Make dist worker work with pipelining

This commit is contained in:
Steven Robertson 2012-07-04 23:54:22 -07:00
parent a866d058fe
commit bb852ff255
2 changed files with 59 additions and 24 deletions

View File

@ -23,6 +23,20 @@ from cuburn.genome.util import palette_decode
RenderedImage = namedtuple('RenderedImage', 'buf idx gpu_time')
Dimensions = namedtuple('Dimensions', 'w h aw ah astride')
class DurationEvent(cuda.Event):
"""
A CUDA event which is implicitly aware of a prior event for time
calculations.
Note that instances retain a reference to their prior, so an unbroken
chain of DurationEvents will leak. Use normal events as priors.
"""
def __init__(self, prior):
super(DurationEvent, self).__init__()
self._prior = prior
def time(self):
return self.time_since(self._prior)
class Framebuffers(object):
"""
The largest memory allocations, and a stream to serialize their use.
@ -340,13 +354,17 @@ class RenderManager(ClsMod):
leave ``copy`` to True every time for now.
The return value is a 2-tuple ``(evt, h_out)``, where ``evt`` is a
CUDA event and ``h_out`` is the return value of the output module's
DurationEvent and ``h_out`` is the return value of the output module's
``copy`` function. In the typical case, ``h_out`` will be a host
allocation containing data in an appropriate format for the output
module's file writer, and ``evt`` indicates when the asynchronous
DMA copy which will populate ``h_out`` is complete. This can vary
depending on the output module in use, though.
This method is absolutely _not_ threadsafe, but it's fine to use it
alongside non-threaded approaches to concurrency like coroutines.
"""
timing_event = cuda.Event().record(self.stream_b)
# Note: we synchronize on the previous stream if buffers need to be
# reallocated, which implicitly also syncs the current stream.
dim = self.fb.set_dim(gprof.width, gprof.height, self.stream_b)
@ -372,7 +390,7 @@ class RenderManager(ClsMod):
rdr.out.convert(self.fb, gprof, dim, self.stream_a)
self.filt_evt = cuda.Event().record(self.stream_a)
h_out = rdr.out.copy(self.fb, dim, self.fb.pool, self.stream_a)
self.copy_evt = cuda.Event().record(self.stream_a)
self.copy_evt = DurationEvent(timing_event).record(self.stream_a)
self.info_a, self.info_b = self.info_b, self.info_a
self.stream_a, self.stream_b = self.stream_b, self.stream_a

31
dist/worker.py vendored
View File

@ -2,7 +2,9 @@
import sys
from cStringIO import StringIO
import zmq
import gevent
from gevent import spawn, queue
import zmq.green as zmq
import pycuda.driver as cuda
cuda.init()
@ -19,31 +21,46 @@ class PrecompiledRenderer(render.Renderer):
self.packer, self.cubin = packer, cubin
super(PrecompiledRenderer, self).__init__(gnm, gprof)
def main(card_num, worker_addr):
dev = cuda.Device(card_num)
ctx = dev.make_context(cuda.ctx_flags.SCHED_BLOCKING_SYNC)
def main(worker_addr):
rmgr = render.RenderManager()
ctx = zmq.Context()
in_queue = queue.Queue(0)
out_queue = queue.Queue(0)
def request_loop():
sock = ctx.socket(zmq.REQ)
sock.connect(worker_addr)
# Start the request loop with an empty job
sock.send('')
hash = None
while True:
addr, task, cubin, packer = sock.recv_pyobj()
gprof = profile.wrap(task.profile, task.anim)
if hash != task.hash:
rdr = PrecompiledRenderer(task.anim, gprof, packer, cubin)
buf = rmgr.queue_frame(rdr, task.anim, gprof, task.time)
evt, buf = rmgr.queue_frame(rdr, task.anim, gprof, task.time)
while not evt.query():
gevent.sleep(0.01)
ofile = StringIO()
output.PILOutput.save(buf, ofile, task.id[-3:])
ofile.seek(0)
sock.send_multipart(addr + [ofile.read()])
hash = task.hash
print 'Rendered', task.id
print 'Rendered', task.id, 'in', int(evt.time()), 'ms'
# Spawn two request loops to take advantage of CUDA pipelining.
spawn(request_loop)
request_loop()
if __name__ == "__main__":
import addrs
main(int(sys.argv[1]), addrs.addrs['workers'])
dev = cuda.Device(int(sys.argv[1]))
cuctx = dev.make_context(cuda.ctx_flags.SCHED_BLOCKING_SYNC)
try:
main(addrs.addrs['workers'])
finally:
cuda.Context.pop()