mirror of
				https://github.com/stevenrobertson/cuburn.git
				synced 2025-11-03 18:00:55 -05:00 
			
		
		
		
	Fine performance, but the scan's mis-ordering is worse than I thought.
This commit is contained in:
		
							
								
								
									
										149
									
								
								sortbench.cu
									
									
									
									
									
								
							
							
						
						
									
										149
									
								
								sortbench.cu
									
									
									
									
									
								
							@ -1,6 +1,8 @@
 | 
			
		||||
#include <cuda.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
 | 
			
		||||
#define s(x) #x
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
 | 
			
		||||
    __shared__ int sh_pfxs[256];
 | 
			
		||||
@ -34,22 +36,26 @@ void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
 | 
			
		||||
#define BLKSZ 512
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void prefix_scan(unsigned short *keys, int *pfxs, const int shift) {
 | 
			
		||||
    const int tid = threadIdx.y * 32 + threadIdx.x;
 | 
			
		||||
    __shared__ int shr_pfxs[BLKSZ];
 | 
			
		||||
void prefix_scan(unsigned short *offsets, int *pfxs,
 | 
			
		||||
                 const unsigned short *keys, const int shift) {
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    __shared__ int shr_pfxs[RDXSZ];
 | 
			
		||||
 | 
			
		||||
    shr_pfxs[tid] = 0;
 | 
			
		||||
    if (tid < RDXSZ) shr_pfxs[tid] = 0;
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    int i = tid + GRPSZ * blockIdx.x;
 | 
			
		||||
 | 
			
		||||
    for (int j = 0; j < GRP_BLK_FACTOR; j++) {
 | 
			
		||||
        int value = (keys[i] >> shift) && 0xff;
 | 
			
		||||
        atomicAdd(shr_pfxs + value, 1);
 | 
			
		||||
        // TODO: compiler smart enough to turn this into a BFE?
 | 
			
		||||
        // TODO: should this just be two functions with fixed shifts?
 | 
			
		||||
        // TODO: separate or integrated loop vars? unrolling?
 | 
			
		||||
        int value = (keys[i] >> shift) & 0xff;
 | 
			
		||||
        offsets[i] = atomicAdd(shr_pfxs + value, 1);
 | 
			
		||||
        i += BLKSZ;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    pfxs[tid + BLKSZ * blockIdx.x] = shr_pfxs[tid];
 | 
			
		||||
    if (tid < RDXSZ) pfxs[tid + RDXSZ * blockIdx.x] = shr_pfxs[tid];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
@ -110,10 +116,9 @@ void better_split(int *pfxs_out, const int *pfxs) {
 | 
			
		||||
    // updating the values as it goes, then the results are written coherently
 | 
			
		||||
    // to global memory.
 | 
			
		||||
    //
 | 
			
		||||
    // This leaves the processor extremely compute-starved, as this only allows
 | 
			
		||||
    // 12 warps per SM. It might be better to halve the chunk size and lose
 | 
			
		||||
    // some coalescing efficiency; need to benchmark. It's a relatively cheap
 | 
			
		||||
    // step overall though.
 | 
			
		||||
    // This leaves the SM underloaded, as this only allows 12 warps per SM. It
 | 
			
		||||
    // might be better to halve the chunk size and lose some coalescing
 | 
			
		||||
    // efficiency; need to benchmark. It's a relatively cheap step, though.
 | 
			
		||||
 | 
			
		||||
    for (int j = 0; j < 8; j++) {
 | 
			
		||||
        int jj = j << 5;
 | 
			
		||||
@ -139,17 +144,16 @@ void better_split(int *pfxs_out, const int *pfxs) {
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) {
 | 
			
		||||
void prefix_sum(int *pfxs, const int nitems) {
 | 
			
		||||
    // Needs optimizing (later). Should be rolled into split.
 | 
			
		||||
    // Must launch 32x8.
 | 
			
		||||
    const int tid = threadIdx.y * 32 + threadIdx.x;
 | 
			
		||||
    // Must launch 256 threads.
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int blksz = 256;
 | 
			
		||||
    int val = 0;
 | 
			
		||||
    for (int i = tid; i < nitems; i += blksz) val += pfxs[i];
 | 
			
		||||
 | 
			
		||||
    out_pfxs[tid] = val;
 | 
			
		||||
 | 
			
		||||
    // I know there's a better way to implement this summing network,
 | 
			
		||||
    // but it's not a time-critical piece of code.
 | 
			
		||||
    __shared__ int sh_pfxs[blksz];
 | 
			
		||||
@ -158,23 +162,18 @@ void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) {
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    // Intentionally exclusive indexing here, val{0} should be 0
 | 
			
		||||
    for (int i = 0; i < tid; i++) val += sh_pfxs[i];
 | 
			
		||||
    out_sums[tid] = val;
 | 
			
		||||
 | 
			
		||||
    // Here we shift things over by 1, to make retrieving the
 | 
			
		||||
    // indices and differences easier in the sorting step.
 | 
			
		||||
    int i;
 | 
			
		||||
    for (i = tid; i < nitems; i += blksz) {
 | 
			
		||||
        int t = pfxs[i];
 | 
			
		||||
        pfxs[i] = val;
 | 
			
		||||
        val += t;
 | 
			
		||||
    }
 | 
			
		||||
    // Now write the last column and we're done.
 | 
			
		||||
    pfxs[i] = val;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
 | 
			
		||||
    const int tid = threadIdx.y * 32 + threadIdx.x;
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int blk_offset = GRPSZ * blockIdx.x;
 | 
			
		||||
    __shared__ int shr_pfxs[RDXSZ];
 | 
			
		||||
 | 
			
		||||
@ -190,12 +189,13 @@ void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#undef BLKSZ
 | 
			
		||||
#define BLKSZ 1024
 | 
			
		||||
__global__
 | 
			
		||||
void sort_8_a(unsigned char *keys, int *sorted_keys,
 | 
			
		||||
              const int *pfxs, const int *split) {
 | 
			
		||||
    const int tid = threadIdx.y * 32 + threadIdx.x;
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int blk_offset = GRPSZ * blockIdx.x;
 | 
			
		||||
    __shared__ int shr_offs[RDXSZ];
 | 
			
		||||
    __shared__ int defer[GRPSZ];
 | 
			
		||||
@ -244,6 +244,109 @@ void sort_8_a(unsigned char *keys, int *sorted_keys,
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void convert_offsets(
 | 
			
		||||
        unsigned short *offsets,    // input and output
 | 
			
		||||
        const int *split,
 | 
			
		||||
        const unsigned short *keys,
 | 
			
		||||
        const int shift
 | 
			
		||||
    ) {
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int blk_offset = GRPSZ * blockIdx.x;
 | 
			
		||||
    const int rdx_offset = RDXSZ * blockIdx.x;
 | 
			
		||||
    __shared__ int shr_offsets[GRPSZ];
 | 
			
		||||
    __shared__ int shr_split[RDXSZ];
 | 
			
		||||
 | 
			
		||||
    if (tid < RDXSZ) shr_split[tid] = split[rdx_offset + tid];
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    for (int i = tid; i < GRPSZ; i += BLKSZ) {
 | 
			
		||||
        int r = (keys[blk_offset + i] >> shift) & 0xff;
 | 
			
		||||
        int o = shr_split[r] + offsets[blk_offset + i];
 | 
			
		||||
        shr_offsets[o] = i;
 | 
			
		||||
    }
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    for (int i = tid; i < GRPSZ; i += BLKSZ)
 | 
			
		||||
        offsets[blk_offset + i] = shr_offsets[i];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void radix_sort_maybe(
 | 
			
		||||
        unsigned short *sorted_keys,
 | 
			
		||||
        int *sorted_values,
 | 
			
		||||
        const unsigned short *keys,
 | 
			
		||||
        const unsigned int *values,
 | 
			
		||||
        const unsigned short *offsets,
 | 
			
		||||
        const int *pfxs,
 | 
			
		||||
        const int *split,
 | 
			
		||||
        const int shift
 | 
			
		||||
    ) {
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int blk_offset = GRPSZ * blockIdx.x;
 | 
			
		||||
    const int rdx_offset = RDXSZ * blockIdx.x;
 | 
			
		||||
    __shared__ int shr_offs[RDXSZ];
 | 
			
		||||
 | 
			
		||||
    if (tid < RDXSZ)
 | 
			
		||||
        shr_offs[tid] = pfxs[rdx_offset + tid] - split[rdx_offset + tid];
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    int i = tid;
 | 
			
		||||
    for (int j = 0; j < GRP_BLK_FACTOR; j++) {
 | 
			
		||||
        int offset = offsets[blk_offset + i];
 | 
			
		||||
        int key = keys[blk_offset + offset];
 | 
			
		||||
        int radix = (key >> shift) & 0xff;
 | 
			
		||||
        int glob_offset = shr_offs[radix] + i;
 | 
			
		||||
        /*if (sorted_values[glob_offset] != 0xffffffff)
 | 
			
		||||
            printf("\nbad offset pos:%6x off:%4x gloff:%6x key:%4x "
 | 
			
		||||
                   "okey:%4x val:%8x oval:%8x",
 | 
			
		||||
                    i+blk_offset, offset, glob_offset, key,
 | 
			
		||||
                    sorted_keys[glob_offset], sorted_values[glob_offset]);*/
 | 
			
		||||
        sorted_keys[glob_offset] = key;
 | 
			
		||||
        sorted_values[glob_offset] = values[blk_offset + offset];
 | 
			
		||||
        i += BLKSZ;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
void radix_sort(unsigned short *sorted_keys, int *sorted_values,
 | 
			
		||||
                const unsigned short *keys, const unsigned int *values,
 | 
			
		||||
                const int *pfxs, const int *offsets, const int *split,
 | 
			
		||||
                const int shift) {
 | 
			
		||||
    const int tid = threadIdx.x;
 | 
			
		||||
    const int blk_offset = GRPSZ * blockIdx.x;
 | 
			
		||||
    __shared__ int shr_offs[RDXSZ];
 | 
			
		||||
    __shared__ int defer[GRPSZ];
 | 
			
		||||
    __shared__ unsigned char radishes[GRPSZ];
 | 
			
		||||
 | 
			
		||||
    const int pfx_i = RDXSZ * blockIdx.x + tid;
 | 
			
		||||
    if (tid < RDXSZ) shr_offs[tid] = split[pfx_i];
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    for (int i = tid; i < GRPSZ; i += BLKSZ) {
 | 
			
		||||
        int idx = i + blk_offset;
 | 
			
		||||
        int value = keys[idx];
 | 
			
		||||
        int radix = radishes[i] = (value >> shift) & 0xff;
 | 
			
		||||
        int offset = offsets[idx] + split[radix];
 | 
			
		||||
        defer[offset] = value;
 | 
			
		||||
    }
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    if (tid < RDXSZ) shr_offs[tid] = pfxs[tid] - shr_offs[tid];
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    // Faster to reload these or to recompute them in shmem? Need to see if we
 | 
			
		||||
    // can safely stash both
 | 
			
		||||
 | 
			
		||||
    int i = tid;
 | 
			
		||||
#pragma unroll
 | 
			
		||||
    for (int j = 0; j < GRP_BLK_FACTOR; j++) {
 | 
			
		||||
        int value = defer[i];
 | 
			
		||||
        int offset = shr_offs[value] + i;
 | 
			
		||||
        sorted_keys[offset] = value;
 | 
			
		||||
        i += BLKSZ;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__global__
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										163
									
								
								sortbench.py
									
									
									
									
									
								
							
							
						
						
									
										163
									
								
								sortbench.py
									
									
									
									
									
								
							@ -5,11 +5,14 @@ import pycuda.compiler
 | 
			
		||||
import pycuda.driver as cuda
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
np.set_printoptions(precision=5, edgeitems=20, linewidth=100, threshold=9000)
 | 
			
		||||
 | 
			
		||||
import sys, os
 | 
			
		||||
os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:'
 | 
			
		||||
                     + os.environ['PATH'])
 | 
			
		||||
 | 
			
		||||
i32 = np.int32
 | 
			
		||||
 | 
			
		||||
with open('sortbench.cu') as f: src = f.read()
 | 
			
		||||
mod = pycuda.compiler.SourceModule(src, keep=True)
 | 
			
		||||
 | 
			
		||||
@ -62,12 +65,161 @@ def go(scale, block, test_cpu):
 | 
			
		||||
            cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs),
 | 
			
		||||
            block=(32, 16, 1), grid=(scale, 1), l1=1)
 | 
			
		||||
 | 
			
		||||
def rle(a):
 | 
			
		||||
def rle(a, n=512):
 | 
			
		||||
    pos, = np.where(np.diff(a))
 | 
			
		||||
    lens = np.diff(np.concatenate((pos, [len(a)])))
 | 
			
		||||
    return [(a[p], p, l) for p, l in zip(pos, lens)[:5000]]
 | 
			
		||||
    pos = np.concatenate(([0], pos+1, [len(a)]))
 | 
			
		||||
    lens = np.diff(pos)
 | 
			
		||||
    return [(a[p], p, l) for p, l in zip(pos, lens)[:n]]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def frle(a, n=512):
 | 
			
		||||
    return ''.join(['\n\t%4x %6x %6x' % v for v in rle(a, n)])
 | 
			
		||||
 | 
			
		||||
# Some reference implementations follow for debugging.
 | 
			
		||||
def py_convert_offsets(offsets, split, keys, shift):
 | 
			
		||||
    grids = len(offsets)
 | 
			
		||||
    new_offs = np.empty((grids, 8192), dtype=np.int32)
 | 
			
		||||
    for i in range(grids):
 | 
			
		||||
        rdxs = (keys[i] >> shift) & 0xff
 | 
			
		||||
        o = split[i][rdxs] + offsets[i]
 | 
			
		||||
        new_offs[i][o] = np.arange(8192, dtype=np.int32)
 | 
			
		||||
    return new_offs
 | 
			
		||||
 | 
			
		||||
def py_radix_sort_maybe(keys, offsets, pfxs, split, shift):
 | 
			
		||||
    grids = len(offsets)
 | 
			
		||||
    idxs = np.arange(8192)
 | 
			
		||||
 | 
			
		||||
    okeys = np.empty(grids*8192, dtype=np.int32)
 | 
			
		||||
    okeys.fill(-1)
 | 
			
		||||
 | 
			
		||||
    for i in range(grids):
 | 
			
		||||
        offs = pfxs[i] - split[i]
 | 
			
		||||
        lkeys = keys[i][offsets[i]]
 | 
			
		||||
        rdxs = (lkeys >> shift) & 0xff
 | 
			
		||||
        glob_offsets = offs[rdxs] + idxs
 | 
			
		||||
        okeys[glob_offsets] = lkeys
 | 
			
		||||
    return okeys
 | 
			
		||||
 | 
			
		||||
def go_sort(count, stream=None):
 | 
			
		||||
    grids = count / 8192
 | 
			
		||||
 | 
			
		||||
    #keys = np.fromstring(np.random.bytes(count*2), dtype=np.uint16)
 | 
			
		||||
    keys = np.arange(count, dtype=np.uint16)
 | 
			
		||||
    np.random.shuffle(keys)
 | 
			
		||||
    mkeys = np.reshape(keys, (grids, 8192))
 | 
			
		||||
    vals = np.arange(count, dtype=np.uint32)
 | 
			
		||||
    dkeys = cuda.to_device(keys)
 | 
			
		||||
    dvals = cuda.to_device(vals)
 | 
			
		||||
    print 'Done seeding'
 | 
			
		||||
 | 
			
		||||
    dpfxs = cuda.mem_alloc(grids * 256 * 4)
 | 
			
		||||
    doffsets = cuda.mem_alloc(count * 2)
 | 
			
		||||
    launch('prefix_scan', doffsets, dpfxs, dkeys, i32(0),
 | 
			
		||||
            block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
 | 
			
		||||
    print cuda.from_device(dpfxs, (2, 256), np.uint32)
 | 
			
		||||
 | 
			
		||||
    dsplit = cuda.mem_alloc(grids * 256 * 4)
 | 
			
		||||
    launch('better_split', dsplit, dpfxs,
 | 
			
		||||
            block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
 | 
			
		||||
 | 
			
		||||
    # This stage will be rejiggered along with the split
 | 
			
		||||
    launch('prefix_sum', dpfxs, np.int32(grids * 256),
 | 
			
		||||
            block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
 | 
			
		||||
    print cuda.from_device(dpfxs, (2, 256), np.uint32)
 | 
			
		||||
 | 
			
		||||
    launch('convert_offsets', doffsets, dsplit, dkeys, i32(0),
 | 
			
		||||
            block=(1024, 1, 1), grid=(grids, 1), stream=stream)
 | 
			
		||||
    if not stream:
 | 
			
		||||
        offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
 | 
			
		||||
        split = cuda.from_device(dsplit, (grids, 256), np.uint32)
 | 
			
		||||
        pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
 | 
			
		||||
        tkeys = py_radix_sort_maybe(mkeys, offsets, pfxs, split, 0)
 | 
			
		||||
        print frle(tkeys & 0xff)
 | 
			
		||||
 | 
			
		||||
    d_skeys = cuda.mem_alloc(count * 2)
 | 
			
		||||
    d_svals = cuda.mem_alloc(count * 4)
 | 
			
		||||
    if not stream:
 | 
			
		||||
        cuda.memset_d32(d_skeys, 0, count/2)
 | 
			
		||||
        cuda.memset_d32(d_svals, 0xffffffff, count)
 | 
			
		||||
    launch('radix_sort_maybe', d_skeys, d_svals,
 | 
			
		||||
            dkeys, dvals, doffsets, dpfxs, dsplit, i32(0),
 | 
			
		||||
            block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
 | 
			
		||||
 | 
			
		||||
    if not stream:
 | 
			
		||||
        skeys = cuda.from_device_like(d_skeys, keys)
 | 
			
		||||
        svals = cuda.from_device_like(d_svals, vals)
 | 
			
		||||
 | 
			
		||||
        # Test integrity of sort (keys and values kept together):
 | 
			
		||||
        #   skeys[i] = keys[svals[i]] for all i
 | 
			
		||||
        print 'Integrity: ',
 | 
			
		||||
        if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
 | 
			
		||||
            print 'pass'
 | 
			
		||||
        else:
 | 
			
		||||
            print 'FAIL'
 | 
			
		||||
 | 
			
		||||
        print frle(skeys & 0xff)
 | 
			
		||||
 | 
			
		||||
    dkeys, d_skeys = d_skeys, dkeys
 | 
			
		||||
    dvals, d_svals = d_svals, dvals
 | 
			
		||||
 | 
			
		||||
    if not stream:
 | 
			
		||||
        cuda.memset_d32(d_skeys, 0, count/2)
 | 
			
		||||
        cuda.memset_d32(d_svals, 0xffffffff, count)
 | 
			
		||||
 | 
			
		||||
    launch('prefix_scan', doffsets, dpfxs, dkeys, i32(8),
 | 
			
		||||
            block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
 | 
			
		||||
    launch('better_split', dsplit, dpfxs,
 | 
			
		||||
            block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
 | 
			
		||||
    launch('prefix_sum', dpfxs, np.int32(grids * 256),
 | 
			
		||||
            block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
 | 
			
		||||
    pre_offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
 | 
			
		||||
    launch('convert_offsets', doffsets, dsplit, dkeys, i32(8),
 | 
			
		||||
            block=(1024, 1, 1), grid=(grids, 1), stream=stream)
 | 
			
		||||
    if not stream:
 | 
			
		||||
        offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
 | 
			
		||||
        split = cuda.from_device(dsplit, (grids, 256), np.uint32)
 | 
			
		||||
        pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
 | 
			
		||||
        tkeys = np.reshape(tkeys, (grids, 8192))
 | 
			
		||||
 | 
			
		||||
        new_offs = py_convert_offsets(pre_offsets, split, tkeys, 8)
 | 
			
		||||
        print new_offs[:3]
 | 
			
		||||
        print offsets[:3]
 | 
			
		||||
        print np.nonzero(new_offs != offsets)
 | 
			
		||||
 | 
			
		||||
        fkeys = py_radix_sort_maybe(tkeys, new_offs, pfxs, split, 8)
 | 
			
		||||
        print frle(fkeys)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    launch('radix_sort_maybe', d_skeys, d_svals,
 | 
			
		||||
            dkeys, dvals, doffsets, dpfxs, dsplit, i32(8),
 | 
			
		||||
            block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
 | 
			
		||||
 | 
			
		||||
    if not stream:
 | 
			
		||||
        #print cuda.from_device(doffsets, (4, 8192), np.uint16)
 | 
			
		||||
        #print cuda.from_device(dkeys, (4, 8192), np.uint16)
 | 
			
		||||
        #print cuda.from_device(d_skeys, (4, 8192), np.uint16)
 | 
			
		||||
 | 
			
		||||
        skeys = cuda.from_device_like(d_skeys, keys)
 | 
			
		||||
        svals = cuda.from_device_like(d_svals, vals)
 | 
			
		||||
 | 
			
		||||
        print 'Integrity: ',
 | 
			
		||||
        if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
 | 
			
		||||
            print 'pass'
 | 
			
		||||
        else:
 | 
			
		||||
            print 'FAIL'
 | 
			
		||||
 | 
			
		||||
        sorted_keys = np.sort(keys)
 | 
			
		||||
        # Test that ordering is correct. (Note that we don't need 100%
 | 
			
		||||
        # correctness, so this test should be made "soft".)
 | 
			
		||||
        print 'Order: ', 'pass' if np.all(skeys == sorted_keys) else 'FAIL'
 | 
			
		||||
 | 
			
		||||
        print frle(skeys)
 | 
			
		||||
        print fkeys
 | 
			
		||||
        print skeys
 | 
			
		||||
        print np.nonzero(fkeys != skeys)[0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def go_sort_old(count, stream=None):
 | 
			
		||||
    data = np.fromstring(np.random.bytes(count), dtype=np.uint8)
 | 
			
		||||
    ddata = cuda.to_device(data)
 | 
			
		||||
    print 'Done seeding'
 | 
			
		||||
@ -115,16 +267,13 @@ def go_sort(count, stream=None):
 | 
			
		||||
 | 
			
		||||
        print 'is_sorted?', np.all(sorted == sorted_np)
 | 
			
		||||
 | 
			
		||||
    #data = np.fromstring(np.random.bytes(scale*block), dtype=np.uint16)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    # shmem is known good; disable the CPU run to get better info from cuprof
 | 
			
		||||
    #go(8, 512<<10, True)
 | 
			
		||||
    #go(1024, 512<<8, False)
 | 
			
		||||
    #go(32768, 8192, False)
 | 
			
		||||
    stream = cuda.Stream() if '-s' in sys.argv else None
 | 
			
		||||
    go_sort(128<<20, stream)
 | 
			
		||||
    go_sort(1<<20, stream)
 | 
			
		||||
    if stream:
 | 
			
		||||
        stream.synchronize()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user