cuburn/cuburnlib/render.py
Steven Robertson 094890c324 Use shared memory for iter_count and have each CP processed by only one CTA.
Slower, but the code is a bit simpler conceptually, and the difference will be
more than accounted for by better scheduling towards the end of the process.
2010-09-07 14:54:50 -04:00

183 lines
7.4 KiB
Python

from ctypes import *
from cStringIO import StringIO
import numpy as np
from fr0stlib import pyflam3
from fr0stlib.pyflam3._flam3 import *
from fr0stlib.pyflam3.constants import *
from cuburnlib.cuda import LaunchContext
from cuburnlib.device_code import IterThread, CPDataStream
Point = lambda x, y: np.array([x, y], dtype=np.double)
class Genome(pyflam3.Genome):
pass
class Frame(pyflam3.Frame):
def interpolate(self, time, cp):
flam3_interpolate(self.genomes, self.ngenomes, time, 0, byref(cp))
def pack_stream(self, ctx, time):
"""
Pack and return the control point data stream to render this frame.
"""
# Get the central control point, and calculate parameters that change
# once per frame
cp = BaseGenome()
self.interpolate(time, cp)
self.filt = Filters(self, cp)
rw = cp.spatial_oversample * cp.width + 2 * self.filt.gutter
rh = cp.spatial_oversample * cp.height + 2 * self.filt.gutter
if cp.nbatches * cp.ntemporal_samples < ctx.ctas:
raise NotImplementedError(
"Distribution of a CP across multiple CTAs not yet done")
# Interpolate each time step, calculate per-step variables, and pack
# into the stream
cp_streamer = ctx.ptx.instances[CPDataStream]
stream = StringIO()
print "Data stream contents:"
cp_streamer.print_record()
tcp = BaseGenome()
for batch_idx in range(cp.nbatches):
for time_idx in range(cp.ntemporal_samples):
idx = time_idx + batch_idx * cp.nbatches
cp_time = time + self.filt.temporal_deltas[idx]
self.interpolate(time, tcp)
tcp.camera = Camera(self, tcp, self.filt)
tcp.nsamples = (tcp.camera.sample_density *
cp.width * cp.height) / (
cp.nbatches * cp.ntemporal_samples)
cp_streamer.pack_into(stream,
frame=self,
cp=tcp,
cp_idx=idx)
stream.seek(0)
return (stream.read(), cp.nbatches * cp.ntemporal_samples)
class Animation(object):
"""
Control structure for rendering a series of frames.
Each animation will dynamically generate a kernel that includes only the
code necessary to render the genomes provided. The process of generating
and uploading the kernel takes a small but finite amount of time. In
general, the kernel generated for all genomes resulting from interpolating
between two control points will have identical performance, so it is
wasteful to create more than one animation for any interpolated sequence.
However, genome sequences interpolated from three or more control points
with different features enabled will have the code needed to render all
genomes enabled for every frame. Doing this can hurt performance.
In other words, it's best to use exactly one Animation for each
interpolated sequence between one or two genomes.
"""
def __init__(self, genomes):
self.genomes = (Genome * len(genomes))()
for i in range(len(genomes)):
memmove(byref(self.genomes[i]), byref(genomes[i]),
sizeof(BaseGenome))
self.features = Features(genomes)
self.frame = Frame()
self.frame.genomes = cast(self.genomes, POINTER(BaseGenome))
self.frame.ngenomes = len(genomes)
self.ctx = None
def compile(self):
"""
Create a PTX kernel optimized for this animation, compile it, and
attach it to a LaunchContext with a thread distribution optimized for
the active device.
"""
# TODO: user-configurable test control
self.ctx = LaunchContext([IterThread], block=(256,1,1), grid=(54,1),
tests=True)
# TODO: user-configurable verbosity control
self.ctx.compile(verbose=3, anim=self, features=self.features)
# TODO: automatic optimization of block parameters
def render_frame(self, time=0):
# TODO: support more nuanced frame control than just 'time'
# TODO: reuse more information between frames
# TODO: allow animation-long override of certain parameters (size, etc)
cp_stream, num_cps = self.frame.pack_stream(self.ctx, time)
iter_thread = self.ctx.ptx.instances[IterThread]
iter_thread.upload_cp_stream(self.ctx, cp_stream, num_cps)
iter_thread.call(self.ctx)
class Features(object):
"""
Determine features and constants required to render a particular set of
genomes. The values of this class are fixed before compilation begins.
"""
# Constant; number of rounds spent fusing points on first CP of a frame
num_fuse_samples = 25
def __init__(self, genomes):
self.max_ntemporal_samples = max(
[cp.nbatches * cp.ntemporal_samples for cp in genomes]) + 1
class Filters(object):
def __init__(self, frame, cp):
# Ugh. I'd really like to replace this mess
spa_filt_ptr = POINTER(c_double)()
spa_width = flam3_create_spatial_filter(byref(frame),
flam3_field_both,
byref(spa_filt_ptr))
if spa_width < 0:
raise EnvironmentError("flam3 call failed")
self.spatial = np.asarray([[spa_filt_ptr[y*spa_width+x] for x in
range(spa_width)] for y in range(spa_width)], dtype=np.double)
self.spatial_width = spa_width
flam3_free(spa_filt_ptr)
tmp_filt_ptr = POINTER(c_double)()
tmp_deltas_ptr = POINTER(c_double)()
steps = cp.nbatches * cp.ntemporal_samples
self.temporal_sum = flam3_create_temporal_filter(
steps,
cp.temporal_filter_type,
cp.temporal_filter_exp,
cp.temporal_filter_width,
byref(tmp_filt_ptr),
byref(tmp_deltas_ptr))
self.temporal = np.asarray([tmp_filt_ptr[i] for i in range(steps)],
dtype=np.double)
flam3_free(tmp_filt_ptr)
self.temporal_deltas = np.asarray(
[tmp_deltas_ptr[i] for i in range(steps)], dtype=np.double)
flam3_free(tmp_deltas_ptr)
# TODO: density estimation
self.gutter = (spa_width - cp.spatial_oversample) / 2
class Camera(object):
"""Viewport and exposure."""
def __init__(self, frame, cp, filters):
# Calculate the conversion matrix between the IFS space (xform
# coordinates) and the sampling lattice (bucket addresses)
# TODO: test this code (against compute_camera?)
scale = 2.0 ** cp.zoom
self.sample_density = cp.sample_density * scale * scale
center = Point(cp._center[0], cp._center[1])
size = Point(cp.width, cp.height)
# pix per unit, where 'unit' is '1.0' in IFS space
self.ppu = Point(
cp.pixels_per_unit * scale / frame.pixel_aspect_ratio,
cp.pixels_per_unit * scale)
# extra shifts applied due to gutter
gutter = filters.gutter / (cp.spatial_oversample * self.ppu)
cornerLL = center - (size / (2 * self.ppu))
self.lower_bounds = cornerLL - gutter
self.upper_bounds = cornerLL + (size / self.ppu) + gutter
self.ifs_space_size = 1.0 / (self.upper_bounds - self.lower_bounds)
# TODO: coordinate transforms in concert with GPU (rotation, size)