Remove obsolete bench.py

This commit is contained in:
Steven Robertson 2011-10-12 14:40:41 -04:00
parent 53127ffe7f
commit 9a348f0517

237
bench.py
View File

@ -1,237 +0,0 @@
#!/usr/bin/python
# -*- encoding: utf-8 -*-
"""
Various micro-benchmarks and other experiments.
"""
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
from cuburn.ptx import PTXFragment, PTXTest, ptx_func, instmethod
from cuburn.cuda import LaunchContext
from cuburn.device_code import MWCRNG, MWCRNGTest
class L2WriteCombining(PTXTest):
"""
Test of L2 write combining.
"""
entry_name = 'l2_write_combining'
entry_params = [('u64', 'a_report_addr'), ('u64', 'a_scratch_addr')]
block_size = 2**20 # 1MB/CTA.
rounds = int(1e6)
@ptx_func
def entry(self):
mem.shared.u32('s_offset')
reg.u32('bytes_written offset write_size laneid ctaid rounds x')
reg.u64('scratch_addr scratch_offset clka clkb bytes')
reg.pred('p_write p_loop_wrsz p_is_first p_done p_coalesced')
op.mov.u32(laneid, '%laneid')
op.setp.eq.u32(p_is_first, laneid, 0)
op.ld.param.u32(scratch_addr, addr(a_scratch_addr))
op.mov.u32(ctaid, '%ctaid.x')
op.cvt.u64.u32(scratch_offset, ctaid)
op.mad.lo.u64(scratch_addr, scratch_offset, self.block_size,
scratch_addr)
op.mov.u32(x, 0)
label('l2_restart')
comment("If CTA is even, do coalesced first")
op.and_.b32(ctaid, ctaid, 1)
op.setp.eq.u32(p_coalesced, ctaid, 0)
op.bra.uni('l2_loop_start')
label('l2_loop_start')
op.st.shared.u32(addr(s_offset), 0, ifp=p_is_first)
op.mov.u32(rounds, 0)
op.mov.u32(write_size, 16)
op.mov.u64(clka, '%clock64')
op.mov.u64(bytes, 0)
label('l2_loop')
comment("Increment offset across the CTA")
op.atom.shared.add.u32(offset, addr(s_offset), write_size,
ifp=p_is_first)
comment("Find write address from current offset and lane")
op.ld.shared.u32(offset, addr(s_offset))
op.add.u32(offset, offset, laneid)
op.mul.lo.u32(offset, offset, 8)
op.and_.b32(offset, offset, self.block_size-1)
op.cvt.u64.u32(scratch_offset, offset)
op.add.u64(scratch_offset, scratch_offset, scratch_addr)
comment("If lane < write_size, write to address")
op.setp.lt.u32(p_write, laneid, write_size)
op.st.u64(addr(scratch_offset), scratch_offset, ifp=p_write)
comment("Add to number of bytes written")
op.add.u64(bytes, bytes, 8, ifp=p_write)
comment("If uncoalesced, store new write size")
op.add.u32(write_size, write_size, 1, ifnotp=p_coalesced)
op.setp.gt.u32(p_loop_wrsz, write_size, 32)
op.mov.u32(write_size, 2, ifp=p_loop_wrsz)
comment("Loop!")
op.add.u32(rounds, rounds, 1)
op.setp.ge.u32(p_done, rounds, self.rounds)
op.bra.uni(l2_loop, ifnotp=p_done)
label('l2_loop_end')
op.mov.u64(clkb, '%clock64')
op.sub.u64(clka, clkb, clka)
with block("Store the time l2_loop took"):
reg.u64('report_addr report_offset')
reg.u32('gtid')
std.get_gtid(gtid)
op.mul.lo.u32(gtid, gtid, 32)
op.add.u32(gtid, gtid, 16, ifnotp=p_coalesced)
op.cvt.u64.u32(report_offset, gtid)
op.ld.param.u64(report_addr, addr(a_report_addr))
op.add.u64(report_addr, report_addr, report_offset)
op.st.u64(addr(report_addr), clka)
op.st.u64(addr(report_addr,8), bytes)
comment("If we did coalesced, go back and do uncoalesced")
op.add.u32(ctaid, ctaid, 1)
op.add.u32(x, x, 1)
op.setp.ge.u32(p_done, x, 2)
op.bra.uni(l2_restart, ifnotp=p_done)
def call_setup(self, ctx):
self.scratch = np.zeros(self.block_size*ctx.nctas/4, np.uint64)
self.times_bytes = np.zeros((4, ctx.nthreads), np.uint64, 'F')
def _call(self, ctx, func):
super(L2WriteCombining, self)._call(ctx, func,
cuda.InOut(self.times_bytes), cuda.InOut(self.scratch))
def call_teardown(self, ctx):
pm = lambda a: (np.mean(a), np.std(a) / np.sqrt(len(a)))
print "Clks for coa was %g ± %g" % pm(self.times_bytes[0])
print "Bytes for coa was %g ± %g" % pm(self.times_bytes[1])
print "Clks for uncoa was %g ± %g" % pm(self.times_bytes[2])
print "Bytes for uncoa was %g ± %g" % pm(self.times_bytes[3])
print
class SimulOccupancy(PTXTest):
"""
Test to discover whether Fermi GPUs will launch multiple entry points
in the same kernel on the same CTA simultaneously.
"""
entry_name = 'simul1'
# Only has to be big enough to hold the kernel on the device for a while
rounds = 1000000
def deps(self):
return [MWCRNG]
@ptx_func
def module_setup(self):
n = self.entry_name + '_'
mem.global_.u64(n+'start', ctx.nthreads)
mem.global_.u64(n+'end', ctx.nthreads)
mem.global_.u32(n+'smid', ctx.nthreads)
mem.global_.u32(n+'warpid_start', ctx.nthreads)
mem.global_.u32(n+'warpid_end', ctx.nthreads)
@ptx_func
def entry(self):
n = self.entry_name + '_'
reg.u64('now')
reg.u32('warpid')
op.mov.u64(now, '%clock64')
op.mov.u32(warpid, '%warpid')
std.store_per_thread(n+'start', now,
n+'warpid_start', warpid)
reg.u32('loopct rnd')
reg.pred('p_done')
op.mov.u32(loopct, self.rounds)
label('loopstart')
mwc.next_b32(rnd)
std.store_per_thread(n+'smid', rnd)
op.sub.u32(loopct, loopct, 1)
op.setp.eq.u32(p_done, loopct, 0)
op.bra.uni(loopstart, ifnotp=p_done)
reg.u32('smid')
op.mov.u32(smid, '%smid')
op.mov.u32(warpid, '%warpid')
op.mov.u64(now, '%clock64')
std.store_per_thread(n+'end', now,
n+'smid', smid,
n+'warpid_end', warpid)
def _call(self, ctx, func):
stream1, stream2 = cuda.Stream(), cuda.Stream()
self._call2(ctx, stream1)
_SimulOccupancy._call2(ctx, stream2)
stream2.synchronize()
stream1.synchronize()
@instmethod
def _call2(self, ctx, stream):
func = ctx.mod.get_function(self.entry_name)
func.prepare([], ctx.block)
# TODO: load number of SMs from ctx
func.launch_grid_async(7, 1, stream)
def call_teardown(self, ctx):
sm_log = [[] for i in range(7)]
self._teardown(ctx, sm_log)
_SimulOccupancy._teardown(ctx, sm_log)
for sm in range(len(sm_log)):
print "\nPrinting log for SM %d" % sm
for t, ev in sorted(sm_log[sm]):
print '%6d %s' % (t/1000, ev)
@instmethod
def _teardown(self, ctx, sm_log):
# For this method, the GPU is intentionally underloaded; trim results
th = 7 * ctx.threads_per_cta
n = self.entry_name + '_'
start = ctx.get_per_thread(n+'start', np.uint64)[:th]
end = ctx.get_per_thread(n+'end', np.uint64)[:th]
smid = ctx.get_per_thread(n+'smid', np.uint32)[:th]
warpid_start = ctx.get_per_thread(n+'warpid_start', np.uint32)[:th]
warpid_end = ctx.get_per_thread(n+'warpid_end', np.uint32)[:th]
for i in range(0, th, 32):
sm_log[smid[i]].append((start[i], "%s%4d entered SM" % (n, i/32)))
sm_log[smid[i]].append((end[i], "%s%4d left SM" % (n, i/32)))
if not np.alltrue(np.equal(warpid_start, warpid_end)):
print "Warp IDs changed. Do further research."
class _SimulOccupancy(SimulOccupancy):
# Don't call this one
entry_name = 'simul2'
def call(self, ctx):
pass
def call_teardown(self, ctx):
pass
def printover(a, r, s=1):
for i in range(0, len(a), r*s):
for j in range(i, i+r*s, s):
if j < len(a): print a[j],
print
def main():
# TODO: block/grid auto-optimization
ctx = LaunchContext([L2WriteCombining, SimulOccupancy, _SimulOccupancy],
block=(128,1,1), grid=(7*8,1), tests=True)
ctx.compile(verbose=3)
ctx.run_tests()
SimulOccupancy.call(ctx)
L2WriteCombining.call(ctx)
if __name__ == "__main__":
main()