Random floats (I think)

This commit is contained in:
Steven Robertson 2010-09-06 14:19:06 -04:00
parent f3298e0bed
commit ada0fe20c7
2 changed files with 69 additions and 33 deletions

59
TODO
View File

@ -1,23 +1,23 @@
Status: currently broken (syntax errors, incomplete sections)
Status: passes rudimentary tests
Current goals:
- Test DeviceStream, and get it working. Bugs are expected.
- Test allocator
- Test statement evaluator
- Test packing correctly
- Test that device instructions get injected correctly
- Test in working implementation
- Load a set of genomes and calculate a bare minimum `Feature` set (no xforms,
no filters, no oversample)
- Get frames loaded for rendering
- Get IterThread running in device kernel
- For now, implement as `PTXTest`
- For each frame, loop for FUSE times, then loop through expected number of
points for each CP. Keep a count of number of times looped, and number of
stores that would be done. Verify against expected counts.
- Draw some dang points!
- Allocate buffer (can it be pre-allocated?)
- Direct scatter linear points by GTID from flame number
- Re-enable preview window
- Execute frame, update texture, repeat
- Writeback of points to the buffer
- Define writeback class, args
- Do camera rotation across frameset
- Postpone other kinds of testing and address clamping for now
- Start xforms
- At first, fixed Sierpinski triangle or something
- xform selection, pre- and post-transform in xform
- first of the variations
Things to do (rather severely incomplete):
- LaunchContext thread distribution based on generated code register count and
shared memory size
- qlocal storage
@ -27,9 +27,6 @@ Things to do (rather severely incomplete):
- The `Feature` class
- Transform count and per-transform code layout
- Filter size, oversample, final buffer size
- Palette storage
- Performance implications of different state spaces
- Performance and quality of 2D texture interpolation
- Buffer allocation, clearing, reading from device
- Preview window
- When/how to sample?
@ -41,8 +38,24 @@ Things to do (rather severely incomplete):
- Implement
- Test effects on quality by masking off writes on all but one lane and
boosting the sample density to compensate (muuuuuch later on)
- MWC RNG output types
- float in range [0, 1]
- Debug statements
- Some code can't be tested separately (notably IterThread). Make a debug
flag which embeds extra tests into the kernel
- DE
Things to test:
- DeviceStream allocator and proper handling of corner cases
- Debug flag/dict/whatever for entire project in general
- Iteration counters for IterThread
Things to benchmark:
- Kernel invocation and/or interrupt times (will high load freeze X?)
- 1D/2D texture load+interpolation speeds vs constant memory loading
- Must test under high SFU load
- Tex uses separate cache? Has lower bandwidth penalty for gather?
- MWC float conversion
- The entire scatter process
- Radix sort of writeback coordinates
- Log-copy-histogram approach
- Direct reductions
- Surface loads, stores, reductions

View File

@ -40,10 +40,10 @@ class IterThread(PTXTest):
op.mov.u32(num_writes, 0)
# TODO: MWC float output types
#mwc_next_f32_01(x_coord)
#mwc_next_f32_01(y_coord)
#mwc_next_f32_01(color_coord)
#mwc_next_f32_01(alpha_coord)
mwc_next_f32_01(x_coord)
mwc_next_f32_01(y_coord)
mwc_next_f32_01(color_coord)
mwc_next_f32_01(alpha_coord)
# Registers are hard to come by. To avoid having to track both the count
# of samples processed and the number of samples to generate,
@ -189,17 +189,40 @@ class MWCRNG(PTXFragment):
op.mad.lo.u32(mwc_addr, mwc_off, 8, mwc_addr)
op.st.global_.v2.u32(addr(mwc_addr), vec(mwc_st, mwc_car))
@ptx_func
def _next(self):
# Call from inside a block!
reg.u64('mwc_out')
op.cvt.u64.u32(mwc_out, mwc_car)
op.mad.wide.u32(mwc_out, mwc_st, mwc_mult, mwc_out)
op.mov.b64(vec(mwc_st, mwc_car), mwc_out)
@ptx_func
def next_b32(self, dst_reg):
with block('Load next random into ' + dst_reg.name):
reg.u64('mwc_out')
op.cvt.u64.u32(mwc_out, mwc_car)
op.mad.wide.u32(mwc_out, mwc_st, mwc_mult, mwc_out)
op.mov.b64(vec(mwc_st, mwc_car), mwc_out)
with block('Load next random u32 into ' + dst_reg.name):
self._next()
op.mov.u32(dst_reg, mwc_st)
@ptx_func
def next_f32_01(self, dst_reg):
# TODO: verify that this is the fastest-performance method
# TODO: verify that this actually does what I think it does
with block('Load random float [0,1] into ' + dst_reg.name):
self._next()
op.cvt.rn.f32.u32(dst_reg, mwc_st)
op.mul.f32(dst_reg, dst_reg, '0f0000802F') # 1./(1<<32)
@ptx_func
def next_f32_11(self, dst_reg):
with block('Load random float [-1,1) into ' + dst_reg.name):
self._next()
op.cvt.rn.f32.s32(dst_reg, mwc_st)
op.mul.lo.f32(dst_reg, dst_reg, '0f00000030') # 1./(1<<31)
def to_inject(self):
return dict(mwc_next_b32=self.next_b32)
return dict(mwc_next_b32=self.next_b32,
mwc_next_f32_01=self.next_f32_01,
mwc_next_f32_11=self.next_f32_11)
def device_init(self, ctx):
if self.threads_ready >= ctx.threads: