mirror of
https://github.com/bspeice/ecbm4040
synced 2024-12-04 13:08:13 -05:00
Add Homework 0 files
This commit is contained in:
commit
825b0c0327
192
Homework 0/.ipynb_checkpoints/Homework 0-checkpoint.ipynb
Normal file
192
Homework 0/.ipynb_checkpoints/Homework 0-checkpoint.ipynb
Normal file
@ -0,0 +1,192 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Problem 1"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=gpu python DeepLearningTutorials/code/logistic_sgd.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=gpu python DeepLearningTutorials/code/convolutional_mlp.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=cpu python DeepLearningTutorials/code/logistic_sgd.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=cpu timeout 1200 python DeepLearningTutorials/code/convolutional_mlp.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Problem 2"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import theano.tensor as T\n",
|
||||||
|
"from theano.tensor.shared_randomstreams import RandomStreams\n",
|
||||||
|
"from theano import function, shared\n",
|
||||||
|
"from theano.compile.sharedvalue import SharedVariable\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"\n",
|
||||||
|
"srng = RandomStreams(seed=1234)\n",
|
||||||
|
"\n",
|
||||||
|
"x = T.fcol()\n",
|
||||||
|
"a = srng.uniform((10, 1))\n",
|
||||||
|
"a_shared = SharedVariable(\n",
|
||||||
|
" value=np.zeros((10, 1)),\n",
|
||||||
|
" type=a.type,\n",
|
||||||
|
" name='a',\n",
|
||||||
|
" strict=True\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"b = srng.uniform((10, 1))\n",
|
||||||
|
"b_shared = SharedVariable(\n",
|
||||||
|
" value=np.zeros((10, 1)),\n",
|
||||||
|
" type=b.type,\n",
|
||||||
|
" name='b',\n",
|
||||||
|
" strict=True\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"z = (x + a).T.dot(b)\n",
|
||||||
|
"f = function([x], z, updates=[(a_shared, a), (b_shared, b)], allow_input_downcast=True)\n",
|
||||||
|
"\n",
|
||||||
|
"f(np.ones((10, 1)))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"a_shared.get_value()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"b_shared.get_value()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"(np.ones((10, 1)) + a_shared.get_value()).T.dot(b_shared.get_value())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Problem 3"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def fib(n):\n",
|
||||||
|
" if n <= 1:\n",
|
||||||
|
" return 0\n",
|
||||||
|
" elif n == 2:\n",
|
||||||
|
" return 1\n",
|
||||||
|
" else:\n",
|
||||||
|
" a = shared(0)\n",
|
||||||
|
" b = shared(1)\n",
|
||||||
|
" f = function([], a + b, updates=[(b, a + b), (a, b)])\n",
|
||||||
|
" for i in range(1, n):\n",
|
||||||
|
" f()\n",
|
||||||
|
" \n",
|
||||||
|
" return b.get_value()\n",
|
||||||
|
" \n",
|
||||||
|
"print('fib(10): {}'.format(fib(10)))\n",
|
||||||
|
"print('fib(20): {}'.format(fib(20)))"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.5.2"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
1
Homework 0/DeepLearningTutorials
Submodule
1
Homework 0/DeepLearningTutorials
Submodule
@ -0,0 +1 @@
|
|||||||
|
Subproject commit e64a8fcc096f434f6ab2ba5ab26868a877ad5402
|
BIN
Homework 0/E4040_2016Fall_HW0_Student_updated.pdf
Normal file
BIN
Homework 0/E4040_2016Fall_HW0_Student_updated.pdf
Normal file
Binary file not shown.
192
Homework 0/Homework 0.ipynb
Normal file
192
Homework 0/Homework 0.ipynb
Normal file
@ -0,0 +1,192 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Problem 1"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=gpu python DeepLearningTutorials/code/logistic_sgd.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=gpu python DeepLearningTutorials/code/convolutional_mlp.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=cpu python DeepLearningTutorials/code/logistic_sgd.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"%%time\n",
|
||||||
|
"!THEANO_FLAGS=device=cpu timeout 1200 python DeepLearningTutorials/code/convolutional_mlp.py"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Problem 2"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import theano.tensor as T\n",
|
||||||
|
"from theano.tensor.shared_randomstreams import RandomStreams\n",
|
||||||
|
"from theano import function, shared\n",
|
||||||
|
"from theano.compile.sharedvalue import SharedVariable\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"\n",
|
||||||
|
"srng = RandomStreams(seed=1234)\n",
|
||||||
|
"\n",
|
||||||
|
"x = T.fcol()\n",
|
||||||
|
"a = srng.uniform((10, 1))\n",
|
||||||
|
"a_shared = SharedVariable(\n",
|
||||||
|
" value=np.zeros((10, 1)),\n",
|
||||||
|
" type=a.type,\n",
|
||||||
|
" name='a',\n",
|
||||||
|
" strict=True\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"b = srng.uniform((10, 1))\n",
|
||||||
|
"b_shared = SharedVariable(\n",
|
||||||
|
" value=np.zeros((10, 1)),\n",
|
||||||
|
" type=b.type,\n",
|
||||||
|
" name='b',\n",
|
||||||
|
" strict=True\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"z = (x + a).T.dot(b)\n",
|
||||||
|
"f = function([x], z, updates=[(a_shared, a), (b_shared, b)], allow_input_downcast=True)\n",
|
||||||
|
"\n",
|
||||||
|
"f(np.ones((10, 1)))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"a_shared.get_value()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"b_shared.get_value()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"(np.ones((10, 1)) + a_shared.get_value()).T.dot(b_shared.get_value())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Problem 3"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def fib(n):\n",
|
||||||
|
" if n <= 1:\n",
|
||||||
|
" return 0\n",
|
||||||
|
" elif n == 2:\n",
|
||||||
|
" return 1\n",
|
||||||
|
" else:\n",
|
||||||
|
" a = shared(0)\n",
|
||||||
|
" b = shared(1)\n",
|
||||||
|
" f = function([], a + b, updates=[(b, a + b), (a, b)])\n",
|
||||||
|
" for i in range(1, n):\n",
|
||||||
|
" f()\n",
|
||||||
|
" \n",
|
||||||
|
" return b.get_value()\n",
|
||||||
|
" \n",
|
||||||
|
"print('fib(10): {}'.format(fib(10)))\n",
|
||||||
|
"print('fib(20): {}'.format(fib(20)))"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.5.2"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
849
Homework 0/best_model.pkl
Normal file
849
Homework 0/best_model.pkl
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user