mirror of
https://github.com/stevenrobertson/cuburn.git
synced 2025-02-05 11:40:04 -05:00
Deferred writeback.
This commit is contained in:
parent
05e1d08681
commit
eb43b151dc
@ -122,7 +122,6 @@ class IterCode(HunkOCode):
|
||||
bodies = [self._xfbody(i,x) for i,x in sorted(info.genome.xforms.items())]
|
||||
bodies.append(iterbody)
|
||||
self.defs = '\n'.join(bodies)
|
||||
self.decls += self.pix_helpers.substitute(info=info)
|
||||
|
||||
decls = """
|
||||
// Note: for normalized lookups, uchar4 actually returns floats
|
||||
@ -132,78 +131,6 @@ __device__ int rb_head, rb_tail, rb_size;
|
||||
|
||||
"""
|
||||
|
||||
pix_helpers = Template("""
|
||||
__device__
|
||||
void read_pix(float4 &pix, float &den) {
|
||||
den = pix.w;
|
||||
{{if info.pal_has_alpha}}
|
||||
read_half(pix.z, pix.w, pix.z, den);
|
||||
{{endif}}
|
||||
}
|
||||
|
||||
__device__
|
||||
void write_pix(float4 &pix, float den) {
|
||||
{{if info.pal_has_alpha}}
|
||||
write_half(pix.z, pix.z, pix.w, den);
|
||||
{{endif}}
|
||||
pix.w = den;
|
||||
}
|
||||
|
||||
__device__
|
||||
void update_pix(uint64_t ptr, uint32_t i, float4 c) {
|
||||
{{if info.pal_has_alpha}}
|
||||
asm volatile ({{crep('''
|
||||
{
|
||||
.reg .u16 sz, sw;
|
||||
.reg .u64 base, off;
|
||||
.reg .f32 x, y, z, w, den, rc, tz, tw;
|
||||
|
||||
// TODO: this limits the accumulation buffer to <4GB
|
||||
shl.b32 %0, %0, 4;
|
||||
cvt.u64.u32 off, %0;
|
||||
add.u64 base, %1, off;
|
||||
ld.cg.v4.f32 {x, y, z, den}, [base];
|
||||
add.f32 x, x, %2;
|
||||
add.f32 y, y, %3;
|
||||
mov.b32 {sz, sw}, z;
|
||||
cvt.rn.f32.u16 tz, sz;
|
||||
cvt.rn.f32.u16 tw, sw;
|
||||
mul.f32 tz, tz, den;
|
||||
mul.f32 tw, tz, den;
|
||||
fma.f32 tz, %4, 65535.0, tz;
|
||||
fma.f32 tw, %5, 65535.0, tw;
|
||||
add.f32 den, 1.0;
|
||||
rcp.approx.f32 rc, den;
|
||||
mul.f32 tz, tz, rc;
|
||||
mul.f32 tw, tw, rc;
|
||||
cvt.rni.u16.f32 sz, tz;
|
||||
cvt.rni.u16.f32 sw, tw;
|
||||
mov.b32 z, {sz, sw};
|
||||
st.cs.v4.f32 [base], {x, y, z, den};
|
||||
}
|
||||
''')}} : "+r"(i) : "l"(ptr), "f"(c.x), "f"(c.y), "f"(c.z), "f"(c.w));
|
||||
{{else}}
|
||||
asm volatile ({{crep('''
|
||||
{
|
||||
.reg .u64 base, off;
|
||||
.reg .f32 x, y, z, den;
|
||||
|
||||
// TODO: this limits the accumulation buffer to <4GB
|
||||
shl.b32 %0, %0, 4;
|
||||
cvt.u64.u32 off, %0;
|
||||
add.u64 base, %1, off;
|
||||
ld.cg.v4.f32 {x, y, z, den}, [base];
|
||||
add.f32 x, x, %2;
|
||||
add.f32 y, y, %3;
|
||||
add.f32 z, z, %4;
|
||||
add.f32 den, den, 1.0;
|
||||
st.cs.v4.f32 [base], {x, y, z, den};
|
||||
}
|
||||
''')}} : "+r"(i) : "l"(ptr), "f"(c.x), "f"(c.y), "f"(c.z));
|
||||
{{endif}}
|
||||
}
|
||||
""")
|
||||
|
||||
def _xfbody(self, xfid, xform):
|
||||
px = self.pcp.xforms[xfid]
|
||||
tmpl = Template(r"""
|
||||
@ -249,19 +176,23 @@ __global__ void reset_rb(int size) {
|
||||
}
|
||||
|
||||
__global__
|
||||
void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
|
||||
const iter_params *all_params, int nsamps_to_generate) {
|
||||
void iter(
|
||||
uint64_t out_ptr,
|
||||
mwc_st *msts,
|
||||
float4 *points,
|
||||
const iter_params *all_params,
|
||||
int nsamps_to_generate
|
||||
) {
|
||||
const iter_params *global_params = &(all_params[blockIdx.x]);
|
||||
|
||||
__shared__ int nsamps;
|
||||
nsamps = nsamps_to_generate;
|
||||
|
||||
{{if info.acc_mode != 'deferred'}}
|
||||
__shared__ float time_frac;
|
||||
time_frac = blockIdx.x / (float) gridDim.x;
|
||||
{{endif}}
|
||||
|
||||
// load params to shared memory cooperatively
|
||||
for (int i = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
i * 4 < sizeof(iter_params); i += blockDim.x * blockDim.y)
|
||||
i < (sizeof(iter_params) / 4); i += blockDim.x * blockDim.y)
|
||||
reinterpret_cast<float*>(¶ms)[i] =
|
||||
reinterpret_cast<const float*>(global_params)[i];
|
||||
|
||||
@ -272,9 +203,10 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
|
||||
__syncthreads();
|
||||
int this_rb_idx = rb_idx + threadIdx.x + 32 * threadIdx.y;
|
||||
mwc_st rctx = msts[this_rb_idx];
|
||||
|
||||
// TODO: 4th channel unused. Kill or use for something helpful
|
||||
float4 old_point = points[this_rb_idx];
|
||||
float x = old_point.x, y = old_point.y,
|
||||
color = old_point.z, fuse_rounds = old_point.w;
|
||||
float x = old_point.x, y = old_point.y, color = old_point.z;
|
||||
|
||||
{{if info.chaos_used}}
|
||||
int last_xf_used = 0;
|
||||
@ -290,18 +222,18 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
|
||||
__syncthreads();
|
||||
{{endif}}
|
||||
|
||||
bool fuse = false;
|
||||
|
||||
while (1) {
|
||||
// This condition checks for large numbers, Infs, and NaNs.
|
||||
if (!(-(fabsf(x) + fabsf(y) > -1.0e6f))) {
|
||||
if (!(-(fabsf(x) + fabsf(y)) > -1.0e6f)) {
|
||||
x = mwc_next_11(rctx);
|
||||
y = mwc_next_11(rctx);
|
||||
color = mwc_next_01(rctx);
|
||||
fuse_rounds = {{info.fuse / 32}};
|
||||
fuse = true;
|
||||
}
|
||||
|
||||
// 32 rounds is somewhat arbitrary, but it has a pleasing 32-ness
|
||||
for (int i = 0; i < 32; i++) {
|
||||
// TODO: link up with FUSE, etc
|
||||
for (int round = 0; round < 256; round++) {
|
||||
|
||||
{{if info.chaos_used}}
|
||||
|
||||
@ -343,7 +275,7 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
|
||||
int sw = (threadIdx.y * 32 + threadIdx.x * 33) & {{NTHREADS-1}};
|
||||
int sr = threadIdx.y * 32 + threadIdx.x;
|
||||
|
||||
swap[sw] = fuse_rounds;
|
||||
swap[sw] = fuse ? 1.0f : 0.0f;
|
||||
swap[sw+{{NTHREADS}}] = x;
|
||||
swap[sw+{{2*NTHREADS}}] = y;
|
||||
swap[sw+{{3*NTHREADS}}] = color;
|
||||
@ -353,14 +285,25 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
|
||||
if (threadIdx.y == 0 && threadIdx.x < {{NWARPS}})
|
||||
cosel[threadIdx.x] = mwc_next_01(rctx);
|
||||
|
||||
fuse_rounds = swap[sr];
|
||||
fuse = swap[sr];
|
||||
x = swap[sr+{{NTHREADS}}];
|
||||
y = swap[sr+{{2*NTHREADS}}];
|
||||
color = swap[sr+{{3*NTHREADS}}];
|
||||
|
||||
{{endif}}
|
||||
|
||||
if (fuse_rounds > 0.0f) continue;
|
||||
{{if info.acc_mode == 'deferred'}}
|
||||
int tid = threadIdx.y * 32 + threadIdx.x;
|
||||
int offset = 4 * (256 * (256 * blockIdx.x + round) + tid);
|
||||
int *log = reinterpret_cast<int*>(out_ptr + offset);
|
||||
{{endif}}
|
||||
|
||||
if (fuse) {
|
||||
{{if info.acc_mode == 'deferred'}}
|
||||
*log = 0xffffffff;
|
||||
{{endif}}
|
||||
continue;
|
||||
}
|
||||
|
||||
{{if 'final' in cp.xforms}}
|
||||
float fx = x, fy = y, fcolor = color;
|
||||
@ -381,25 +324,37 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
|
||||
|
||||
uint32_t ix = trunca(cx), iy = trunca(cy);
|
||||
|
||||
if (ix >= {{info.acc_width}} || iy >= {{info.acc_height}})
|
||||
if (ix >= {{info.acc_width}} || iy >= {{info.acc_height}}) {
|
||||
{{if info.acc_mode == 'deferred'}}
|
||||
*log = 0xffffffff;
|
||||
{{endif}}
|
||||
continue;
|
||||
}
|
||||
|
||||
uint32_t i = iy * {{info.acc_stride}} + ix;
|
||||
|
||||
{{if info.acc_mode == 'atomic'}}
|
||||
float4 outcol = tex2D(palTex, cc, time_frac);
|
||||
update_pix(accbuf_ptr, i, outcol);
|
||||
}
|
||||
|
||||
int num_okay = __popc(__ballot(fuse_rounds == 0.0f));
|
||||
// Some xforms give so many badvals that a thread is almost guaranteed
|
||||
// to hit another badval before the fuse is over, causing the card to
|
||||
// spin forever. To avoid this, we count a fuse round as 1/4 of a
|
||||
// sample below.
|
||||
if (threadIdx.x == 0) atomicSub(&nsamps, 256 + num_okay * 24);
|
||||
fuse_rounds = fmaxf(0.0f, fuse_rounds - 1.0f);
|
||||
|
||||
__syncthreads();
|
||||
if (nsamps <= 0) break;
|
||||
float *accbuf_f = reinterpret_cast<float*>(out_ptr + (16*i));
|
||||
atomicAdd(accbuf_f, outcol.x);
|
||||
atomicAdd(accbuf_f+1, outcol.y);
|
||||
atomicAdd(accbuf_f+2, outcol.z);
|
||||
atomicAdd(accbuf_f+3, 1.0f);
|
||||
{{elif info.acc_mode == 'global'}}
|
||||
float4 outcol = tex2D(palTex, cc, time_frac);
|
||||
float4 *accbuf = reinterpret_cast<float4*>(out_ptr + (16*i));
|
||||
float4 pix = *accbuf;
|
||||
pix.x += outcol.x;
|
||||
pix.y += outcol.y;
|
||||
pix.z += outcol.z;
|
||||
pix.w += 1.0f;
|
||||
*accbuf = pix;
|
||||
{{elif info.acc_mode == 'deferred'}}
|
||||
// 'color' gets the top 9 bits. TODO: add dithering via precalc.
|
||||
uint32_t icolor = cc * 512.0f;
|
||||
asm("bfi.b32 %0, %1, %0, 23, 9;" : "+r"(i) : "r"(icolor));
|
||||
*log = i;
|
||||
{{endif}}
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0 && threadIdx.y == 0)
|
||||
@ -407,10 +362,140 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
|
||||
__syncthreads();
|
||||
this_rb_idx = rb_idx + threadIdx.x + 32 * threadIdx.y;
|
||||
|
||||
points[this_rb_idx] = make_float4(x, y, color, fuse_rounds);
|
||||
points[this_rb_idx] = make_float4(x, y, color, 0.0f);
|
||||
msts[this_rb_idx] = rctx;
|
||||
return;
|
||||
}
|
||||
|
||||
// Block size, shared accumulation bits, shared accumulation width.
|
||||
#define BS 1024
|
||||
#define SHAB 12
|
||||
#define SHAW (1<<SHAB)
|
||||
|
||||
// These two accumulators, used in write_shmem, hold {density, red} and
|
||||
// {green, blue} values as packed u16 pairs. The fixed size represents 4,096
|
||||
// pixels in the accumulator.
|
||||
__shared__ uint32_t s_acc_dr[SHAW];
|
||||
__shared__ uint32_t s_acc_gb[SHAW];
|
||||
|
||||
// Read from the shm accumulators and write to the global ones.
|
||||
__device__
|
||||
void write_shmem_helper(
|
||||
float4 *acc,
|
||||
const int glo_base,
|
||||
const int idx
|
||||
) {
|
||||
float4 pix = acc[glo_base+idx];
|
||||
uint32_t dr = s_acc_dr[idx];
|
||||
pix.x += (dr & 0xffff) / 255.0f;
|
||||
pix.w += dr >> 16;
|
||||
uint32_t gb = s_acc_gb[idx];
|
||||
pix.y += (gb & 0xffff) / 255.0f;
|
||||
pix.z += (gb >> 16) / 255.0f;
|
||||
acc[glo_base+idx] = pix;
|
||||
}
|
||||
|
||||
// Read the point log, accumulate in shared memory, and write the results.
|
||||
// This kernel is to be launched with one block for every 4,096 addresses to
|
||||
// be processed, and will handle those addresses.
|
||||
//
|
||||
// log_bounds is an array mapping radix values to the first index in the log
|
||||
// with that radix position. For performance reasons in other parts of the
|
||||
// code, the radix may actually include bits within the lower SHAB part of the
|
||||
// address, or it might not cover the first few bits after the SHAB part;
|
||||
// log_bounds_shift covers that. glob_addr_bits specifies the number of bits
|
||||
// above SHAB which are address bits.
|
||||
|
||||
__global__ void
|
||||
__launch_bounds__(BS, 1)
|
||||
write_shmem(
|
||||
float4 *acc,
|
||||
const uint32_t *log,
|
||||
const uint32_t *log_bounds,
|
||||
const int log_bounds_shift
|
||||
) {
|
||||
const int tid = threadIdx.x;
|
||||
const int bid = blockIdx.x;
|
||||
|
||||
// TODO: doesn't respect SHAW/BS
|
||||
// TODO: compare generated code with unrolled for-loop
|
||||
s_acc_dr[tid] = 0;
|
||||
s_acc_gb[tid] = 0;
|
||||
s_acc_dr[tid+BS] = 0;
|
||||
s_acc_gb[tid+BS] = 0;
|
||||
s_acc_dr[tid+2*BS] = 0;
|
||||
s_acc_gb[tid+2*BS] = 0;
|
||||
s_acc_dr[tid+3*BS] = 0;
|
||||
s_acc_gb[tid+3*BS] = 0;
|
||||
__syncthreads();
|
||||
|
||||
// TODO: share across threads - discernable performance impact?
|
||||
int lb_idx_lo, lb_idx_hi;
|
||||
if (log_bounds_shift > 0) {
|
||||
lb_idx_hi = ((bid + 1) << log_bounds_shift) - 1;
|
||||
lb_idx_lo = (bid << log_bounds_shift) - 1;
|
||||
} else {
|
||||
lb_idx_hi = bid >> (-log_bounds_shift);
|
||||
lb_idx_lo = lb_idx_hi - 1;
|
||||
}
|
||||
|
||||
int idx_lo, idx_hi;
|
||||
if (lb_idx_lo < 0) idx_lo = 0;
|
||||
else idx_lo = log_bounds[lb_idx_lo] & ~(BS-1);
|
||||
idx_hi = (log_bounds[lb_idx_hi] & ~(BS - 1)) + BS;
|
||||
|
||||
float rnrounds = 1.0f / (idx_hi - idx_lo);
|
||||
float time = tid * rnrounds;
|
||||
float time_step = BS * rnrounds;
|
||||
|
||||
int glo_base = bid << SHAB;
|
||||
|
||||
for (int i = idx_lo + tid; i < idx_hi; i += BS) {
|
||||
int entry = log[i];
|
||||
|
||||
|
||||
// TODO: constant '11' is really just 32 - 9 - SHAB, where 9 is the
|
||||
// number of bits assigned to color. This ignores opacity.
|
||||
bfe_decl(glob_addr, entry, SHAB, 11);
|
||||
if (glob_addr != bid) continue;
|
||||
|
||||
bfe_decl(shr_addr, entry, 0, SHAB);
|
||||
bfe_decl(color, entry, 23, 9);
|
||||
|
||||
float colorf = color / 512.0f;
|
||||
float4 outcol = tex2D(palTex, colorf, time);
|
||||
|
||||
// TODO: change texture sampler to return shorts and avoid this
|
||||
uint32_t r = 255.0f * outcol.x;
|
||||
uint32_t g = 255.0f * outcol.y;
|
||||
uint32_t b = 255.0f * outcol.z;
|
||||
|
||||
uint32_t dr = atomicAdd(s_acc_dr + shr_addr, r + 0x10000);
|
||||
uint32_t gb = atomicAdd(s_acc_gb + shr_addr, g + (b << 16));
|
||||
uint32_t d = dr >> 16;
|
||||
|
||||
// Neat trick: if overflow is about to happen, write the accumulator,
|
||||
// and subtract the last known values from the accumulator again.
|
||||
// Even if the ints end up wrapping around once before the subtraction
|
||||
// can occur, the results after the subtraction will be correct.
|
||||
// (Wrapping twice will mess up the intermediate write, but is pretty
|
||||
// unlikely.)
|
||||
if (d == 250) {
|
||||
atomicSub(s_acc_dr + shr_addr, dr);
|
||||
atomicSub(s_acc_gb + shr_addr, gb);
|
||||
write_shmem_helper(acc, glo_base, shr_addr);
|
||||
}
|
||||
time += time_step;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
int idx = tid;
|
||||
for (int i = 0; i < (SHAW / BS); i++) {
|
||||
write_shmem_helper(acc, glo_base, idx);
|
||||
idx += BS;
|
||||
}
|
||||
}
|
||||
|
||||
''')
|
||||
return tmpl.substitute(
|
||||
info = self.info,
|
||||
|
@ -71,6 +71,13 @@ float3 hsv2rgb(float3 hsv);
|
||||
#define M_SQRT2 1.41421353816986f
|
||||
#define M_SQRT1_2 0.70710676908493f
|
||||
|
||||
#define bfe(d, s, o, w) \
|
||||
asm("bfe.u32 %0, %1, %2, %3;" : "=r"(d) : "r"(s), "r"(o), "r"(w))
|
||||
|
||||
#define bfe_decl(d, s, o, w) \
|
||||
int d; \
|
||||
bfe(d, s, o, w)
|
||||
|
||||
// TODO: use launch parameter preconfig to eliminate unnecessary parts
|
||||
__device__
|
||||
uint32_t gtid() {
|
||||
|
@ -99,8 +99,10 @@ class RenderInfo(object):
|
||||
genomes. The values of this class are fixed before compilation begins.
|
||||
"""
|
||||
# Number of iterations to iterate without write after generating a new
|
||||
# point, including the number of bad
|
||||
fuse = 192
|
||||
# point. This number is currently fixed pretty deeply in the set of magic
|
||||
# constants which govern buffer sizes; changing the value here won't
|
||||
# actually change the code on the device to do something different.
|
||||
fuse = 256
|
||||
|
||||
# Height of the texture pallete which gets uploaded to the GPU (assuming
|
||||
# that palette-from-texture is enabled). For most genomes, this doesn't
|
||||
@ -120,11 +122,19 @@ class RenderInfo(object):
|
||||
# which I'm not opposed to)
|
||||
alpha_output_channel = False
|
||||
|
||||
# TODO: fix these
|
||||
# There are three settings for this somewhat ersatz paramater. 'global'
|
||||
# uses unsynchronized global writes to accumulate sample points, 'atomic'
|
||||
# uses atomic global writes, and 'deferred' stores color and position in a
|
||||
# sample log, sorts the log by position, and uses shared memory to
|
||||
# perform the accumulation. Deferred has the accuracy of 'atomic' and
|
||||
# the speed of 'global' (it's actually faster!), but packs color and
|
||||
# position into a single 32-bit int for now, which limits resolution to
|
||||
# 1080p when xform opacity is respected, so the other two modes will hang
|
||||
# around until that can be extended to be memory-limited again.
|
||||
acc_mode = 'deferred'
|
||||
|
||||
# TODO: fix this
|
||||
chaos_used = False
|
||||
final_xform_index = 3
|
||||
pal_has_alpha = False
|
||||
density = 2000
|
||||
|
||||
def __init__(self, db, **kwargs):
|
||||
self.db = db
|
||||
@ -134,6 +144,7 @@ class RenderInfo(object):
|
||||
self.acc_width = self.width + 2 * self.gutter
|
||||
self.acc_height = self.height + 2 * self.gutter
|
||||
self.acc_stride = 32 * int(np.ceil(self.acc_width / 32.))
|
||||
self.density = self.quality
|
||||
|
||||
# Deref genome
|
||||
self.genome = self.db.genomes[self.genome]
|
||||
|
@ -20,10 +20,13 @@ import pycuda.tools
|
||||
|
||||
import cuburn.genome
|
||||
from cuburn import affine
|
||||
from cuburn.code import util, mwc, iter, filtering
|
||||
from cuburn.code import util, mwc, iter, filtering, sort
|
||||
|
||||
RenderedImage = namedtuple('RenderedImage', 'buf idx gpu_time')
|
||||
|
||||
def _sync_stream(dst, src):
|
||||
dst.wait_for_event(cuda.Event(cuda.event_flags.DISABLE_TIMING).record(src))
|
||||
|
||||
class Renderer(object):
|
||||
"""
|
||||
Control structure for rendering a series of frames.
|
||||
@ -107,16 +110,47 @@ class Renderer(object):
|
||||
packer_fun = self.mod.get_function("interp_iter_params")
|
||||
palette_fun = self.mod.get_function("interp_palette_hsv")
|
||||
iter_fun = self.mod.get_function("iter")
|
||||
write_fun = self.mod.get_function("write_shmem")
|
||||
|
||||
info = self.info
|
||||
stream = cuda.Stream()
|
||||
event_a = cuda.Event().record(stream)
|
||||
|
||||
# The synchronization model is messy. See helpers/task_model.svg.
|
||||
iter_stream = cuda.Stream()
|
||||
filt_stream = cuda.Stream()
|
||||
if info.acc_mode == 'deferred':
|
||||
write_stream = cuda.Stream()
|
||||
else:
|
||||
write_stream = iter_stream
|
||||
|
||||
# These events fire when the corresponding buffer is available for
|
||||
# reading on the host (i.e. the copy is done). On the first pass, 'a'
|
||||
# will be ignored, and subsequently moved to 'b'.
|
||||
event_a = cuda.Event().record(filt_stream)
|
||||
event_b = None
|
||||
|
||||
nbins = info.acc_height * info.acc_stride
|
||||
d_accum = cuda.mem_alloc(16 * nbins)
|
||||
d_out = cuda.mem_alloc(16 * nbins)
|
||||
|
||||
if info.acc_mode == 'deferred':
|
||||
# Having a fixed, power-of-two log size makes things much easier
|
||||
log_size = 64 << 20
|
||||
d_log = cuda.mem_alloc(log_size * 4)
|
||||
d_log_sorted = cuda.mem_alloc(log_size * 4)
|
||||
sorter = sort.Sorter(log_size)
|
||||
|
||||
# Shared accumulators take care of the lowest 12 bits, but due to
|
||||
# a quirk of the sort implementation, asking the sort to handle
|
||||
# fewer bits than it is compiled for will make it considerably
|
||||
# slower (and it can't be compiled for <7b), so we actually dig in
|
||||
# to the accumulator's SHAB window for those cases.
|
||||
SHAB = np.int32(12)
|
||||
address_bits = np.int32(np.ceil(np.log2(nbins+1)))
|
||||
start_bit = address_bits - sorter.radix_bits
|
||||
log_shift = np.int32(SHAB - start_bit)
|
||||
nwriteblocks = int(np.ceil(nbins / (1<<SHAB)))
|
||||
print start_bit, log_shift, nwriteblocks
|
||||
|
||||
# Calculate 'nslots', the number of simultaneous running threads that
|
||||
# can be active on the GPU during iteration (and thus the number of
|
||||
# slots for loading and storing RNG and point context that will be
|
||||
@ -131,7 +165,6 @@ class Renderer(object):
|
||||
nsms = cuda.Context.get_device().multiprocessor_count
|
||||
rb_size = occupancy.warps_per_mp * nsms / (iter_threads_per_block / 32)
|
||||
nslots = iter_threads_per_block * rb_size
|
||||
ntemporal_samples = int(np.ceil(1000. / rb_size) * rb_size)
|
||||
|
||||
# Reset the ringbuffer info for the slots
|
||||
reset_rb_fun(np.int32(rb_size), block=(1,1,1))
|
||||
@ -140,6 +173,11 @@ class Renderer(object):
|
||||
seeds = mwc.MWC.make_seeds(nslots)
|
||||
d_seeds = cuda.to_device(seeds)
|
||||
|
||||
# We used to auto-calculate this to a multiple of the number of SMs on
|
||||
# the device, but since we now use shorter launches and, to a certain
|
||||
# extent, allow simultaneous occupancy, that's not as important. The
|
||||
# 1024 is a magic constant, though: FUSE
|
||||
ntemporal_samples = 1024
|
||||
genome_times, genome_knots = self._iter.packer.pack()
|
||||
d_genome_times = cuda.to_device(genome_times)
|
||||
d_genome_knots = cuda.to_device(genome_knots)
|
||||
@ -174,7 +212,7 @@ class Renderer(object):
|
||||
palette_fun(d_palmem, d_palint_times, d_palint_vals,
|
||||
np.float32(start), width,
|
||||
block=(256,1,1), grid=(info.palette_height,1),
|
||||
stream=stream)
|
||||
stream=write_stream)
|
||||
|
||||
# TODO: do we need to do this each time in order to reset cache?
|
||||
tref = self.mod.get_texref('palTex')
|
||||
@ -188,11 +226,11 @@ class Renderer(object):
|
||||
np.float32(start), width, d_seeds,
|
||||
np.int32(ntemporal_samples), block=(256,1,1),
|
||||
grid=(int(np.ceil(ntemporal_samples/256.)),1),
|
||||
stream=stream)
|
||||
stream=iter_stream)
|
||||
|
||||
# TODO: if we only do this once per anim, does quality improve?
|
||||
# Reset points so that they will be FUSEd
|
||||
util.BaseCode.fill_dptr(self.mod, d_points, 4 * nslots,
|
||||
stream, np.float32(np.nan))
|
||||
iter_stream, np.float32(np.nan))
|
||||
|
||||
# Get interpolated control points for debugging
|
||||
#stream.synchronize()
|
||||
@ -201,20 +239,34 @@ class Renderer(object):
|
||||
#for i, n in zip(d_temp[5], self._iter.packer.packed):
|
||||
#print '%60s %g' % ('_'.join(n), i)
|
||||
|
||||
util.BaseCode.fill_dptr(self.mod, d_accum, 4 * nbins, stream)
|
||||
nsamps = info.density * info.width * info.height / ntemporal_samples
|
||||
iter_fun(np.uint64(d_accum), d_seeds, d_points,
|
||||
d_infos, np.int32(nsamps),
|
||||
util.BaseCode.fill_dptr(self.mod, d_accum, 4 * nbins, write_stream)
|
||||
nrounds = ( (info.density * info.width * info.height)
|
||||
/ (ntemporal_samples * 256 * 256) ) + 1
|
||||
if info.acc_mode == 'deferred':
|
||||
for i in range(nrounds):
|
||||
iter_fun(np.uint64(d_log), d_seeds, d_points, d_infos,
|
||||
block=(32, self._iter.NTHREADS/32, 1),
|
||||
grid=(ntemporal_samples, 1),
|
||||
texrefs=[tref], stream=stream)
|
||||
texrefs=[tref], stream=iter_stream)
|
||||
_sync_stream(write_stream, iter_stream)
|
||||
sorter.sort(d_log_sorted, d_log, log_size, start_bit, True,
|
||||
stream=write_stream)
|
||||
_sync_stream(iter_stream, write_stream)
|
||||
write_fun(d_accum, d_log_sorted, sorter.dglobal, log_shift,
|
||||
block=(1024, 1, 1), grid=(nwriteblocks, 1),
|
||||
stream=write_stream)
|
||||
else:
|
||||
iter_fun(np.uint64(d_accum), d_seeds, d_points, d_infos,
|
||||
block=(32, self._iter.NTHREADS/32, 1),
|
||||
grid=(ntemporal_samples, nrounds),
|
||||
texrefs=[tref], stream=iter_stream)
|
||||
|
||||
stream.synchronize()
|
||||
|
||||
util.BaseCode.fill_dptr(self.mod, d_out, 4 * nbins, stream)
|
||||
filt.de(d_out, d_accum, info, start, stop, stream)
|
||||
filt.colorclip(d_out, info, start, stop, stream)
|
||||
cuda.memcpy_dtoh_async(h_out_a, d_out, stream)
|
||||
util.BaseCode.fill_dptr(self.mod, d_out, 4 * nbins, filt_stream)
|
||||
_sync_stream(filt_stream, write_stream)
|
||||
filt.de(d_out, d_accum, info, start, stop, filt_stream)
|
||||
_sync_stream(write_stream, filt_stream)
|
||||
filt.colorclip(d_out, info, start, stop, filt_stream)
|
||||
cuda.memcpy_dtoh_async(h_out_a, d_out, filt_stream)
|
||||
|
||||
if event_b:
|
||||
while not event_a.query():
|
||||
@ -222,11 +274,10 @@ class Renderer(object):
|
||||
gpu_time = event_a.time_since(event_b)
|
||||
yield RenderedImage(self._trim(h_out_b), last_idx, gpu_time)
|
||||
|
||||
event_a, event_b = cuda.Event().record(stream), event_a
|
||||
event_a, event_b = cuda.Event().record(filt_stream), event_a
|
||||
h_out_a, h_out_b = h_out_b, h_out_a
|
||||
last_idx = idx
|
||||
|
||||
|
||||
while not event_a.query():
|
||||
timemod.sleep(0.001)
|
||||
gpu_time = event_a.time_since(event_b)
|
||||
|
Loading…
Reference in New Issue
Block a user