Deferred writeback.

This commit is contained in:
Steven Robertson 2011-11-11 17:37:27 -05:00
parent 05e1d08681
commit eb43b151dc
4 changed files with 360 additions and 206 deletions

View File

@ -122,7 +122,6 @@ class IterCode(HunkOCode):
bodies = [self._xfbody(i,x) for i,x in sorted(info.genome.xforms.items())]
bodies.append(iterbody)
self.defs = '\n'.join(bodies)
self.decls += self.pix_helpers.substitute(info=info)
decls = """
// Note: for normalized lookups, uchar4 actually returns floats
@ -132,78 +131,6 @@ __device__ int rb_head, rb_tail, rb_size;
"""
pix_helpers = Template("""
__device__
void read_pix(float4 &pix, float &den) {
den = pix.w;
{{if info.pal_has_alpha}}
read_half(pix.z, pix.w, pix.z, den);
{{endif}}
}
__device__
void write_pix(float4 &pix, float den) {
{{if info.pal_has_alpha}}
write_half(pix.z, pix.z, pix.w, den);
{{endif}}
pix.w = den;
}
__device__
void update_pix(uint64_t ptr, uint32_t i, float4 c) {
{{if info.pal_has_alpha}}
asm volatile ({{crep('''
{
.reg .u16 sz, sw;
.reg .u64 base, off;
.reg .f32 x, y, z, w, den, rc, tz, tw;
// TODO: this limits the accumulation buffer to <4GB
shl.b32 %0, %0, 4;
cvt.u64.u32 off, %0;
add.u64 base, %1, off;
ld.cg.v4.f32 {x, y, z, den}, [base];
add.f32 x, x, %2;
add.f32 y, y, %3;
mov.b32 {sz, sw}, z;
cvt.rn.f32.u16 tz, sz;
cvt.rn.f32.u16 tw, sw;
mul.f32 tz, tz, den;
mul.f32 tw, tz, den;
fma.f32 tz, %4, 65535.0, tz;
fma.f32 tw, %5, 65535.0, tw;
add.f32 den, 1.0;
rcp.approx.f32 rc, den;
mul.f32 tz, tz, rc;
mul.f32 tw, tw, rc;
cvt.rni.u16.f32 sz, tz;
cvt.rni.u16.f32 sw, tw;
mov.b32 z, {sz, sw};
st.cs.v4.f32 [base], {x, y, z, den};
}
''')}} : "+r"(i) : "l"(ptr), "f"(c.x), "f"(c.y), "f"(c.z), "f"(c.w));
{{else}}
asm volatile ({{crep('''
{
.reg .u64 base, off;
.reg .f32 x, y, z, den;
// TODO: this limits the accumulation buffer to <4GB
shl.b32 %0, %0, 4;
cvt.u64.u32 off, %0;
add.u64 base, %1, off;
ld.cg.v4.f32 {x, y, z, den}, [base];
add.f32 x, x, %2;
add.f32 y, y, %3;
add.f32 z, z, %4;
add.f32 den, den, 1.0;
st.cs.v4.f32 [base], {x, y, z, den};
}
''')}} : "+r"(i) : "l"(ptr), "f"(c.x), "f"(c.y), "f"(c.z));
{{endif}}
}
""")
def _xfbody(self, xfid, xform):
px = self.pcp.xforms[xfid]
tmpl = Template(r"""
@ -249,19 +176,23 @@ __global__ void reset_rb(int size) {
}
__global__
void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
const iter_params *all_params, int nsamps_to_generate) {
void iter(
uint64_t out_ptr,
mwc_st *msts,
float4 *points,
const iter_params *all_params,
int nsamps_to_generate
) {
const iter_params *global_params = &(all_params[blockIdx.x]);
__shared__ int nsamps;
nsamps = nsamps_to_generate;
{{if info.acc_mode != 'deferred'}}
__shared__ float time_frac;
time_frac = blockIdx.x / (float) gridDim.x;
{{endif}}
// load params to shared memory cooperatively
for (int i = threadIdx.y * blockDim.x + threadIdx.x;
i * 4 < sizeof(iter_params); i += blockDim.x * blockDim.y)
i < (sizeof(iter_params) / 4); i += blockDim.x * blockDim.y)
reinterpret_cast<float*>(&params)[i] =
reinterpret_cast<const float*>(global_params)[i];
@ -272,9 +203,10 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
__syncthreads();
int this_rb_idx = rb_idx + threadIdx.x + 32 * threadIdx.y;
mwc_st rctx = msts[this_rb_idx];
// TODO: 4th channel unused. Kill or use for something helpful
float4 old_point = points[this_rb_idx];
float x = old_point.x, y = old_point.y,
color = old_point.z, fuse_rounds = old_point.w;
float x = old_point.x, y = old_point.y, color = old_point.z;
{{if info.chaos_used}}
int last_xf_used = 0;
@ -290,116 +222,139 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
__syncthreads();
{{endif}}
bool fuse = false;
while (1) {
// This condition checks for large numbers, Infs, and NaNs.
if (!(-(fabsf(x) + fabsf(y) > -1.0e6f))) {
x = mwc_next_11(rctx);
y = mwc_next_11(rctx);
color = mwc_next_01(rctx);
fuse_rounds = {{info.fuse / 32}};
}
// This condition checks for large numbers, Infs, and NaNs.
if (!(-(fabsf(x) + fabsf(y)) > -1.0e6f)) {
x = mwc_next_11(rctx);
y = mwc_next_11(rctx);
color = mwc_next_01(rctx);
fuse = true;
}
// 32 rounds is somewhat arbitrary, but it has a pleasing 32-ness
for (int i = 0; i < 32; i++) {
// TODO: link up with FUSE, etc
for (int round = 0; round < 256; round++) {
{{if info.chaos_used}}
{{precalc_chaos(pcp, std_xforms)}}
{{precalc_chaos(pcp, std_xforms)}}
// For now, we don't attempt to use the swap buffer when chaos is used
float xfsel = mwc_next_01(rctx);
// For now, we don't attempt to use the swap buffer when chaos is used
float xfsel = mwc_next_01(rctx);
{{for prior_xform_idx, prior_xform_name in enumerate(std_xforms)}}
if (last_xf_used == {{prior_xform_idx}}) {
{{for xform_idx, xform_name in enumerate(std_xforms[:-1])}}
if (xfsel <= {{pcp['chaos_'+prior_xform_name+'_'+xform_name]}}) {
apply_xf_{{xform_name}}(x, y, color, rctx);
last_xf_used = {{xform_idx}};
} else
{{endfor}}
{
apply_xf_{{std_xforms[-1]}}(x, y, color, rctx);
last_xf_used = {{len(std_xforms)-1}};
}
{{for prior_xform_idx, prior_xform_name in enumerate(std_xforms)}}
if (last_xf_used == {{prior_xform_idx}}) {
{{for xform_idx, xform_name in enumerate(std_xforms[:-1])}}
if (xfsel <= {{pcp['chaos_'+prior_xform_name+'_'+xform_name]}}) {
apply_xf_{{xform_name}}(x, y, color, rctx);
last_xf_used = {{xform_idx}};
} else
{{endfor}}
{
printf("Something went *very* wrong.\n");
asm("trap;");
}
{{else}}
{{precalc_densities(pcp, std_xforms)}}
float xfsel = cosel[threadIdx.y];
{{for xform_name in std_xforms[:-1]}}
if (xfsel <= {{pcp['den_'+xform_name]}}) {
apply_xf_{{xform_name}}(x, y, color, rctx);
} else
{{endfor}}
apply_xf_{{std_xforms[-1]}}(x, y, color, rctx);
int sw = (threadIdx.y * 32 + threadIdx.x * 33) & {{NTHREADS-1}};
int sr = threadIdx.y * 32 + threadIdx.x;
swap[sw] = fuse_rounds;
swap[sw+{{NTHREADS}}] = x;
swap[sw+{{2*NTHREADS}}] = y;
swap[sw+{{3*NTHREADS}}] = color;
__syncthreads();
// We select the next xforms here, since we've just synced.
if (threadIdx.y == 0 && threadIdx.x < {{NWARPS}})
cosel[threadIdx.x] = mwc_next_01(rctx);
fuse_rounds = swap[sr];
x = swap[sr+{{NTHREADS}}];
y = swap[sr+{{2*NTHREADS}}];
color = swap[sr+{{3*NTHREADS}}];
{{endif}}
if (fuse_rounds > 0.0f) continue;
{{if 'final' in cp.xforms}}
float fx = x, fy = y, fcolor = color;
apply_xf_final(fx, fy, fcolor, rctx);
{{endif}}
float cx, cy, cc;
{{precalc_camera(info, pcp.camera)}}
{{if 'final' in cp.xforms}}
{{apply_affine('fx', 'fy', 'cx', 'cy', pcp.camera)}}
cc = fcolor;
{{else}}
{{apply_affine('x', 'y', 'cx', 'cy', pcp.camera)}}
cc = color;
{{endif}}
uint32_t ix = trunca(cx), iy = trunca(cy);
if (ix >= {{info.acc_width}} || iy >= {{info.acc_height}})
continue;
uint32_t i = iy * {{info.acc_stride}} + ix;
float4 outcol = tex2D(palTex, cc, time_frac);
update_pix(accbuf_ptr, i, outcol);
last_xf_used = {{len(std_xforms)-1}};
}
} else
{{endfor}}
{
printf("Something went *very* wrong.\n");
asm("trap;");
}
int num_okay = __popc(__ballot(fuse_rounds == 0.0f));
// Some xforms give so many badvals that a thread is almost guaranteed
// to hit another badval before the fuse is over, causing the card to
// spin forever. To avoid this, we count a fuse round as 1/4 of a
// sample below.
if (threadIdx.x == 0) atomicSub(&nsamps, 256 + num_okay * 24);
fuse_rounds = fmaxf(0.0f, fuse_rounds - 1.0f);
{{else}}
{{precalc_densities(pcp, std_xforms)}}
float xfsel = cosel[threadIdx.y];
{{for xform_name in std_xforms[:-1]}}
if (xfsel <= {{pcp['den_'+xform_name]}}) {
apply_xf_{{xform_name}}(x, y, color, rctx);
} else
{{endfor}}
apply_xf_{{std_xforms[-1]}}(x, y, color, rctx);
int sw = (threadIdx.y * 32 + threadIdx.x * 33) & {{NTHREADS-1}};
int sr = threadIdx.y * 32 + threadIdx.x;
swap[sw] = fuse ? 1.0f : 0.0f;
swap[sw+{{NTHREADS}}] = x;
swap[sw+{{2*NTHREADS}}] = y;
swap[sw+{{3*NTHREADS}}] = color;
__syncthreads();
if (nsamps <= 0) break;
// We select the next xforms here, since we've just synced.
if (threadIdx.y == 0 && threadIdx.x < {{NWARPS}})
cosel[threadIdx.x] = mwc_next_01(rctx);
fuse = swap[sr];
x = swap[sr+{{NTHREADS}}];
y = swap[sr+{{2*NTHREADS}}];
color = swap[sr+{{3*NTHREADS}}];
{{endif}}
{{if info.acc_mode == 'deferred'}}
int tid = threadIdx.y * 32 + threadIdx.x;
int offset = 4 * (256 * (256 * blockIdx.x + round) + tid);
int *log = reinterpret_cast<int*>(out_ptr + offset);
{{endif}}
if (fuse) {
{{if info.acc_mode == 'deferred'}}
*log = 0xffffffff;
{{endif}}
continue;
}
{{if 'final' in cp.xforms}}
float fx = x, fy = y, fcolor = color;
apply_xf_final(fx, fy, fcolor, rctx);
{{endif}}
float cx, cy, cc;
{{precalc_camera(info, pcp.camera)}}
{{if 'final' in cp.xforms}}
{{apply_affine('fx', 'fy', 'cx', 'cy', pcp.camera)}}
cc = fcolor;
{{else}}
{{apply_affine('x', 'y', 'cx', 'cy', pcp.camera)}}
cc = color;
{{endif}}
uint32_t ix = trunca(cx), iy = trunca(cy);
if (ix >= {{info.acc_width}} || iy >= {{info.acc_height}}) {
{{if info.acc_mode == 'deferred'}}
*log = 0xffffffff;
{{endif}}
continue;
}
uint32_t i = iy * {{info.acc_stride}} + ix;
{{if info.acc_mode == 'atomic'}}
float4 outcol = tex2D(palTex, cc, time_frac);
float *accbuf_f = reinterpret_cast<float*>(out_ptr + (16*i));
atomicAdd(accbuf_f, outcol.x);
atomicAdd(accbuf_f+1, outcol.y);
atomicAdd(accbuf_f+2, outcol.z);
atomicAdd(accbuf_f+3, 1.0f);
{{elif info.acc_mode == 'global'}}
float4 outcol = tex2D(palTex, cc, time_frac);
float4 *accbuf = reinterpret_cast<float4*>(out_ptr + (16*i));
float4 pix = *accbuf;
pix.x += outcol.x;
pix.y += outcol.y;
pix.z += outcol.z;
pix.w += 1.0f;
*accbuf = pix;
{{elif info.acc_mode == 'deferred'}}
// 'color' gets the top 9 bits. TODO: add dithering via precalc.
uint32_t icolor = cc * 512.0f;
asm("bfi.b32 %0, %1, %0, 23, 9;" : "+r"(i) : "r"(icolor));
*log = i;
{{endif}}
}
if (threadIdx.x == 0 && threadIdx.y == 0)
@ -407,10 +362,140 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
__syncthreads();
this_rb_idx = rb_idx + threadIdx.x + 32 * threadIdx.y;
points[this_rb_idx] = make_float4(x, y, color, fuse_rounds);
points[this_rb_idx] = make_float4(x, y, color, 0.0f);
msts[this_rb_idx] = rctx;
return;
}
// Block size, shared accumulation bits, shared accumulation width.
#define BS 1024
#define SHAB 12
#define SHAW (1<<SHAB)
// These two accumulators, used in write_shmem, hold {density, red} and
// {green, blue} values as packed u16 pairs. The fixed size represents 4,096
// pixels in the accumulator.
__shared__ uint32_t s_acc_dr[SHAW];
__shared__ uint32_t s_acc_gb[SHAW];
// Read from the shm accumulators and write to the global ones.
__device__
void write_shmem_helper(
float4 *acc,
const int glo_base,
const int idx
) {
float4 pix = acc[glo_base+idx];
uint32_t dr = s_acc_dr[idx];
pix.x += (dr & 0xffff) / 255.0f;
pix.w += dr >> 16;
uint32_t gb = s_acc_gb[idx];
pix.y += (gb & 0xffff) / 255.0f;
pix.z += (gb >> 16) / 255.0f;
acc[glo_base+idx] = pix;
}
// Read the point log, accumulate in shared memory, and write the results.
// This kernel is to be launched with one block for every 4,096 addresses to
// be processed, and will handle those addresses.
//
// log_bounds is an array mapping radix values to the first index in the log
// with that radix position. For performance reasons in other parts of the
// code, the radix may actually include bits within the lower SHAB part of the
// address, or it might not cover the first few bits after the SHAB part;
// log_bounds_shift covers that. glob_addr_bits specifies the number of bits
// above SHAB which are address bits.
__global__ void
__launch_bounds__(BS, 1)
write_shmem(
float4 *acc,
const uint32_t *log,
const uint32_t *log_bounds,
const int log_bounds_shift
) {
const int tid = threadIdx.x;
const int bid = blockIdx.x;
// TODO: doesn't respect SHAW/BS
// TODO: compare generated code with unrolled for-loop
s_acc_dr[tid] = 0;
s_acc_gb[tid] = 0;
s_acc_dr[tid+BS] = 0;
s_acc_gb[tid+BS] = 0;
s_acc_dr[tid+2*BS] = 0;
s_acc_gb[tid+2*BS] = 0;
s_acc_dr[tid+3*BS] = 0;
s_acc_gb[tid+3*BS] = 0;
__syncthreads();
// TODO: share across threads - discernable performance impact?
int lb_idx_lo, lb_idx_hi;
if (log_bounds_shift > 0) {
lb_idx_hi = ((bid + 1) << log_bounds_shift) - 1;
lb_idx_lo = (bid << log_bounds_shift) - 1;
} else {
lb_idx_hi = bid >> (-log_bounds_shift);
lb_idx_lo = lb_idx_hi - 1;
}
int idx_lo, idx_hi;
if (lb_idx_lo < 0) idx_lo = 0;
else idx_lo = log_bounds[lb_idx_lo] & ~(BS-1);
idx_hi = (log_bounds[lb_idx_hi] & ~(BS - 1)) + BS;
float rnrounds = 1.0f / (idx_hi - idx_lo);
float time = tid * rnrounds;
float time_step = BS * rnrounds;
int glo_base = bid << SHAB;
for (int i = idx_lo + tid; i < idx_hi; i += BS) {
int entry = log[i];
// TODO: constant '11' is really just 32 - 9 - SHAB, where 9 is the
// number of bits assigned to color. This ignores opacity.
bfe_decl(glob_addr, entry, SHAB, 11);
if (glob_addr != bid) continue;
bfe_decl(shr_addr, entry, 0, SHAB);
bfe_decl(color, entry, 23, 9);
float colorf = color / 512.0f;
float4 outcol = tex2D(palTex, colorf, time);
// TODO: change texture sampler to return shorts and avoid this
uint32_t r = 255.0f * outcol.x;
uint32_t g = 255.0f * outcol.y;
uint32_t b = 255.0f * outcol.z;
uint32_t dr = atomicAdd(s_acc_dr + shr_addr, r + 0x10000);
uint32_t gb = atomicAdd(s_acc_gb + shr_addr, g + (b << 16));
uint32_t d = dr >> 16;
// Neat trick: if overflow is about to happen, write the accumulator,
// and subtract the last known values from the accumulator again.
// Even if the ints end up wrapping around once before the subtraction
// can occur, the results after the subtraction will be correct.
// (Wrapping twice will mess up the intermediate write, but is pretty
// unlikely.)
if (d == 250) {
atomicSub(s_acc_dr + shr_addr, dr);
atomicSub(s_acc_gb + shr_addr, gb);
write_shmem_helper(acc, glo_base, shr_addr);
}
time += time_step;
}
__syncthreads();
int idx = tid;
for (int i = 0; i < (SHAW / BS); i++) {
write_shmem_helper(acc, glo_base, idx);
idx += BS;
}
}
''')
return tmpl.substitute(
info = self.info,

View File

@ -71,6 +71,13 @@ float3 hsv2rgb(float3 hsv);
#define M_SQRT2 1.41421353816986f
#define M_SQRT1_2 0.70710676908493f
#define bfe(d, s, o, w) \
asm("bfe.u32 %0, %1, %2, %3;" : "=r"(d) : "r"(s), "r"(o), "r"(w))
#define bfe_decl(d, s, o, w) \
int d; \
bfe(d, s, o, w)
// TODO: use launch parameter preconfig to eliminate unnecessary parts
__device__
uint32_t gtid() {

View File

@ -99,8 +99,10 @@ class RenderInfo(object):
genomes. The values of this class are fixed before compilation begins.
"""
# Number of iterations to iterate without write after generating a new
# point, including the number of bad
fuse = 192
# point. This number is currently fixed pretty deeply in the set of magic
# constants which govern buffer sizes; changing the value here won't
# actually change the code on the device to do something different.
fuse = 256
# Height of the texture pallete which gets uploaded to the GPU (assuming
# that palette-from-texture is enabled). For most genomes, this doesn't
@ -120,11 +122,19 @@ class RenderInfo(object):
# which I'm not opposed to)
alpha_output_channel = False
# TODO: fix these
# There are three settings for this somewhat ersatz paramater. 'global'
# uses unsynchronized global writes to accumulate sample points, 'atomic'
# uses atomic global writes, and 'deferred' stores color and position in a
# sample log, sorts the log by position, and uses shared memory to
# perform the accumulation. Deferred has the accuracy of 'atomic' and
# the speed of 'global' (it's actually faster!), but packs color and
# position into a single 32-bit int for now, which limits resolution to
# 1080p when xform opacity is respected, so the other two modes will hang
# around until that can be extended to be memory-limited again.
acc_mode = 'deferred'
# TODO: fix this
chaos_used = False
final_xform_index = 3
pal_has_alpha = False
density = 2000
def __init__(self, db, **kwargs):
self.db = db
@ -134,6 +144,7 @@ class RenderInfo(object):
self.acc_width = self.width + 2 * self.gutter
self.acc_height = self.height + 2 * self.gutter
self.acc_stride = 32 * int(np.ceil(self.acc_width / 32.))
self.density = self.quality
# Deref genome
self.genome = self.db.genomes[self.genome]

View File

@ -20,10 +20,13 @@ import pycuda.tools
import cuburn.genome
from cuburn import affine
from cuburn.code import util, mwc, iter, filtering
from cuburn.code import util, mwc, iter, filtering, sort
RenderedImage = namedtuple('RenderedImage', 'buf idx gpu_time')
def _sync_stream(dst, src):
dst.wait_for_event(cuda.Event(cuda.event_flags.DISABLE_TIMING).record(src))
class Renderer(object):
"""
Control structure for rendering a series of frames.
@ -107,16 +110,47 @@ class Renderer(object):
packer_fun = self.mod.get_function("interp_iter_params")
palette_fun = self.mod.get_function("interp_palette_hsv")
iter_fun = self.mod.get_function("iter")
write_fun = self.mod.get_function("write_shmem")
info = self.info
stream = cuda.Stream()
event_a = cuda.Event().record(stream)
# The synchronization model is messy. See helpers/task_model.svg.
iter_stream = cuda.Stream()
filt_stream = cuda.Stream()
if info.acc_mode == 'deferred':
write_stream = cuda.Stream()
else:
write_stream = iter_stream
# These events fire when the corresponding buffer is available for
# reading on the host (i.e. the copy is done). On the first pass, 'a'
# will be ignored, and subsequently moved to 'b'.
event_a = cuda.Event().record(filt_stream)
event_b = None
nbins = info.acc_height * info.acc_stride
d_accum = cuda.mem_alloc(16 * nbins)
d_out = cuda.mem_alloc(16 * nbins)
if info.acc_mode == 'deferred':
# Having a fixed, power-of-two log size makes things much easier
log_size = 64 << 20
d_log = cuda.mem_alloc(log_size * 4)
d_log_sorted = cuda.mem_alloc(log_size * 4)
sorter = sort.Sorter(log_size)
# Shared accumulators take care of the lowest 12 bits, but due to
# a quirk of the sort implementation, asking the sort to handle
# fewer bits than it is compiled for will make it considerably
# slower (and it can't be compiled for <7b), so we actually dig in
# to the accumulator's SHAB window for those cases.
SHAB = np.int32(12)
address_bits = np.int32(np.ceil(np.log2(nbins+1)))
start_bit = address_bits - sorter.radix_bits
log_shift = np.int32(SHAB - start_bit)
nwriteblocks = int(np.ceil(nbins / (1<<SHAB)))
print start_bit, log_shift, nwriteblocks
# Calculate 'nslots', the number of simultaneous running threads that
# can be active on the GPU during iteration (and thus the number of
# slots for loading and storing RNG and point context that will be
@ -131,7 +165,6 @@ class Renderer(object):
nsms = cuda.Context.get_device().multiprocessor_count
rb_size = occupancy.warps_per_mp * nsms / (iter_threads_per_block / 32)
nslots = iter_threads_per_block * rb_size
ntemporal_samples = int(np.ceil(1000. / rb_size) * rb_size)
# Reset the ringbuffer info for the slots
reset_rb_fun(np.int32(rb_size), block=(1,1,1))
@ -140,6 +173,11 @@ class Renderer(object):
seeds = mwc.MWC.make_seeds(nslots)
d_seeds = cuda.to_device(seeds)
# We used to auto-calculate this to a multiple of the number of SMs on
# the device, but since we now use shorter launches and, to a certain
# extent, allow simultaneous occupancy, that's not as important. The
# 1024 is a magic constant, though: FUSE
ntemporal_samples = 1024
genome_times, genome_knots = self._iter.packer.pack()
d_genome_times = cuda.to_device(genome_times)
d_genome_knots = cuda.to_device(genome_knots)
@ -174,7 +212,7 @@ class Renderer(object):
palette_fun(d_palmem, d_palint_times, d_palint_vals,
np.float32(start), width,
block=(256,1,1), grid=(info.palette_height,1),
stream=stream)
stream=write_stream)
# TODO: do we need to do this each time in order to reset cache?
tref = self.mod.get_texref('palTex')
@ -188,11 +226,11 @@ class Renderer(object):
np.float32(start), width, d_seeds,
np.int32(ntemporal_samples), block=(256,1,1),
grid=(int(np.ceil(ntemporal_samples/256.)),1),
stream=stream)
stream=iter_stream)
# TODO: if we only do this once per anim, does quality improve?
# Reset points so that they will be FUSEd
util.BaseCode.fill_dptr(self.mod, d_points, 4 * nslots,
stream, np.float32(np.nan))
iter_stream, np.float32(np.nan))
# Get interpolated control points for debugging
#stream.synchronize()
@ -201,20 +239,34 @@ class Renderer(object):
#for i, n in zip(d_temp[5], self._iter.packer.packed):
#print '%60s %g' % ('_'.join(n), i)
util.BaseCode.fill_dptr(self.mod, d_accum, 4 * nbins, stream)
nsamps = info.density * info.width * info.height / ntemporal_samples
iter_fun(np.uint64(d_accum), d_seeds, d_points,
d_infos, np.int32(nsamps),
block=(32, self._iter.NTHREADS/32, 1),
grid=(ntemporal_samples, 1),
texrefs=[tref], stream=stream)
util.BaseCode.fill_dptr(self.mod, d_accum, 4 * nbins, write_stream)
nrounds = ( (info.density * info.width * info.height)
/ (ntemporal_samples * 256 * 256) ) + 1
if info.acc_mode == 'deferred':
for i in range(nrounds):
iter_fun(np.uint64(d_log), d_seeds, d_points, d_infos,
block=(32, self._iter.NTHREADS/32, 1),
grid=(ntemporal_samples, 1),
texrefs=[tref], stream=iter_stream)
_sync_stream(write_stream, iter_stream)
sorter.sort(d_log_sorted, d_log, log_size, start_bit, True,
stream=write_stream)
_sync_stream(iter_stream, write_stream)
write_fun(d_accum, d_log_sorted, sorter.dglobal, log_shift,
block=(1024, 1, 1), grid=(nwriteblocks, 1),
stream=write_stream)
else:
iter_fun(np.uint64(d_accum), d_seeds, d_points, d_infos,
block=(32, self._iter.NTHREADS/32, 1),
grid=(ntemporal_samples, nrounds),
texrefs=[tref], stream=iter_stream)
stream.synchronize()
util.BaseCode.fill_dptr(self.mod, d_out, 4 * nbins, stream)
filt.de(d_out, d_accum, info, start, stop, stream)
filt.colorclip(d_out, info, start, stop, stream)
cuda.memcpy_dtoh_async(h_out_a, d_out, stream)
util.BaseCode.fill_dptr(self.mod, d_out, 4 * nbins, filt_stream)
_sync_stream(filt_stream, write_stream)
filt.de(d_out, d_accum, info, start, stop, filt_stream)
_sync_stream(write_stream, filt_stream)
filt.colorclip(d_out, info, start, stop, filt_stream)
cuda.memcpy_dtoh_async(h_out_a, d_out, filt_stream)
if event_b:
while not event_a.query():
@ -222,11 +274,10 @@ class Renderer(object):
gpu_time = event_a.time_since(event_b)
yield RenderedImage(self._trim(h_out_b), last_idx, gpu_time)
event_a, event_b = cuda.Event().record(stream), event_a
event_a, event_b = cuda.Event().record(filt_stream), event_a
h_out_a, h_out_b = h_out_b, h_out_a
last_idx = idx
while not event_a.query():
timemod.sleep(0.001)
gpu_time = event_a.time_since(event_b)