[i] = cpi[j].palette[i]; } } result->palette_index = flam3_palette_random; result->symmetry = 0; result->spatial_filter_select = cpi[0].spatial_filter_select; result->temporal_filter_type = cpi[0].temporal_filter_type; result->palette_mode = cpi[0].palette_mode; result->interpolation_type = cpi[0].interpolation_type; result->palette_interpolation = cpi[0].palette_interpolation; INTERP(brightness); INTERP(contrast); INTERP(highlight_power); INTERP(gamma); INTERP(vibrancy); INTERP(hue_rotation); INTERI(width); INTERI(height); INTERI(spatial_oversample); INTERP(center[0]); INTERP(center[1]); INTERP(rot_center[0]); INTERP(rot_center[1]); INTERP(background[0]); INTERP(background[1]); INTERP(background[2]); INTERP(pixels_per_unit); INTERP(spatial_filter_radius); INTERP(temporal_filter_exp); INTERP(temporal_filter_width); INTERP(sample_density); INTERP(zoom); INTERP(rotate); INTERI(nbatches); INTERI(ntemporal_samples); INTERP(estimator); INTERP(estimator_minimum); INTERP(estimator_curve); INTERP(gam_lin_thresh); /* Interpolate the chaos array */ numstd = cpi[0].num_xforms - (cpi[0].final_xform_index >= 0); for (i=0;ichaos[i][j]<0) result->chaos[i][j]=0; //chaos can be > 1 //if (result->chaos[i][j]>1) result->chaos[i][j]=1.0; } } /* Interpolate each xform */ for (i = 0; i < cpi[0].num_xforms; i++) { double csave[2] = {0, 0}; double td; int all_id; int nx = cpi[0].num_xforms-(cpi[0].final_xform_index>=0); if (ncp==2 && stagger>0 && i!=cpi[0].final_xform_index) { csave[0] = c[0]; csave[1] = c[1]; c[0] = get_stagger_coef(csave[0],stagger,nx,i); c[1] = 1.0-c[0]; } INTERP(xform[i].density); td = result->xform[i].density; result->xform[i].density = (td < 0.0) ? 0.0 : td; INTERP(xform[i].color); if (result->xform[i].color<0) result->xform[i].color=0; if (result->xform[i].color>1) result->xform[i].color=1; INTERP(xform[i].color_speed); if (result->xform[i].color_speed<0) result->xform[i].color_speed=0; if (result->xform[i].color_speed>1) result->xform[i].color_speed=1; INTERP(xform[i].opacity); INTERP(xform[i].animate); INTERP(xform[i].blob_low); INTERP(xform[i].blob_high); INTERP(xform[i].blob_waves); INTERP(xform[i].pdj_a); INTERP(xform[i].pdj_b); INTERP(xform[i].pdj_c); INTERP(xform[i].pdj_d); INTERP(xform[i].fan2_x); INTERP(xform[i].fan2_y); INTERP(xform[i].rings2_val); INTERP(xform[i].perspective_angle); INTERP(xform[i].perspective_dist); INTERP(xform[i].julian_power); INTERP(xform[i].julian_dist); INTERP(xform[i].juliascope_power); INTERP(xform[i].juliascope_dist); INTERP(xform[i].radial_blur_angle); INTERP(xform[i].pie_slices); INTERP(xform[i].pie_rotation); INTERP(xform[i].pie_thickness); INTERP(xform[i].ngon_sides); INTERP(xform[i].ngon_power); INTERP(xform[i].ngon_circle); INTERP(xform[i].ngon_corners); INTERP(xform[i].curl_c1); INTERP(xform[i].curl_c2); INTERP(xform[i].rectangles_x); INTERP(xform[i].rectangles_y); INTERP(xform[i].amw_amp); INTERP(xform[i].disc2_rot); INTERP(xform[i].disc2_twist); INTERP(xform[i].super_shape_rnd); INTERP(xform[i].super_shape_m); INTERP(xform[i].super_shape_n1); INTERP(xform[i].super_shape_n2); INTERP(xform[i].super_shape_n3); INTERP(xform[i].super_shape_holes); INTERP(xform[i].flower_petals); INTERP(xform[i].flower_holes); INTERP(xform[i].conic_eccentricity); INTERP(xform[i].conic_holes); INTERP(xform[i].parabola_height); INTERP(xform[i].parabola_width); INTERP(xform[i].bent2_x); INTERP(xform[i].bent2_y); INTERP(xform[i].bipolar_shift); INTERP(xform[i].cell_size); INTERP(xform[i].cpow_r); INTERP(xform[i].cpow_i); INTERP(xform[i].cpow_power); INTERP(xform[i].curve_xamp); INTERP(xform[i].curve_yamp); INTERP(xform[i].curve_xlength); INTERP(xform[i].curve_ylength); INTERP(xform[i].escher_beta); INTERP(xform[i].lazysusan_x); INTERP(xform[i].lazysusan_y); INTERP(xform[i].lazysusan_twist); INTERP(xform[i].lazysusan_space); INTERP(xform[i].lazysusan_spin); INTERP(xform[i].modulus_x); INTERP(xform[i].modulus_y); INTERP(xform[i].oscope_separation); INTERP(xform[i].oscope_frequency); INTERP(xform[i].oscope_amplitude); INTERP(xform[i].oscope_damping); INTERP(xform[i].popcorn2_x); INTERP(xform[i].popcorn2_y); INTERP(xform[i].popcorn2_c); INTERP(xform[i].separation_x); INTERP(xform[i].separation_xinside); INTERP(xform[i].separation_y); INTERP(xform[i].separation_yinside); INTERP(xform[i].split_xsize); INTERP(xform[i].split_ysize); INTERP(xform[i].splits_x); INTERP(xform[i].splits_y); INTERP(xform[i].stripes_space); INTERP(xform[i].stripes_warp); INTERP(xform[i].wedge_angle); INTERP(xform[i].wedge_hole); INTERP(xform[i].wedge_count); INTERP(xform[i].wedge_swirl); INTERP(xform[i].wedge_julia_angle); INTERP(xform[i].wedge_julia_count); INTERP(xform[i].wedge_julia_power); INTERP(xform[i].wedge_julia_dist); INTERP(xform[i].wedge_sph_angle); INTERP(xform[i].wedge_sph_hole); INTERP(xform[i].wedge_sph_count); INTERP(xform[i].wedge_sph_swirl); INTERP(xform[i].whorl_inside); INTERP(xform[i].whorl_outside); INTERP(xform[i].waves2_scalex); INTERP(xform[i].waves2_scaley); INTERP(xform[i].waves2_freqx); INTERP(xform[i].waves2_freqy); INTERP(xform[i].auger_sym); INTERP(xform[i].auger_weight); INTERP(xform[i].auger_freq); INTERP(xform[i].auger_scale); INTERP(xform[i].flux_spread); INTERP(xform[i].mobius_re_a); INTERP(xform[i].mobius_im_a); INTERP(xform[i].mobius_re_b); INTERP(xform[i].mobius_im_b); INTERP(xform[i].mobius_re_c); INTERP(xform[i].mobius_im_c); INTERP(xform[i].mobius_re_d); INTERP(xform[i].mobius_im_d); for (j = 0; j < flam3_nvariations; j++) INTERP(xform[i].var[j]); if (flam3_inttype_log == cpi[0].interpolation_type) { double cxmag[4][2]; // XXX why only 4? should be ncp double cxang[4][2]; double cxtrn[4][2]; /* affine part */ clear_matrix(result->xform[i].c); convert_linear_to_polar(cpi,ncp,i,0,cxang,cxmag,cxtrn); interp_and_convert_back(c, ncp, i, cxang, cxmag, cxtrn,result->xform[i].c); /* post part */ all_id = 1; for (k=0; kxform[i].post); if (all_id) { result->xform[i].post[0][0] = 1.0; result->xform[i].post[1][1] = 1.0; } else { convert_linear_to_polar(cpi,ncp,i,1,cxang,cxmag,cxtrn); interp_and_convert_back(c, ncp, i, cxang, cxmag, cxtrn,result->xform[i].post); } } else { /* Interpolate c matrix & post */ clear_matrix(result->xform[i].c); clear_matrix(result->xform[i].post); all_id = 1; for (k = 0; k < ncp; k++) { sum_matrix(c[k], cpi[k].xform[i].c, result->xform[i].c); sum_matrix(c[k], cpi[k].xform[i].post, result->xform[i].post); all_id &= id_matrix(cpi[k].xform[i].post); } if (all_id) { clear_matrix(result->xform[i].post); result->xform[i].post[0][0] = 1.0; result->xform[i].post[1][1] = 1.0; } } if (ncp==2 && stagger>0 && i!=cpi[0].final_xform_index) { c[0] = csave[0]; c[1] = csave[1]; } } } void establish_asymmetric_refangles(flam3_genome *cp, int ncps) { int k, xfi, col; double cxang[4][2],d,c1[2]; for (xfi=0; xfi M_PI+EPS) cxang[k][col] -= 2*M_PI; else if (d < -(M_PI-EPS) ) cxang[k][col] += 2*M_PI; /* If this is an asymmetric case, store the NON-symmetric angle */ /* Check them pairwise and store the reference angle in the second */ /* to avoid overwriting if asymmetric on both sides */ padsymflag = 0; sym0 = (cp[k-1].xform[xfi].animate==0 || (cp[k-1].xform[xfi].padding==1 && padsymflag)); sym1 = (cp[k].xform[xfi].animate==0 || (cp[k].xform[xfi].padding==1 && padsymflag)); if ( sym1 && !sym0 ) cp[k].xform[xfi].wind[col] = cxang[k-1][col] + 2*M_PI; else if ( sym0 && !sym1 ) cp[k].xform[xfi].wind[col] = cxang[k][col] + 2*M_PI; } } } } void flam3_align(flam3_genome *dst, flam3_genome *src, int nsrc) { int i, tfx, tnx, max_nx = 0, max_fx = 0; int already_aligned=1; int xf,j; int ii,fnd; double normed; int usethisone; usethisone = (nsrc/2) - 1; max_nx = src[0].num_xforms - (src[0].final_xform_index >= 0); max_fx = src[0].final_xform_enable; for (i = 1; i < nsrc; i++) { tnx = src[i].num_xforms - (src[i].final_xform_index >= 0); if (max_nx != tnx) { already_aligned = 0; if (tnx > max_nx) max_nx = tnx; } tfx = src[i].final_xform_enable; if (max_fx != tfx) { already_aligned = 0; max_fx |= tfx; } } /* Pad the cps to equal xforms */ for (i = 0; i < nsrc; i++) { flam3_copyx(&dst[i], &src[i], max_nx, max_fx); } /* Skip if this genome is compatibility mode */ if (dst[usethisone].interpolation_type == flam3_inttype_compat || dst[usethisone].interpolation_type == flam3_inttype_older) return; /* Check to see if there's a parametric variation present in one xform */ /* but not in an aligned xform. If this is the case, use the parameters */ /* from the xform with the variation as the defaults for the blank one. */ /* All genomes will have the same number of xforms at this point */ /* num = max_nx + max_fx */ for (i = 0; i0) { /* Check to see if the prior genome's xform is populated */ if (dst[i-1].xform[xf].var[j] != 0) { /* Copy the prior genome's parameters and continue */ flam3_copy_params(&(dst[i].xform[xf]), &(dst[i-1].xform[xf]), j); continue; } } else if (i0 && dst[i-1].interpolation_type==flam3_inttype_log) ) { for (ii=-1; ii<=1; ii+=2) { /* Skip if out of bounds */ if (i+ii<0 || i+ii>=nsrc) continue; /* Skip if this is also padding */ if (dst[i+ii].xform[xf].padding==1) continue; /* Spherical / Ngon (trumps all others due to holes) */ /* Interpolate these against a 180 degree rotated identity */ /* with weight -1. */ /* Added JULIAN/JULIASCOPE to get rid of black wedges */ if (dst[i+ii].xform[xf].var[VAR_SPHERICAL]>0 || dst[i+ii].xform[xf].var[VAR_NGON]>0 || dst[i+ii].xform[xf].var[VAR_JULIAN]>0 || dst[i+ii].xform[xf].var[VAR_JULIASCOPE]>0 || dst[i+ii].xform[xf].var[VAR_POLAR]>0 || dst[i+ii].xform[xf].var[VAR_WEDGE_SPH]>0 || dst[i+ii].xform[xf].var[VAR_WEDGE_JULIA]>0) { dst[i].xform[xf].var[VAR_LINEAR] = -1.0; /* Set the coefs appropriately */ dst[i].xform[xf].c[0][0] = -1.0; dst[i].xform[xf].c[0][1] = 0.0; dst[i].xform[xf].c[1][0] = 0.0; dst[i].xform[xf].c[1][1] = -1.0; dst[i].xform[xf].c[2][0] = 0.0; dst[i].xform[xf].c[2][1] = 0.0; fnd=-1; } } } if (fnd==0) { for (ii=-1; ii<=1; ii+=2) { /* Skip if out of bounds */ if (i+ii<0 || i+ii>=nsrc) continue; /* Skip if also padding */ if (dst[i+ii].xform[xf].padding==1) continue; /* Rectangles */ if (dst[i+ii].xform[xf].var[VAR_RECTANGLES]>0) { dst[i].xform[xf].var[VAR_RECTANGLES] = 1.0; dst[i].xform[xf].rectangles_x = 0.0; dst[i].xform[xf].rectangles_y = 0.0; fnd++; } /* Rings 2 */ if (dst[i+ii].xform[xf].var[VAR_RINGS2]>0) { dst[i].xform[xf].var[VAR_RINGS2] = 1.0; dst[i].xform[xf].rings2_val = 0.0; fnd++; } /* Fan 2 */ if (dst[i+ii].xform[xf].var[VAR_FAN2]>0) { dst[i].xform[xf].var[VAR_FAN2] = 1.0; dst[i].xform[xf].fan2_x = 0.0; dst[i].xform[xf].fan2_y = 0.0; fnd++; } /* Blob */ if (dst[i+ii].xform[xf].var[VAR_BLOB]>0) { dst[i].xform[xf].var[VAR_BLOB] = 1.0; dst[i].xform[xf].blob_low = 1.0; dst[i].xform[xf].blob_high = 1.0; dst[i].xform[xf].blob_waves = 1.0; fnd++; } /* Perspective */ if (dst[i+ii].xform[xf].var[VAR_PERSPECTIVE]>0) { dst[i].xform[xf].var[VAR_PERSPECTIVE] = 1.0; dst[i].xform[xf].perspective_angle = 0.0; /* Keep the perspective distance as-is */ fnd++; } /* Curl */ if (dst[i+ii].xform[xf].var[VAR_CURL]>0) { dst[i].xform[xf].var[VAR_CURL] = 1.0; dst[i].xform[xf].curl_c1 = 0.0; dst[i].xform[xf].curl_c2 = 0.0; fnd++; } /* Super-Shape */ if (dst[i+ii].xform[xf].var[VAR_SUPER_SHAPE]>0) { dst[i].xform[xf].var[VAR_SUPER_SHAPE] = 1.0; /* Keep supershape_m the same */ dst[i].xform[xf].super_shape_n1 = 2.0; dst[i].xform[xf].super_shape_n2 = 2.0; dst[i].xform[xf].super_shape_n3 = 2.0; dst[i].xform[xf].super_shape_rnd = 0.0; dst[i].xform[xf].super_shape_holes = 0.0; fnd++; } } } /* If we didn't have any matches with those, */ /* try the affine ones, fan and rings */ if (fnd==0) { for (ii=-1; ii<=1; ii+=2) { /* Skip if out of bounds */ if (i+ii<0 || i+ii>=nsrc) continue; /* Skip if also a padding xform */ if (dst[i+ii].xform[xf].padding==1) continue; /* Fan */ if (dst[i+ii].xform[xf].var[VAR_FAN]>0) { dst[i].xform[xf].var[VAR_FAN] = 1.0; fnd++; } /* Rings */ if (dst[i+ii].xform[xf].var[VAR_RINGS]>0) { dst[i].xform[xf].var[VAR_RINGS] = 1.0; fnd++; } } if (fnd>0) { /* Set the coefs appropriately */ dst[i].xform[xf].c[0][0] = 0.0; dst[i].xform[xf].c[0][1] = 1.0; dst[i].xform[xf].c[1][0] = 1.0; dst[i].xform[xf].c[1][1] = 0.0; dst[i].xform[xf].c[2][0] = 0.0; dst[i].xform[xf].c[2][1] = 0.0; } } /* If we still have no matches, switch back to linear */ if (fnd==0) dst[i].xform[xf].var[VAR_LINEAR] = 1.0; else if (fnd>0) { /* Otherwise, go through and normalize the weights. */ normed = 0.0; for (j = 0; j < flam3_nvariations; j++) normed += dst[i].xform[xf].var[j]; for (j = 0; j < flam3_nvariations; j++) dst[i].xform[xf].var[j] /= normed; } } } /* xforms */ } /* genomes */ }