cuburn/sortbench.py
2011-08-31 13:24:44 -04:00

271 lines
9.5 KiB
Python

import time
import pycuda.autoinit
import pycuda.compiler
import pycuda.driver as cuda
import numpy as np
np.set_printoptions(precision=5, edgeitems=20, linewidth=100, threshold=9000)
import sys, os
os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:'
+ os.environ['PATH'])
i32 = np.int32
with open('sortbench.cu') as f: src = f.read()
mod = pycuda.compiler.SourceModule(src, keep=True, options=[])
def launch(name, *args, **kwargs):
fun = mod.get_function(name)
if kwargs.pop('l1', False):
fun.set_cache_config(cuda.func_cache.PREFER_L1)
if not kwargs.get('stream'):
kwargs['time_kernel'] = True
print 'launching %s with %sx%s... ' % (name, kwargs['block'],
kwargs['grid']),
t = fun(*args, **kwargs)
if t:
print 'done (%g secs).' % t
else:
print 'done.'
def go(scale, block, test_cpu):
data = np.fromstring(np.random.bytes(scale*block), dtype=np.uint8)
print 'Done seeding'
if test_cpu:
a = time.time()
cpu_pfxs = np.array([np.sum(data == v) for v in range(256)])
b = time.time()
print cpu_pfxs
print 'took %g secs on CPU' % (b - a)
shmem_pfxs = np.zeros(256, dtype=np.int32)
launch('prefix_scan_8_0_shmem',
cuda.In(data), np.int32(block), cuda.InOut(shmem_pfxs),
block=(32, 16, 1), grid=(scale, 1), l1=1)
if test_cpu:
print 'it worked? %s' % (np.all(shmem_pfxs == cpu_pfxs))
shmeml_pfxs = np.zeros(256, dtype=np.int32)
launch('prefix_scan_8_0_shmem_lessconf',
cuda.In(data), np.int32(block), cuda.InOut(shmeml_pfxs),
block=(32, 32, 1), grid=(scale, 1), l1=1)
print 'it worked? %s' % (np.all(shmeml_pfxs == shmem_pfxs))
popc_pfxs = np.zeros(256, dtype=np.int32)
launch('prefix_scan_8_0_popc',
cuda.In(data), np.int32(block), cuda.InOut(popc_pfxs),
block=(32, 16, 1), grid=(scale, 1), l1=1)
popc5_pfxs = np.zeros(32, dtype=np.int32)
launch('prefix_scan_5_0_popc',
cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs),
block=(32, 16, 1), grid=(scale, 1), l1=1)
def rle(a, n=512):
pos, = np.where(np.diff(a))
pos = np.concatenate(([0], pos+1, [len(a)]))
lens = np.diff(pos)
return [(a[p], p, l) for p, l in zip(pos, lens)[:n]]
def frle(a, n=512):
return ''.join(['\n\t%4x %6x %6x' % v for v in rle(a, n)])
# Some reference implementations follow for debugging.
def py_convert_offsets(offsets, split, keys, shift):
grids = len(offsets)
new_offs = np.empty((grids, 8192), dtype=np.int32)
for i in range(grids):
rdxs = (keys[i] >> shift) & 0xff
o = split[i][rdxs] + offsets[i]
new_offs[i][o] = np.arange(8192, dtype=np.int32)
return new_offs
def py_radix_sort_maybe(keys, offsets, pfxs, split, shift):
grids = len(offsets)
idxs = np.arange(8192)
okeys = np.empty(grids*8192, dtype=np.int32)
okeys.fill(-1)
for i in range(grids):
offs = pfxs[i] - split[i]
lkeys = keys[i][offsets[i]]
rdxs = (lkeys >> shift) & 0xff
glob_offsets = offs[rdxs] + idxs
okeys[glob_offsets] = lkeys
return okeys
def go_sort(count, stream=None):
grids = count / 8192
keys = np.fromstring(np.random.bytes(count*2), dtype=np.uint16)
#keys = np.arange(count, dtype=np.uint16)
#np.random.shuffle(keys)
mkeys = np.reshape(keys, (grids, 8192))
vals = np.arange(count, dtype=np.uint32)
dkeys = cuda.to_device(keys)
dvals = cuda.to_device(vals)
print 'Done seeding'
dpfxs = cuda.mem_alloc(grids * 256 * 4)
doffsets = cuda.mem_alloc(count * 2)
launch('prefix_scan_8_0', doffsets, dpfxs, dkeys,
block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
dsplit = cuda.mem_alloc(grids * 256 * 4)
launch('better_split', dsplit, dpfxs,
block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
# This stage will be rejiggered along with the split
launch('prefix_sum', dpfxs, np.int32(grids * 256),
block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
launch('convert_offsets', doffsets, dsplit, dkeys, i32(0),
block=(1024, 1, 1), grid=(grids, 1), stream=stream)
if not stream:
offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
split = cuda.from_device(dsplit, (grids, 256), np.uint32)
pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
tkeys = py_radix_sort_maybe(mkeys, offsets, pfxs, split, 0)
#print frle(tkeys & 0xff)
d_skeys = cuda.mem_alloc(count * 2)
d_svals = cuda.mem_alloc(count * 4)
if not stream:
cuda.memset_d32(d_skeys, 0, count/2)
cuda.memset_d32(d_svals, 0xffffffff, count)
launch('radix_sort_maybe', d_skeys, d_svals,
dkeys, dvals, doffsets, dpfxs, dsplit, i32(0),
block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
if not stream:
skeys = cuda.from_device_like(d_skeys, keys)
svals = cuda.from_device_like(d_svals, vals)
# Test integrity of sort (keys and values kept together):
# skeys[i] = keys[svals[i]] for all i
print 'Integrity: ',
if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
print 'pass'
else:
print 'FAIL'
dkeys, d_skeys = d_skeys, dkeys
dvals, d_svals = d_svals, dvals
if not stream:
cuda.memset_d32(d_skeys, 0, count/2)
cuda.memset_d32(d_svals, 0xffffffff, count)
launch('prefix_scan_8_8', doffsets, dpfxs, dkeys,
block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
launch('better_split', dsplit, dpfxs,
block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
launch('prefix_sum', dpfxs, np.int32(grids * 256),
block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
if not stream:
pre_offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
launch('convert_offsets', doffsets, dsplit, dkeys, i32(8),
block=(1024, 1, 1), grid=(grids, 1), stream=stream)
if not stream:
offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
split = cuda.from_device(dsplit, (grids, 256), np.uint32)
pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
tkeys = np.reshape(tkeys, (grids, 8192))
new_offs = py_convert_offsets(pre_offsets, split, tkeys, 8)
print np.nonzero(new_offs != offsets)
fkeys = py_radix_sort_maybe(tkeys, new_offs, pfxs, split, 8)
#print frle(fkeys)
launch('radix_sort_maybe', d_skeys, d_svals,
dkeys, dvals, doffsets, dpfxs, dsplit, i32(8),
block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
if not stream:
#print cuda.from_device(doffsets, (4, 8192), np.uint16)
#print cuda.from_device(dkeys, (4, 8192), np.uint16)
#print cuda.from_device(d_skeys, (4, 8192), np.uint16)
skeys = cuda.from_device_like(d_skeys, keys)
svals = cuda.from_device_like(d_svals, vals)
print 'Integrity: ',
if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
print 'pass'
else:
print 'FAIL'
sorted_keys = np.sort(keys)
# Test that ordering is correct. (Note that we don't need 100%
# correctness, so this test should be made "soft".)
print 'Order: ', 'pass' if np.all(skeys == sorted_keys) else 'FAIL'
#print frle(skeys, 5120)
def go_sort_old(count, stream=None):
data = np.fromstring(np.random.bytes(count), dtype=np.uint8)
ddata = cuda.to_device(data)
print 'Done seeding'
grids = count / 8192
pfxs = np.zeros((grids + 1, 256), dtype=np.int32)
dpfxs = cuda.to_device(pfxs)
launch('prefix_scan_8_0_shmem_shortseg', ddata, dpfxs,
block=(32, 16, 1), grid=(grids, 1), stream=stream, l1=1)
#dsplit = cuda.to_device(pfxs)
#launch('crappy_split', dpfxs, dsplit,
#block=(32, 8, 1), grid=(grids / 256, 1), stream=stream, l1=1)
dsplit = cuda.mem_alloc(grids * 256 * 4)
launch('better_split', dsplit, dpfxs,
block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
#if not stream:
#split = cuda.from_device_like(dsplit, pfxs)
#split_ = cuda.from_device_like(dsplit_, pfxs)
#print np.all(split == split_)
dshortseg_pfxs = cuda.mem_alloc(256 * 4)
dshortseg_sums = cuda.mem_alloc(256 * 4)
launch('prefix_sum', dpfxs, np.int32(grids * 256),
dshortseg_pfxs, dshortseg_sums,
block=(32, 8, 1), grid=(1, 1), stream=stream, l1=1)
dsorted = cuda.mem_alloc(count * 4)
launch('sort_8', ddata, dsorted, dpfxs,
block=(32, 16, 1), grid=(grids, 1), stream=stream, l1=1)
launch('sort_8_a', ddata, dsorted, dpfxs, dsplit,
block=(32, 32, 1), grid=(grids, 1), stream=stream)
if not stream:
sorted = cuda.from_device(dsorted, (count,), np.int32)
f = lambda r: ''.join(['\n\t%3d %4d %4d' % v for v in r])
sort_stat = f(rle(sorted))
with open('dev.txt', 'w') as fp: fp.write(sort_stat)
sorted_np = np.sort(data)
np_stat = f(rle(sorted_np))
with open('cpu.txt', 'w') as fp: fp.write(np_stat)
print 'is_sorted?', np.all(sorted == sorted_np)
def main():
# shmem is known good; disable the CPU run to get better info from cuprof
#go(8, 512<<10, True)
#go(1024, 512<<8, False)
#go(32768, 8192, False)
stream = cuda.Stream() if '-s' in sys.argv else None
go_sort(1<<25, stream)
if stream:
stream.synchronize()
main()