A very fast key-only radix sort.

This commit is contained in:
Steven Robertson 2011-11-07 23:23:20 -05:00
parent 7815c13ba4
commit cea91d75bf

322
cuburn/code/sort.py Normal file
View File

@ -0,0 +1,322 @@
import numpy as np
import pycuda.driver as cuda
import pycuda.compiler
import tempita
_CODE = tempita.Template(r"""
#include <cuda.h>
#include <stdio.h>
#define GRP_RDX_FACTOR (GRPSZ / RDXSZ)
#define GRP_BLK_FACTOR (GRPSZ / BLKSZ)
#define GRPSZ {{group_size}}
#define RDXSZ {{radix_size}}
#define BLKSZ 512
// TODO: experiment with different block / group sizes
__global__
void prefix_scan_8_0(
int *offsets,
int *pfxs,
const unsigned int *keys
) {
const int tid = threadIdx.x;
__shared__ int shr_pfxs[RDXSZ];
if (tid < RDXSZ) shr_pfxs[tid] = 0;
__syncthreads();
int i = tid + GRPSZ * blockIdx.x;
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
// TODO: load 2 at once, compute, use a BFI to pack the two offsets
// into an int to halve storage / bandwidth
// TODO: separate or integrated loop vars? unrolling?
int radix = keys[i] & 0xff;
offsets[i] = atomicAdd(shr_pfxs + radix, 1);
i += BLKSZ;
}
__syncthreads();
if (tid < RDXSZ) pfxs[tid + RDXSZ * blockIdx.x] = shr_pfxs[tid];
}
// Calculate group-local exclusive prefix sums (the number of keys in the
// current group with a strictly smaller radix). Must be launched in a
// (32,1,1) block, regardless of block or radix size.
__global__
void calc_local_pfxs(
int *locals,
const int *pfxs
) {
const int tid = threadIdx.x;
const int tid5 = tid << 5;
__shared__ int swap[32*32];
int base = RDXSZ * 32 * blockIdx.x;
int value = 0;
// The contents of 32 group radix counts are loaded in 32-element chunks
// into shared memory, rotated by 1 unit each group to avoid bank
// conflicts. Each thread in the warp sums across each group serially,
// updating the values as it goes, then the results are written coherently
// to global memory.
//
// This leaves the SM underloaded, as this only allows 12 warps per SM. It
// might be better to halve the chunk size and lose some coalescing
// efficiency; need to benchmark. It's a relatively cheap step, though.
for (int j = 0; j < 8; j++) {
int jj = j << 5;
for (int i = 0; i < 32; i++) {
int base_offset = (i << 8) + jj + base + tid;
int swap_offset = (i << 5) + ((i + tid) & 0x1f);
swap[swap_offset] = pfxs[base_offset];
}
#pragma unroll
for (int i = 0; i < 32; i++) {
int swap_offset = tid5 + ((i + tid) & 0x1f);
int tmp = swap[swap_offset];
swap[swap_offset] = value;
value += tmp;
}
for (int i = 0; i < 32; i++) {
int base_offset = (i << 8) + jj + base + tid;
int swap_offset = (i << 5) + ((i + tid) & 0x1f);
locals[base_offset] = swap[swap_offset];
}
}
}
// All three prefix_sum functions must be called with a block of (RDXSZ, 1, 1).
// Take the prefix scans generated in the first pass and sum them
// vertically (by radix value), sharded into horizontal groups. Store the
// sums by shard and radix in 'condensed'.
__global__
void prefix_sum_condense(
int *condensed,
const int *pfxs,
const int ngrps,
const int grpwidth
) {
const int tid = threadIdx.x;
int sum = 0;
int idx = grpwidth * blockIdx.x * RDXSZ + tid;
int maxidx = min(grpwidth * (blockIdx.x + 1), ngrps) * RDXSZ;
for (; idx < maxidx; idx += RDXSZ) sum += pfxs[idx];
condensed[blockIdx.x * RDXSZ + tid] = sum;
}
// Sum the partially-condensed sums completely. Scan the sums horizontally.
// Distribute the scanned sums back to the partially-condensed sums.
__global__
void prefix_sum_inner(
int *glob_pfxs,
int *condensed, // input and output
const int ncondensed
) {
const int tid = threadIdx.x;
int sum = 0;
int idx = tid;
__shared__ int sums[RDXSZ];
for (int i = 0; i < ncondensed; i++) {
sum += condensed[idx];
idx += RDXSZ;
}
// Yeah, the entire device will be stalled on this horribly ineffecient
// computation, but it only happens once per sort
sums[tid] = sum;
__syncthreads();
sum = 0;
// Intentionally exclusive indexing here
for (int i = 0; i < tid; i++) sum += sums[i];
__syncthreads();
sums[tid] = glob_pfxs[tid] = sum;
idx = tid;
for (int i = 0; i < ncondensed; i++) {
int c = condensed[idx];
condensed[idx] = sum;
sum += c;
idx += RDXSZ;
}
}
// Distribute the partially-condensed sums back to the uncondensed sums.
__global__
void prefix_sum_distribute(
int *pfxs, // input and output
const int *condensed,
const int ngrps,
const int grpwidth
) {
const int tid = threadIdx.x;
int sum = condensed[blockIdx.x * RDXSZ + tid];
int idx = grpwidth * blockIdx.x * RDXSZ + tid;
int maxidx = min(grpwidth * (blockIdx.x + 1), ngrps) * RDXSZ;
for (; idx < maxidx; idx += RDXSZ) {
int p = pfxs[idx];
pfxs[idx] = sum;
sum += p;
}
}
__global__
void radix_sort_direct(
int *sorted_keys,
const int *keys,
const int *offsets,
const int *pfxs
) {
const int tid = threadIdx.x;
const int blk_offset = GRPSZ * blockIdx.x;
int i = tid;
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int value = keys[i+blk_offset];
int offset = offsets[i+blk_offset];
sorted_keys[offset] = value;
i += BLKSZ;
}
}
#undef BLKSZ
#define BLKSZ 1024
__global__
void radix_sort(
int *sorted_keys,
const int *keys,
const int *offsets,
const int *pfxs,
const int *locals
) {
const int tid = threadIdx.x;
const int blk_offset = GRPSZ * blockIdx.x;
__shared__ int shr_offs[RDXSZ];
__shared__ int defer[GRPSZ];
const int pfx_i = RDXSZ * blockIdx.x + tid;
if (tid < RDXSZ) shr_offs[tid] = locals[pfx_i];
__syncthreads();
for (int i = tid; i < GRPSZ; i += BLKSZ) {
int key = keys[i+blk_offset];
int radix = key & 0xff;
int offset = offsets[i+blk_offset] + shr_offs[radix];
defer[offset] = key;
}
__syncthreads();
if (tid < RDXSZ) shr_offs[tid] = pfxs[pfx_i] - shr_offs[tid];
__syncthreads();
int i = tid;
#pragma unroll
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int key = defer[i];
int radix = key & 0xff;
int offset = shr_offs[radix] + i;
sorted_keys[offset] = key;
i += BLKSZ;
}
}
""")
class Sorter(object):
mod = None
group_size = 8192
radix_size = 256
@classmethod
def init_mod(cls):
if cls.mod is None:
code = _CODE.substitute(group_size=cls.group_size,
radix_size=cls.radix_size)
cls.mod = pycuda.compiler.SourceModule(code)
for name in ['prefix_scan_8_0', 'prefix_sum_condense',
'prefix_sum_inner', 'prefix_sum_distribute']:
f = cls.mod.get_function(name)
setattr(cls, name, f)
f.set_cache_config(cuda.func_cache.PREFER_L1)
cls.calc_local_pfxs = cls.mod.get_function('calc_local_pfxs')
cls.radix_sort = cls.mod.get_function('radix_sort')
def __init__(self, size, dst=None):
self.init_mod()
assert size % self.group_size == 0, 'bad multiple'
if dst is None:
dst = cuda.mem_alloc(size * 4)
self.size, self.dst = size, dst
self.doffsets = cuda.mem_alloc(self.size * 4)
self.grids = self.size / self.group_size
self.dpfxs = cuda.mem_alloc(self.grids * self.radix_size * 4)
self.dlocals = cuda.mem_alloc(self.grids * self.radix_size * 4)
# There are probably better ways to choose how many condensation
# groups to launch. TODO: maybe pick one if I care
self.ncond = 32
self.dcond = cuda.mem_alloc(self.radix_size * self.ncond * 4)
self.dglobal = cuda.mem_alloc(self.radix_size * 4)
def sort(self, src, stream=None):
self.prefix_scan_8_0(self.doffsets, self.dpfxs, src,
block=(512, 1, 1), grid=(self.grids, 1), stream=stream)
self.calc_local_pfxs(self.dlocals, self.dpfxs,
block=(32, 1, 1), grid=(self.grids / 32, 1), stream=stream)
ngrps = np.int32(self.grids)
grpwidth = np.int32(np.ceil(float(self.grids) / self.ncond))
self.prefix_sum_condense(self.dcond, self.dpfxs, ngrps, grpwidth,
block=(self.radix_size, 1, 1), grid=(self.ncond, 1), stream=stream)
self.prefix_sum_inner(self.dglobal, self.dcond, np.int32(self.ncond),
block=(self.radix_size, 1, 1), grid=(1, 1), stream=stream)
self.prefix_sum_distribute(self.dpfxs, self.dcond, ngrps, grpwidth,
block=(self.radix_size, 1, 1), grid=(self.ncond, 1), stream=stream)
self.radix_sort(self.dst, src, self.doffsets, self.dpfxs, self.dlocals,
block=(1024, 1, 1), grid=(self.grids, 1), stream=stream)
if __name__ == "__main__":
import pycuda.autoinit
np.set_printoptions(precision=5, edgeitems=20,
linewidth=100, threshold=90)
count = 1 << 26
keys = np.uint32(np.fromstring(np.random.bytes(count), dtype=np.uint8))
dkeys = cuda.to_device(keys)
sorter = Sorter(count)
print 'Testing speed'
stream = cuda.Stream()
for i in range(10):
evt_a = cuda.Event().record(stream)
sorter.sort(dkeys, stream)
evt_b = cuda.Event().record(stream)
evt_b.synchronize()
dur = evt_b.time_since(evt_a)
print 'Overall time: %g secs (%g 8-bit keys/sec)' % (
dur / 1000., 1000 * count / dur)
print 'Testing correctness'
out = cuda.from_device(sorter.dst, (count,), np.uint32)
sort = np.sort(keys)
print 'Sorted correctly?', np.all(out == sort)