Simultaneous occupancy microbenchmark

This commit is contained in:
Steven Robertson 2010-09-12 16:23:24 -04:00
parent 3e4e1d88a2
commit d01de61952

105
bench.py
View File

@ -104,9 +104,11 @@ class L2WriteCombining(PTXTest):
op.setp.ge.u32(p_done, x, 2) op.setp.ge.u32(p_done, x, 2)
op.bra.uni(l2_restart, ifnotp=p_done) op.bra.uni(l2_restart, ifnotp=p_done)
def call_setup(self, ctx):
self.scratch = np.zeros(self.block_size*ctx.nctas/4, np.uint64)
self.times_bytes = np.zeros((4, ctx.nthreads), np.uint64, 'F')
def _call(self, ctx, func): def _call(self, ctx, func):
self.scratch = np.zeros(self.block_size*ctx.ctas/4, np.uint64)
self.times_bytes = np.zeros((4, ctx.threads), np.uint64, 'F')
super(L2WriteCombining, self)._call(ctx, func, super(L2WriteCombining, self)._call(ctx, func,
cuda.InOut(self.times_bytes), cuda.InOut(self.scratch)) cuda.InOut(self.times_bytes), cuda.InOut(self.scratch))
@ -118,6 +120,102 @@ class L2WriteCombining(PTXTest):
print "Bytes for uncoa was %g ± %g" % pm(self.times_bytes[3]) print "Bytes for uncoa was %g ± %g" % pm(self.times_bytes[3])
print print
class SimulOccupancy(PTXTest):
"""
Test to discover whether Fermi GPUs will launch multiple entry points
in the same kernel on the same CTA simultaneously.
"""
entry_name = 'simul1'
# Only has to be big enough to hold the kernel on the device for a while
rounds = 1000000
def deps(self):
return [MWCRNG]
@ptx_func
def module_setup(self):
n = self.entry_name + '_'
mem.global_.u64(n+'start', ctx.nthreads)
mem.global_.u64(n+'end', ctx.nthreads)
mem.global_.u32(n+'smid', ctx.nthreads)
mem.global_.u32(n+'warpid_start', ctx.nthreads)
mem.global_.u32(n+'warpid_end', ctx.nthreads)
@ptx_func
def entry(self):
n = self.entry_name + '_'
reg.u64('now')
reg.u32('warpid')
op.mov.u64(now, '%clock64')
op.mov.u32(warpid, '%warpid')
std.store_per_thread(n+'start', now,
n+'warpid_start', warpid)
reg.u32('loopct rnd')
reg.pred('p_done')
op.mov.u32(loopct, self.rounds)
label('loopstart')
mwc.next_b32(rnd)
std.store_per_thread(n+'smid', rnd)
op.sub.u32(loopct, loopct, 1)
op.setp.eq.u32(p_done, loopct, 0)
op.bra.uni(loopstart, ifnotp=p_done)
reg.u32('smid')
op.mov.u32(smid, '%smid')
op.mov.u32(warpid, '%warpid')
op.mov.u64(now, '%clock64')
std.store_per_thread(n+'end', now,
n+'smid', smid,
n+'warpid_end', warpid)
def _call(self, ctx, func):
stream1, stream2 = cuda.Stream(), cuda.Stream()
self._call2(ctx, stream1)
_SimulOccupancy._call2(ctx, stream2)
stream2.synchronize()
stream1.synchronize()
@instmethod
def _call2(self, ctx, stream):
func = ctx.mod.get_function(self.entry_name)
func.prepare([], ctx.block)
# TODO: load number of SMs from ctx
func.launch_grid_async(7, 1, stream)
def call_teardown(self, ctx):
sm_log = [[] for i in range(7)]
self._teardown(ctx, sm_log)
_SimulOccupancy._teardown(ctx, sm_log)
for sm in range(len(sm_log)):
print "\nPrinting log for SM %d" % sm
for t, ev in sorted(sm_log[sm]):
print '%6d %s' % (t/1000, ev)
@instmethod
def _teardown(self, ctx, sm_log):
# For this method, the GPU is intentionally underloaded; trim results
th = 7 * ctx.threads_per_cta
n = self.entry_name + '_'
start = ctx.get_per_thread(n+'start', np.uint64)[:th]
end = ctx.get_per_thread(n+'end', np.uint64)[:th]
smid = ctx.get_per_thread(n+'smid', np.uint32)[:th]
warpid_start = ctx.get_per_thread(n+'warpid_start', np.uint32)[:th]
warpid_end = ctx.get_per_thread(n+'warpid_end', np.uint32)[:th]
for i in range(0, th, 32):
sm_log[smid[i]].append((start[i], "%s%4d entered SM" % (n, i/32)))
sm_log[smid[i]].append((end[i], "%s%4d left SM" % (n, i/32)))
if not np.alltrue(np.equal(warpid_start, warpid_end)):
print "Warp IDs changed. Do further research."
class _SimulOccupancy(SimulOccupancy):
# Don't call this one
entry_name = 'simul2'
def call(self, ctx):
pass
def call_teardown(self, ctx):
pass
def printover(a, r, s=1): def printover(a, r, s=1):
for i in range(0, len(a), r*s): for i in range(0, len(a), r*s):
for j in range(i, i+r*s, s): for j in range(i, i+r*s, s):
@ -126,10 +224,11 @@ def printover(a, r, s=1):
def main(): def main():
# TODO: block/grid auto-optimization # TODO: block/grid auto-optimization
ctx = LaunchContext([L2WriteCombining, MWCRNGTest], ctx = LaunchContext([L2WriteCombining, SimulOccupancy, _SimulOccupancy],
block=(128,1,1), grid=(7*8,1), tests=True) block=(128,1,1), grid=(7*8,1), tests=True)
ctx.compile(verbose=3) ctx.compile(verbose=3)
ctx.run_tests() ctx.run_tests()
SimulOccupancy.call(ctx)
L2WriteCombining.call(ctx) L2WriteCombining.call(ctx)
if __name__ == "__main__": if __name__ == "__main__":