mirror of
				https://github.com/stevenrobertson/cuburn.git
				synced 2025-11-03 18:00:55 -05:00 
			
		
		
		
	Deferred writeback.
This commit is contained in:
		@ -122,7 +122,6 @@ class IterCode(HunkOCode):
 | 
			
		||||
        bodies = [self._xfbody(i,x) for i,x in sorted(info.genome.xforms.items())]
 | 
			
		||||
        bodies.append(iterbody)
 | 
			
		||||
        self.defs = '\n'.join(bodies)
 | 
			
		||||
        self.decls += self.pix_helpers.substitute(info=info)
 | 
			
		||||
 | 
			
		||||
    decls = """
 | 
			
		||||
// Note: for normalized lookups, uchar4 actually returns floats
 | 
			
		||||
@ -132,78 +131,6 @@ __device__ int rb_head, rb_tail, rb_size;
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
    pix_helpers = Template("""
 | 
			
		||||
__device__
 | 
			
		||||
void read_pix(float4 &pix, float &den) {
 | 
			
		||||
    den = pix.w;
 | 
			
		||||
    {{if info.pal_has_alpha}}
 | 
			
		||||
    read_half(pix.z, pix.w, pix.z, den);
 | 
			
		||||
    {{endif}}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__device__
 | 
			
		||||
void write_pix(float4 &pix, float den) {
 | 
			
		||||
    {{if info.pal_has_alpha}}
 | 
			
		||||
    write_half(pix.z, pix.z, pix.w, den);
 | 
			
		||||
    {{endif}}
 | 
			
		||||
    pix.w = den;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__device__
 | 
			
		||||
void update_pix(uint64_t ptr, uint32_t i, float4 c) {
 | 
			
		||||
    {{if info.pal_has_alpha}}
 | 
			
		||||
    asm volatile ({{crep('''
 | 
			
		||||
    {
 | 
			
		||||
        .reg .u16       sz, sw;
 | 
			
		||||
        .reg .u64       base, off;
 | 
			
		||||
        .reg .f32       x, y, z, w, den, rc, tz, tw;
 | 
			
		||||
 | 
			
		||||
        // TODO: this limits the accumulation buffer to <4GB
 | 
			
		||||
        shl.b32         %0,     %0,     4;
 | 
			
		||||
        cvt.u64.u32     off,    %0;
 | 
			
		||||
        add.u64         base,   %1,     off;
 | 
			
		||||
        ld.cg.v4.f32    {x, y, z, den},         [base];
 | 
			
		||||
        add.f32         x,      x,      %2;
 | 
			
		||||
        add.f32         y,      y,      %3;
 | 
			
		||||
        mov.b32         {sz, sw},       z;
 | 
			
		||||
        cvt.rn.f32.u16  tz,     sz;
 | 
			
		||||
        cvt.rn.f32.u16  tw,     sw;
 | 
			
		||||
        mul.f32         tz,     tz,     den;
 | 
			
		||||
        mul.f32         tw,     tz,     den;
 | 
			
		||||
        fma.f32         tz,     %4,     65535.0,    tz;
 | 
			
		||||
        fma.f32         tw,     %5,     65535.0,    tw;
 | 
			
		||||
        add.f32         den,    1.0;
 | 
			
		||||
        rcp.approx.f32  rc,     den;
 | 
			
		||||
        mul.f32         tz,     tz,     rc;
 | 
			
		||||
        mul.f32         tw,     tw,     rc;
 | 
			
		||||
        cvt.rni.u16.f32 sz,     tz;
 | 
			
		||||
        cvt.rni.u16.f32 sw,     tw;
 | 
			
		||||
        mov.b32         z,      {sz, sw};
 | 
			
		||||
        st.cs.v4.f32    [base], {x, y, z, den};
 | 
			
		||||
    }
 | 
			
		||||
    ''')}} : "+r"(i) : "l"(ptr), "f"(c.x), "f"(c.y), "f"(c.z), "f"(c.w));
 | 
			
		||||
    {{else}}
 | 
			
		||||
    asm volatile ({{crep('''
 | 
			
		||||
    {
 | 
			
		||||
        .reg .u64       base, off;
 | 
			
		||||
        .reg .f32       x, y, z, den;
 | 
			
		||||
 | 
			
		||||
        // TODO: this limits the accumulation buffer to <4GB
 | 
			
		||||
        shl.b32         %0,     %0,     4;
 | 
			
		||||
        cvt.u64.u32     off,    %0;
 | 
			
		||||
        add.u64         base,   %1,     off;
 | 
			
		||||
        ld.cg.v4.f32    {x, y, z, den},         [base];
 | 
			
		||||
        add.f32         x,      x,      %2;
 | 
			
		||||
        add.f32         y,      y,      %3;
 | 
			
		||||
        add.f32         z,      z,      %4;
 | 
			
		||||
        add.f32         den,    den,    1.0;
 | 
			
		||||
        st.cs.v4.f32    [base], {x, y, z, den};
 | 
			
		||||
    }
 | 
			
		||||
    ''')}} : "+r"(i) : "l"(ptr), "f"(c.x), "f"(c.y), "f"(c.z));
 | 
			
		||||
    {{endif}}
 | 
			
		||||
}
 | 
			
		||||
""")
 | 
			
		||||
 | 
			
		||||
    def _xfbody(self, xfid, xform):
 | 
			
		||||
        px = self.pcp.xforms[xfid]
 | 
			
		||||
        tmpl = Template(r"""
 | 
			
		||||
@ -249,19 +176,23 @@ __global__ void reset_rb(int size) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
 | 
			
		||||
          const iter_params *all_params, int nsamps_to_generate) {
 | 
			
		||||
void iter(
 | 
			
		||||
        uint64_t out_ptr,
 | 
			
		||||
        mwc_st *msts,
 | 
			
		||||
        float4 *points,
 | 
			
		||||
        const iter_params *all_params,
 | 
			
		||||
        int nsamps_to_generate
 | 
			
		||||
) {
 | 
			
		||||
    const iter_params *global_params = &(all_params[blockIdx.x]);
 | 
			
		||||
 | 
			
		||||
    __shared__ int nsamps;
 | 
			
		||||
    nsamps = nsamps_to_generate;
 | 
			
		||||
 | 
			
		||||
{{if info.acc_mode != 'deferred'}}
 | 
			
		||||
    __shared__ float time_frac;
 | 
			
		||||
    time_frac = blockIdx.x / (float) gridDim.x;
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
    // load params to shared memory cooperatively
 | 
			
		||||
    for (int i = threadIdx.y * blockDim.x + threadIdx.x;
 | 
			
		||||
         i * 4 < sizeof(iter_params); i += blockDim.x * blockDim.y)
 | 
			
		||||
         i < (sizeof(iter_params) / 4); i += blockDim.x * blockDim.y)
 | 
			
		||||
        reinterpret_cast<float*>(¶ms)[i] =
 | 
			
		||||
            reinterpret_cast<const float*>(global_params)[i];
 | 
			
		||||
 | 
			
		||||
@ -272,9 +203,10 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    int this_rb_idx = rb_idx + threadIdx.x + 32 * threadIdx.y;
 | 
			
		||||
    mwc_st rctx = msts[this_rb_idx];
 | 
			
		||||
 | 
			
		||||
    // TODO: 4th channel unused. Kill or use for something helpful
 | 
			
		||||
    float4 old_point = points[this_rb_idx];
 | 
			
		||||
    float x = old_point.x, y = old_point.y,
 | 
			
		||||
          color = old_point.z, fuse_rounds = old_point.w;
 | 
			
		||||
    float x = old_point.x, y = old_point.y, color = old_point.z;
 | 
			
		||||
 | 
			
		||||
{{if info.chaos_used}}
 | 
			
		||||
    int last_xf_used = 0;
 | 
			
		||||
@ -290,116 +222,139 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
    bool fuse = false;
 | 
			
		||||
 | 
			
		||||
    while (1) {
 | 
			
		||||
        // This condition checks for large numbers, Infs, and NaNs.
 | 
			
		||||
        if (!(-(fabsf(x) + fabsf(y) > -1.0e6f))) {
 | 
			
		||||
            x = mwc_next_11(rctx);
 | 
			
		||||
            y = mwc_next_11(rctx);
 | 
			
		||||
            color = mwc_next_01(rctx);
 | 
			
		||||
            fuse_rounds = {{info.fuse / 32}};
 | 
			
		||||
        }
 | 
			
		||||
    // This condition checks for large numbers, Infs, and NaNs.
 | 
			
		||||
    if (!(-(fabsf(x) + fabsf(y)) > -1.0e6f)) {
 | 
			
		||||
        x = mwc_next_11(rctx);
 | 
			
		||||
        y = mwc_next_11(rctx);
 | 
			
		||||
        color = mwc_next_01(rctx);
 | 
			
		||||
        fuse = true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
        // 32 rounds is somewhat arbitrary, but it has a pleasing 32-ness
 | 
			
		||||
        for (int i = 0; i < 32; i++) {
 | 
			
		||||
    // TODO: link up with FUSE, etc
 | 
			
		||||
    for (int round = 0; round < 256; round++) {
 | 
			
		||||
 | 
			
		||||
{{if info.chaos_used}}
 | 
			
		||||
 | 
			
		||||
            {{precalc_chaos(pcp, std_xforms)}}
 | 
			
		||||
        {{precalc_chaos(pcp, std_xforms)}}
 | 
			
		||||
 | 
			
		||||
            // For now, we don't attempt to use the swap buffer when chaos is used
 | 
			
		||||
            float xfsel = mwc_next_01(rctx);
 | 
			
		||||
        // For now, we don't attempt to use the swap buffer when chaos is used
 | 
			
		||||
        float xfsel = mwc_next_01(rctx);
 | 
			
		||||
 | 
			
		||||
            {{for prior_xform_idx, prior_xform_name in enumerate(std_xforms)}}
 | 
			
		||||
            if (last_xf_used == {{prior_xform_idx}}) {
 | 
			
		||||
                {{for xform_idx, xform_name in enumerate(std_xforms[:-1])}}
 | 
			
		||||
                if (xfsel <= {{pcp['chaos_'+prior_xform_name+'_'+xform_name]}}) {
 | 
			
		||||
                    apply_xf_{{xform_name}}(x, y, color, rctx);
 | 
			
		||||
                    last_xf_used = {{xform_idx}};
 | 
			
		||||
                } else
 | 
			
		||||
                {{endfor}}
 | 
			
		||||
                {
 | 
			
		||||
                    apply_xf_{{std_xforms[-1]}}(x, y, color, rctx);
 | 
			
		||||
                    last_xf_used = {{len(std_xforms)-1}};
 | 
			
		||||
                }
 | 
			
		||||
        {{for prior_xform_idx, prior_xform_name in enumerate(std_xforms)}}
 | 
			
		||||
        if (last_xf_used == {{prior_xform_idx}}) {
 | 
			
		||||
            {{for xform_idx, xform_name in enumerate(std_xforms[:-1])}}
 | 
			
		||||
            if (xfsel <= {{pcp['chaos_'+prior_xform_name+'_'+xform_name]}}) {
 | 
			
		||||
                apply_xf_{{xform_name}}(x, y, color, rctx);
 | 
			
		||||
                last_xf_used = {{xform_idx}};
 | 
			
		||||
            } else
 | 
			
		||||
            {{endfor}}
 | 
			
		||||
            {
 | 
			
		||||
                printf("Something went *very* wrong.\n");
 | 
			
		||||
                asm("trap;");
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
{{else}}
 | 
			
		||||
            {{precalc_densities(pcp, std_xforms)}}
 | 
			
		||||
            float xfsel = cosel[threadIdx.y];
 | 
			
		||||
 | 
			
		||||
            {{for xform_name in std_xforms[:-1]}}
 | 
			
		||||
            if (xfsel <= {{pcp['den_'+xform_name]}}) {
 | 
			
		||||
                apply_xf_{{xform_name}}(x, y, color, rctx);
 | 
			
		||||
            } else
 | 
			
		||||
            {{endfor}}
 | 
			
		||||
                apply_xf_{{std_xforms[-1]}}(x, y, color, rctx);
 | 
			
		||||
 | 
			
		||||
            int sw = (threadIdx.y * 32 + threadIdx.x * 33) & {{NTHREADS-1}};
 | 
			
		||||
            int sr = threadIdx.y * 32 + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
            swap[sw] = fuse_rounds;
 | 
			
		||||
            swap[sw+{{NTHREADS}}] = x;
 | 
			
		||||
            swap[sw+{{2*NTHREADS}}] = y;
 | 
			
		||||
            swap[sw+{{3*NTHREADS}}] = color;
 | 
			
		||||
            __syncthreads();
 | 
			
		||||
 | 
			
		||||
            // We select the next xforms here, since we've just synced.
 | 
			
		||||
            if (threadIdx.y == 0 && threadIdx.x < {{NWARPS}})
 | 
			
		||||
                cosel[threadIdx.x] = mwc_next_01(rctx);
 | 
			
		||||
 | 
			
		||||
            fuse_rounds = swap[sr];
 | 
			
		||||
            x = swap[sr+{{NTHREADS}}];
 | 
			
		||||
            y = swap[sr+{{2*NTHREADS}}];
 | 
			
		||||
            color = swap[sr+{{3*NTHREADS}}];
 | 
			
		||||
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
            if (fuse_rounds > 0.0f) continue;
 | 
			
		||||
 | 
			
		||||
{{if 'final' in cp.xforms}}
 | 
			
		||||
            float fx = x, fy = y, fcolor = color;
 | 
			
		||||
            apply_xf_final(fx, fy, fcolor, rctx);
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
            float cx, cy, cc;
 | 
			
		||||
 | 
			
		||||
            {{precalc_camera(info, pcp.camera)}}
 | 
			
		||||
 | 
			
		||||
{{if 'final' in cp.xforms}}
 | 
			
		||||
            {{apply_affine('fx', 'fy', 'cx', 'cy', pcp.camera)}}
 | 
			
		||||
            cc = fcolor;
 | 
			
		||||
{{else}}
 | 
			
		||||
            {{apply_affine('x', 'y', 'cx', 'cy', pcp.camera)}}
 | 
			
		||||
            cc = color;
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
            uint32_t ix = trunca(cx), iy = trunca(cy);
 | 
			
		||||
 | 
			
		||||
            if (ix >= {{info.acc_width}} || iy >= {{info.acc_height}})
 | 
			
		||||
                continue;
 | 
			
		||||
 | 
			
		||||
            uint32_t i = iy * {{info.acc_stride}} + ix;
 | 
			
		||||
 | 
			
		||||
            float4 outcol = tex2D(palTex, cc, time_frac);
 | 
			
		||||
            update_pix(accbuf_ptr, i, outcol);
 | 
			
		||||
                last_xf_used = {{len(std_xforms)-1}};
 | 
			
		||||
            }
 | 
			
		||||
        } else
 | 
			
		||||
        {{endfor}}
 | 
			
		||||
        {
 | 
			
		||||
            printf("Something went *very* wrong.\n");
 | 
			
		||||
            asm("trap;");
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        int num_okay = __popc(__ballot(fuse_rounds == 0.0f));
 | 
			
		||||
        // Some xforms give so many badvals that a thread is almost guaranteed
 | 
			
		||||
        // to hit another badval before the fuse is over, causing the card to
 | 
			
		||||
        // spin forever. To avoid this, we count a fuse round as 1/4 of a
 | 
			
		||||
        // sample below.
 | 
			
		||||
        if (threadIdx.x == 0) atomicSub(&nsamps, 256 + num_okay * 24);
 | 
			
		||||
        fuse_rounds = fmaxf(0.0f, fuse_rounds - 1.0f);
 | 
			
		||||
{{else}}
 | 
			
		||||
        {{precalc_densities(pcp, std_xforms)}}
 | 
			
		||||
        float xfsel = cosel[threadIdx.y];
 | 
			
		||||
 | 
			
		||||
        {{for xform_name in std_xforms[:-1]}}
 | 
			
		||||
        if (xfsel <= {{pcp['den_'+xform_name]}}) {
 | 
			
		||||
            apply_xf_{{xform_name}}(x, y, color, rctx);
 | 
			
		||||
        } else
 | 
			
		||||
        {{endfor}}
 | 
			
		||||
            apply_xf_{{std_xforms[-1]}}(x, y, color, rctx);
 | 
			
		||||
 | 
			
		||||
        int sw = (threadIdx.y * 32 + threadIdx.x * 33) & {{NTHREADS-1}};
 | 
			
		||||
        int sr = threadIdx.y * 32 + threadIdx.x;
 | 
			
		||||
 | 
			
		||||
        swap[sw] = fuse ? 1.0f : 0.0f;
 | 
			
		||||
        swap[sw+{{NTHREADS}}] = x;
 | 
			
		||||
        swap[sw+{{2*NTHREADS}}] = y;
 | 
			
		||||
        swap[sw+{{3*NTHREADS}}] = color;
 | 
			
		||||
        __syncthreads();
 | 
			
		||||
        if (nsamps <= 0) break;
 | 
			
		||||
 | 
			
		||||
        // We select the next xforms here, since we've just synced.
 | 
			
		||||
        if (threadIdx.y == 0 && threadIdx.x < {{NWARPS}})
 | 
			
		||||
            cosel[threadIdx.x] = mwc_next_01(rctx);
 | 
			
		||||
 | 
			
		||||
        fuse = swap[sr];
 | 
			
		||||
        x = swap[sr+{{NTHREADS}}];
 | 
			
		||||
        y = swap[sr+{{2*NTHREADS}}];
 | 
			
		||||
        color = swap[sr+{{3*NTHREADS}}];
 | 
			
		||||
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
{{if info.acc_mode == 'deferred'}}
 | 
			
		||||
        int tid = threadIdx.y * 32 + threadIdx.x;
 | 
			
		||||
        int offset = 4 * (256 * (256 * blockIdx.x + round) + tid);
 | 
			
		||||
        int *log = reinterpret_cast<int*>(out_ptr + offset);
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
        if (fuse) {
 | 
			
		||||
{{if info.acc_mode == 'deferred'}}
 | 
			
		||||
            *log = 0xffffffff;
 | 
			
		||||
{{endif}}
 | 
			
		||||
            continue;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
{{if 'final' in cp.xforms}}
 | 
			
		||||
        float fx = x, fy = y, fcolor = color;
 | 
			
		||||
        apply_xf_final(fx, fy, fcolor, rctx);
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
        float cx, cy, cc;
 | 
			
		||||
 | 
			
		||||
        {{precalc_camera(info, pcp.camera)}}
 | 
			
		||||
 | 
			
		||||
{{if 'final' in cp.xforms}}
 | 
			
		||||
        {{apply_affine('fx', 'fy', 'cx', 'cy', pcp.camera)}}
 | 
			
		||||
        cc = fcolor;
 | 
			
		||||
{{else}}
 | 
			
		||||
        {{apply_affine('x', 'y', 'cx', 'cy', pcp.camera)}}
 | 
			
		||||
        cc = color;
 | 
			
		||||
{{endif}}
 | 
			
		||||
 | 
			
		||||
        uint32_t ix = trunca(cx), iy = trunca(cy);
 | 
			
		||||
 | 
			
		||||
        if (ix >= {{info.acc_width}} || iy >= {{info.acc_height}}) {
 | 
			
		||||
{{if info.acc_mode == 'deferred'}}
 | 
			
		||||
            *log = 0xffffffff;
 | 
			
		||||
{{endif}}
 | 
			
		||||
            continue;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        uint32_t i = iy * {{info.acc_stride}} + ix;
 | 
			
		||||
 | 
			
		||||
{{if info.acc_mode == 'atomic'}}
 | 
			
		||||
        float4 outcol = tex2D(palTex, cc, time_frac);
 | 
			
		||||
        float *accbuf_f = reinterpret_cast<float*>(out_ptr + (16*i));
 | 
			
		||||
        atomicAdd(accbuf_f,   outcol.x);
 | 
			
		||||
        atomicAdd(accbuf_f+1, outcol.y);
 | 
			
		||||
        atomicAdd(accbuf_f+2, outcol.z);
 | 
			
		||||
        atomicAdd(accbuf_f+3, 1.0f);
 | 
			
		||||
{{elif info.acc_mode == 'global'}}
 | 
			
		||||
        float4 outcol = tex2D(palTex, cc, time_frac);
 | 
			
		||||
        float4 *accbuf = reinterpret_cast<float4*>(out_ptr + (16*i));
 | 
			
		||||
        float4 pix = *accbuf;
 | 
			
		||||
        pix.x += outcol.x;
 | 
			
		||||
        pix.y += outcol.y;
 | 
			
		||||
        pix.z += outcol.z;
 | 
			
		||||
        pix.w += 1.0f;
 | 
			
		||||
        *accbuf = pix;
 | 
			
		||||
{{elif info.acc_mode == 'deferred'}}
 | 
			
		||||
        // 'color' gets the top 9 bits. TODO: add dithering via precalc.
 | 
			
		||||
        uint32_t icolor = cc * 512.0f;
 | 
			
		||||
        asm("bfi.b32    %0, %1, %0, 23, 9;" : "+r"(i) : "r"(icolor));
 | 
			
		||||
        *log = i;
 | 
			
		||||
{{endif}}
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (threadIdx.x == 0 && threadIdx.y == 0)
 | 
			
		||||
@ -407,10 +362,140 @@ void iter(uint64_t accbuf_ptr, mwc_st *msts, float4 *points,
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    this_rb_idx = rb_idx + threadIdx.x + 32 * threadIdx.y;
 | 
			
		||||
 | 
			
		||||
    points[this_rb_idx] = make_float4(x, y, color, fuse_rounds);
 | 
			
		||||
    points[this_rb_idx] = make_float4(x, y, color, 0.0f);
 | 
			
		||||
    msts[this_rb_idx] = rctx;
 | 
			
		||||
    return;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Block size, shared accumulation bits, shared accumulation width.
 | 
			
		||||
#define BS 1024
 | 
			
		||||
#define SHAB 12
 | 
			
		||||
#define SHAW (1<<SHAB)
 | 
			
		||||
 | 
			
		||||
// These two accumulators, used in write_shmem, hold {density, red} and
 | 
			
		||||
// {green, blue} values as packed u16 pairs. The fixed size represents 4,096
 | 
			
		||||
// pixels in the accumulator.
 | 
			
		||||
__shared__ uint32_t s_acc_dr[SHAW];
 | 
			
		||||
__shared__ uint32_t s_acc_gb[SHAW];
 | 
			
		||||
 | 
			
		||||
// Read from the shm accumulators and write to the global ones.
 | 
			
		||||
__device__
 | 
			
		||||
void write_shmem_helper(
 | 
			
		||||
        float4 *acc,
 | 
			
		||||
        const int glo_base,
 | 
			
		||||
        const int idx
 | 
			
		||||
) {
 | 
			
		||||
    float4 pix = acc[glo_base+idx];
 | 
			
		||||
    uint32_t dr = s_acc_dr[idx];
 | 
			
		||||
    pix.x += (dr & 0xffff) / 255.0f;
 | 
			
		||||
    pix.w += dr >> 16;
 | 
			
		||||
    uint32_t gb = s_acc_gb[idx];
 | 
			
		||||
    pix.y += (gb & 0xffff) / 255.0f;
 | 
			
		||||
    pix.z += (gb >> 16) / 255.0f;
 | 
			
		||||
    acc[glo_base+idx] = pix;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Read the point log, accumulate in shared memory, and write the results.
 | 
			
		||||
// This kernel is to be launched with one block for every 4,096 addresses to
 | 
			
		||||
// be processed, and will handle those addresses.
 | 
			
		||||
//
 | 
			
		||||
// log_bounds is an array mapping radix values to the first index in the log
 | 
			
		||||
// with that radix position. For performance reasons in other parts of the
 | 
			
		||||
// code, the radix may actually include bits within the lower SHAB part of the
 | 
			
		||||
// address, or it might not cover the first few bits after the SHAB part;
 | 
			
		||||
// log_bounds_shift covers that. glob_addr_bits specifies the number of bits
 | 
			
		||||
// above SHAB which are address bits.
 | 
			
		||||
 | 
			
		||||
__global__ void
 | 
			
		||||
__launch_bounds__(BS, 1)
 | 
			
		||||
write_shmem(
 | 
			
		||||
        float4 *acc,
 | 
			
		||||
        const uint32_t *log,
 | 
			
		||||
        const uint32_t *log_bounds,
 | 
			
		||||
        const int log_bounds_shift
 | 
			
		||||
) {
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int bid = blockIdx.x;
 | 
			
		||||
 | 
			
		||||
    // TODO: doesn't respect SHAW/BS
 | 
			
		||||
    // TODO: compare generated code with unrolled for-loop
 | 
			
		||||
    s_acc_dr[tid] = 0;
 | 
			
		||||
    s_acc_gb[tid] = 0;
 | 
			
		||||
    s_acc_dr[tid+BS] = 0;
 | 
			
		||||
    s_acc_gb[tid+BS] = 0;
 | 
			
		||||
    s_acc_dr[tid+2*BS] = 0;
 | 
			
		||||
    s_acc_gb[tid+2*BS] = 0;
 | 
			
		||||
    s_acc_dr[tid+3*BS] = 0;
 | 
			
		||||
    s_acc_gb[tid+3*BS] = 0;
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    // TODO: share across threads - discernable performance impact?
 | 
			
		||||
    int lb_idx_lo, lb_idx_hi;
 | 
			
		||||
    if (log_bounds_shift > 0) {
 | 
			
		||||
        lb_idx_hi = ((bid + 1) << log_bounds_shift) - 1;
 | 
			
		||||
        lb_idx_lo = (bid << log_bounds_shift) - 1;
 | 
			
		||||
    } else {
 | 
			
		||||
        lb_idx_hi = bid >> (-log_bounds_shift);
 | 
			
		||||
        lb_idx_lo = lb_idx_hi - 1;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    int idx_lo, idx_hi;
 | 
			
		||||
    if (lb_idx_lo < 0) idx_lo = 0;
 | 
			
		||||
    else idx_lo = log_bounds[lb_idx_lo] & ~(BS-1);
 | 
			
		||||
    idx_hi = (log_bounds[lb_idx_hi] & ~(BS - 1)) + BS;
 | 
			
		||||
 | 
			
		||||
    float rnrounds = 1.0f / (idx_hi - idx_lo);
 | 
			
		||||
    float time = tid * rnrounds;
 | 
			
		||||
    float time_step = BS * rnrounds;
 | 
			
		||||
 | 
			
		||||
    int glo_base = bid << SHAB;
 | 
			
		||||
 | 
			
		||||
    for (int i = idx_lo + tid; i < idx_hi; i += BS) {
 | 
			
		||||
        int entry = log[i];
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        // TODO: constant '11' is really just 32 - 9 - SHAB, where 9 is the
 | 
			
		||||
        // number of bits assigned to color. This ignores opacity.
 | 
			
		||||
        bfe_decl(glob_addr, entry, SHAB, 11);
 | 
			
		||||
        if (glob_addr != bid) continue;
 | 
			
		||||
 | 
			
		||||
        bfe_decl(shr_addr, entry, 0, SHAB);
 | 
			
		||||
        bfe_decl(color, entry, 23, 9);
 | 
			
		||||
 | 
			
		||||
        float colorf = color / 512.0f;
 | 
			
		||||
        float4 outcol = tex2D(palTex, colorf, time);
 | 
			
		||||
 | 
			
		||||
        // TODO: change texture sampler to return shorts and avoid this
 | 
			
		||||
        uint32_t r = 255.0f * outcol.x;
 | 
			
		||||
        uint32_t g = 255.0f * outcol.y;
 | 
			
		||||
        uint32_t b = 255.0f * outcol.z;
 | 
			
		||||
 | 
			
		||||
        uint32_t dr = atomicAdd(s_acc_dr + shr_addr, r + 0x10000);
 | 
			
		||||
        uint32_t gb = atomicAdd(s_acc_gb + shr_addr, g + (b << 16));
 | 
			
		||||
        uint32_t d = dr >> 16;
 | 
			
		||||
 | 
			
		||||
        // Neat trick: if overflow is about to happen, write the accumulator,
 | 
			
		||||
        // and subtract the last known values from the accumulator again.
 | 
			
		||||
        // Even if the ints end up wrapping around once before the subtraction
 | 
			
		||||
        // can occur, the results after the subtraction will be correct.
 | 
			
		||||
        // (Wrapping twice will mess up the intermediate write, but is pretty
 | 
			
		||||
        // unlikely.)
 | 
			
		||||
        if (d == 250) {
 | 
			
		||||
            atomicSub(s_acc_dr + shr_addr, dr);
 | 
			
		||||
            atomicSub(s_acc_gb + shr_addr, gb);
 | 
			
		||||
            write_shmem_helper(acc, glo_base, shr_addr);
 | 
			
		||||
        }
 | 
			
		||||
        time += time_step;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    int idx = tid;
 | 
			
		||||
    for (int i = 0; i < (SHAW / BS); i++) {
 | 
			
		||||
        write_shmem_helper(acc, glo_base, idx);
 | 
			
		||||
        idx += BS;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
''')
 | 
			
		||||
        return tmpl.substitute(
 | 
			
		||||
                info = self.info,
 | 
			
		||||
 | 
			
		||||
@ -71,6 +71,13 @@ float3 hsv2rgb(float3 hsv);
 | 
			
		||||
#define  M_SQRT2      1.41421353816986f
 | 
			
		||||
#define  M_SQRT1_2    0.70710676908493f
 | 
			
		||||
 | 
			
		||||
#define bfe(d, s, o, w) \
 | 
			
		||||
        asm("bfe.u32 %0, %1, %2, %3;" : "=r"(d) : "r"(s), "r"(o), "r"(w))
 | 
			
		||||
 | 
			
		||||
#define bfe_decl(d, s, o, w) \
 | 
			
		||||
        int d; \
 | 
			
		||||
        bfe(d, s, o, w)
 | 
			
		||||
 | 
			
		||||
// TODO: use launch parameter preconfig to eliminate unnecessary parts
 | 
			
		||||
__device__
 | 
			
		||||
uint32_t gtid() {
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user