from ctypes import * import numpy as np from fr0stlib.pyflam3 import Genome, Frame from fr0stlib.pyflam3._flam3 import * from fr0stlib.pyflam3.constants import * Point = lambda x, y: np.array([x, y], dtype=np.double) class Animation(object): """ Control structure for rendering a series of frames. Each animation will dynamically generate a kernel that includes only the code necessary to render the genomes provided. The process of generating and uploading the kernel takes a small but finite amount of time. In general, the kernel generated for all genomes resulting from interpolating between two control points will have identical performance, so it is wasteful to create more than one animation for any interpolated sequence. However, genome sequences interpolated from three or more control points with different features enabled will have the code needed to render all genomes enabled for every frame. Doing this can hurt performance. In other words, it's best to use exactly one Animation for each interpolated sequence between one or two genomes. """ def __init__(self, genomes): self.genomes = (Genome * len(genomes))() for i in range(len(genomes)): memmove(byref(self.genomes[i]), byref(genomes[i]), sizeof(BaseGenome)) self._frame = Frame() self._frame.genomes = cast(self.genomes, POINTER(BaseGenome)) self._frame.ngenomes = len(genomes) def render_frame(self, time=0): # TODO: support more nuanced frame control than just 'time' # TODO: reuse more information between frames # TODO: allow animation-long override of certain parameters (size, etc) cp = BaseGenome() flam3_interpolate(self.frame.genomes, len(self.genomes), time, 0, byref(cp)) filt = Filters(self.frame, cp) rw = cp.spatial_oversample * cp.width + 2 * filt.gutter rh = cp.spatial_oversample * cp.height + 2 * filt.gutter # Allocate buckets, accumulator # Loop over all batches: # [density estimation] # Loop over all temporal samples: # Color scalar = temporal filter at index # Interpolate and get control point # Precalculate # Prepare xforms # Compute colormap # Run iterations # Accumulate vibrancy, gamma, background # Calculate k1, k2 # If not DE, then do log filtering to accumulator # Else, [density estimation] # Do final clip and filter # For now: # Loop over all batches: # Loop over all temporal samples: # Interpolate and get control point # Read the # Dump noise into buckets # Do log filtering to accumulator # Do simplified final clip class Filters(object): def __init__(self, frame, cp): # Ugh. I'd really like to replace this mess spa_filt_ptr = POINTER(c_double)() spa_width = flam3_create_spatial_filter(byref(frame), flam3_field_both, byref(spa_filt_ptr)) if spa_width < 0: raise EnvironmentError("flam3 call failed") self.spatial = np.asarray([[spa_filt_ptr[y*spa_width+x] for x in range(spa_width)] for y in range(spa_width)], dtype=np.double) self.spatial_width = spa_width flam3_free(spa_filt_ptr) tmp_filt_ptr = POINTER(c_double)() tmp_deltas_ptr = POINTER(c_double)() steps = cp.nbatches * cp.ntemporal_samples self.temporal_sum = flam3_create_temporal_filter( steps, cp.temporal_filter_type, cp.temporal_filter_exp, cp.temporal_filter_width, byref(tmp_filt_ptr), byref(tmp_deltas_ptr)) self.temporal = np.asarray([tmp_filt_ptr[i] for i in range(steps)], dtype=np.double) flam3_free(tmp_filt_ptr) self.temporal_deltas = np.asarray( [tmp_deltas_ptr[i] for i in range(steps)], dtype=np.double) flam3_free(tmp_deltas_ptr) # TODO: density estimation self.gutter = (spa_width - cp.spatial_oversample) / 2 class Camera(object): """Viewport and exposure.""" def __init__(self, frame, cp, filters): # Calculate the conversion matrix between the IFS space (xform # coordinates) and the sampling lattice (bucket addresses) # TODO: test this code (against compute_camera?) scale = 2.0 ** cp.zoom self.sample_density = cp.sample_density * scale * scale center = Point(cp.center[0], cp.center[1]) size = Point(cp.width, cp.height) # pix per unit, where 'unit' is '1.0' in IFS space self.ppu = Point( cp.pixels_per_unit * scale / frame.pixel_aspect_ratio, cp.pixels_per_unit * scale) # extra shifts applied due to gutter gutter = filters.gutter / (cp.spatial_oversample * self.ppu) cornerLL = center - (size / (2 * self.ppu)) self.lower_bounds = cornerLL - gutter self.upper_bounds = cornerLL + (size / self.ppu) + gutter self.ifs_space_size = 1.0 / (self.upper_bounds - self.lower_bounds) # TODO: coordinate transforms in concert with GPU (rotation, size)