cuburn/cuburnlib/cuda.py
2010-09-07 12:44:12 -04:00

93 lines
3.3 KiB
Python

# These imports are order-sensitive!
import pyglet
import pyglet.gl as gl
gl.get_current_context()
import pycuda.driver as cuda
import pycuda.tools
import pycuda.gl as cudagl
import pycuda.gl.autoinit
import numpy as np
from cuburnlib.ptx import PTXModule
class LaunchContext(object):
"""
Context collecting the information needed to create, run, and gather the
results of a device computation. This may eventually also include an actual
CUDA context, but for now it just uses the global one.
To create the fastest device code across multiple device families, this
context may decide to iteratively refine the final PTX by regenerating
and recompiling it several times to optimize certain parameters of the
launch, such as the distribution of threads throughout the device.
The properties of this device which are tuned are listed below. Any PTX
fragments which use this information must emit valid PTX for any state
given below, but the PTX is only required to actually run with the final,
fixed values of all tuned parameters below.
`block`: 3-tuple of (x,y,z); dimensions of each CTA.
`grid`: 2-tuple of (x,y); dimensions of the grid of CTAs.
`threads`: Number of active threads on device as a whole.
`mod`: Final compiled module. Unavailable during assembly.
"""
def __init__(self, entries, block=(1,1,1), grid=(1,1), tests=False):
self.entry_types = entries
self.block, self.grid, self.build_tests = block, grid, tests
self.setup_done = False
@property
def threads(self):
return reduce(lambda a, b: a*b, self.block + self.grid)
@property
def ctas(self):
return self.grid[0] * self.grid[1]
def compile(self, verbose=False, **kwargs):
kwargs['ctx'] = self
self.ptx = PTXModule(self.entry_types, kwargs, self.build_tests)
try:
self.mod = cuda.module_from_buffer(self.ptx.source)
except (cuda.CompileError, cuda.RuntimeError), e:
print "Aww, dang, compile error. Here's the source:"
self.ptx.print_source()
raise e
if verbose:
if verbose >= 3:
self.ptx.print_source()
for entry in self.ptx.entries:
func = self.mod.get_function(entry.entry_name)
print "Compiled %s: used %d regs, %d sm, %d local" % (
entry.entry_name, func.num_regs,
func.shared_size_bytes, func.local_size_bytes)
def set_up(self):
for inst in self.ptx.deporder(self.ptx.instances.values(),
self.ptx.instances):
inst.device_init(self)
def run(self):
if not self.setup_done: self.set_up()
def run_test(self, test_type):
if not self.setup_done: self.set_up()
inst = self.ptx.instances[test_type]
print "Running test: %s... " % inst.name
try:
cuda.Context.synchronize()
if inst.call(self):
print "Test %s passed." % inst.name
else:
print "Test %s FAILED." % inst.name
except Exception, e:
print "Test %s FAILED (exception thrown)." % inst.name
raise e
def run_tests(self):
map(self.run_test, self.ptx.tests)