mirror of
https://github.com/stevenrobertson/cuburn.git
synced 2025-02-05 11:40:04 -05:00
Fine performance, but the scan's mis-ordering is worse than I thought.
This commit is contained in:
parent
638d068a00
commit
83704dd303
149
sortbench.cu
149
sortbench.cu
@ -1,6 +1,8 @@
|
|||||||
#include <cuda.h>
|
#include <cuda.h>
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
|
||||||
|
#define s(x) #x
|
||||||
|
|
||||||
__global__
|
__global__
|
||||||
void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
|
void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
|
||||||
__shared__ int sh_pfxs[256];
|
__shared__ int sh_pfxs[256];
|
||||||
@ -34,22 +36,26 @@ void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
|
|||||||
#define BLKSZ 512
|
#define BLKSZ 512
|
||||||
|
|
||||||
__global__
|
__global__
|
||||||
void prefix_scan(unsigned short *keys, int *pfxs, const int shift) {
|
void prefix_scan(unsigned short *offsets, int *pfxs,
|
||||||
const int tid = threadIdx.y * 32 + threadIdx.x;
|
const unsigned short *keys, const int shift) {
|
||||||
__shared__ int shr_pfxs[BLKSZ];
|
const int tid = threadIdx.x;
|
||||||
|
__shared__ int shr_pfxs[RDXSZ];
|
||||||
|
|
||||||
shr_pfxs[tid] = 0;
|
if (tid < RDXSZ) shr_pfxs[tid] = 0;
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
int i = tid + GRPSZ * blockIdx.x;
|
int i = tid + GRPSZ * blockIdx.x;
|
||||||
|
|
||||||
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
|
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
|
||||||
int value = (keys[i] >> shift) && 0xff;
|
// TODO: compiler smart enough to turn this into a BFE?
|
||||||
atomicAdd(shr_pfxs + value, 1);
|
// TODO: should this just be two functions with fixed shifts?
|
||||||
|
// TODO: separate or integrated loop vars? unrolling?
|
||||||
|
int value = (keys[i] >> shift) & 0xff;
|
||||||
|
offsets[i] = atomicAdd(shr_pfxs + value, 1);
|
||||||
i += BLKSZ;
|
i += BLKSZ;
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
pfxs[tid + BLKSZ * blockIdx.x] = shr_pfxs[tid];
|
if (tid < RDXSZ) pfxs[tid + RDXSZ * blockIdx.x] = shr_pfxs[tid];
|
||||||
}
|
}
|
||||||
|
|
||||||
__global__
|
__global__
|
||||||
@ -110,10 +116,9 @@ void better_split(int *pfxs_out, const int *pfxs) {
|
|||||||
// updating the values as it goes, then the results are written coherently
|
// updating the values as it goes, then the results are written coherently
|
||||||
// to global memory.
|
// to global memory.
|
||||||
//
|
//
|
||||||
// This leaves the processor extremely compute-starved, as this only allows
|
// This leaves the SM underloaded, as this only allows 12 warps per SM. It
|
||||||
// 12 warps per SM. It might be better to halve the chunk size and lose
|
// might be better to halve the chunk size and lose some coalescing
|
||||||
// some coalescing efficiency; need to benchmark. It's a relatively cheap
|
// efficiency; need to benchmark. It's a relatively cheap step, though.
|
||||||
// step overall though.
|
|
||||||
|
|
||||||
for (int j = 0; j < 8; j++) {
|
for (int j = 0; j < 8; j++) {
|
||||||
int jj = j << 5;
|
int jj = j << 5;
|
||||||
@ -139,17 +144,16 @@ void better_split(int *pfxs_out, const int *pfxs) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
__global__
|
__global__
|
||||||
void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) {
|
void prefix_sum(int *pfxs, const int nitems) {
|
||||||
// Needs optimizing (later). Should be rolled into split.
|
// Needs optimizing (later). Should be rolled into split.
|
||||||
// Must launch 32x8.
|
// Must launch 256 threads.
|
||||||
const int tid = threadIdx.y * 32 + threadIdx.x;
|
const int tid = threadIdx.x;
|
||||||
const int blksz = 256;
|
const int blksz = 256;
|
||||||
int val = 0;
|
int val = 0;
|
||||||
for (int i = tid; i < nitems; i += blksz) val += pfxs[i];
|
for (int i = tid; i < nitems; i += blksz) val += pfxs[i];
|
||||||
|
|
||||||
out_pfxs[tid] = val;
|
|
||||||
|
|
||||||
// I know there's a better way to implement this summing network,
|
// I know there's a better way to implement this summing network,
|
||||||
// but it's not a time-critical piece of code.
|
// but it's not a time-critical piece of code.
|
||||||
__shared__ int sh_pfxs[blksz];
|
__shared__ int sh_pfxs[blksz];
|
||||||
@ -158,23 +162,18 @@ void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) {
|
|||||||
__syncthreads();
|
__syncthreads();
|
||||||
// Intentionally exclusive indexing here, val{0} should be 0
|
// Intentionally exclusive indexing here, val{0} should be 0
|
||||||
for (int i = 0; i < tid; i++) val += sh_pfxs[i];
|
for (int i = 0; i < tid; i++) val += sh_pfxs[i];
|
||||||
out_sums[tid] = val;
|
|
||||||
|
|
||||||
// Here we shift things over by 1, to make retrieving the
|
|
||||||
// indices and differences easier in the sorting step.
|
|
||||||
int i;
|
int i;
|
||||||
for (i = tid; i < nitems; i += blksz) {
|
for (i = tid; i < nitems; i += blksz) {
|
||||||
int t = pfxs[i];
|
int t = pfxs[i];
|
||||||
pfxs[i] = val;
|
pfxs[i] = val;
|
||||||
val += t;
|
val += t;
|
||||||
}
|
}
|
||||||
// Now write the last column and we're done.
|
|
||||||
pfxs[i] = val;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
__global__
|
__global__
|
||||||
void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
|
void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
|
||||||
const int tid = threadIdx.y * 32 + threadIdx.x;
|
const int tid = threadIdx.x;
|
||||||
const int blk_offset = GRPSZ * blockIdx.x;
|
const int blk_offset = GRPSZ * blockIdx.x;
|
||||||
__shared__ int shr_pfxs[RDXSZ];
|
__shared__ int shr_pfxs[RDXSZ];
|
||||||
|
|
||||||
@ -190,12 +189,13 @@ void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
#undef BLKSZ
|
#undef BLKSZ
|
||||||
#define BLKSZ 1024
|
#define BLKSZ 1024
|
||||||
__global__
|
__global__
|
||||||
void sort_8_a(unsigned char *keys, int *sorted_keys,
|
void sort_8_a(unsigned char *keys, int *sorted_keys,
|
||||||
const int *pfxs, const int *split) {
|
const int *pfxs, const int *split) {
|
||||||
const int tid = threadIdx.y * 32 + threadIdx.x;
|
const int tid = threadIdx.x;
|
||||||
const int blk_offset = GRPSZ * blockIdx.x;
|
const int blk_offset = GRPSZ * blockIdx.x;
|
||||||
__shared__ int shr_offs[RDXSZ];
|
__shared__ int shr_offs[RDXSZ];
|
||||||
__shared__ int defer[GRPSZ];
|
__shared__ int defer[GRPSZ];
|
||||||
@ -244,6 +244,109 @@ void sort_8_a(unsigned char *keys, int *sorted_keys,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
__global__
|
||||||
|
void convert_offsets(
|
||||||
|
unsigned short *offsets, // input and output
|
||||||
|
const int *split,
|
||||||
|
const unsigned short *keys,
|
||||||
|
const int shift
|
||||||
|
) {
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int blk_offset = GRPSZ * blockIdx.x;
|
||||||
|
const int rdx_offset = RDXSZ * blockIdx.x;
|
||||||
|
__shared__ int shr_offsets[GRPSZ];
|
||||||
|
__shared__ int shr_split[RDXSZ];
|
||||||
|
|
||||||
|
if (tid < RDXSZ) shr_split[tid] = split[rdx_offset + tid];
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int i = tid; i < GRPSZ; i += BLKSZ) {
|
||||||
|
int r = (keys[blk_offset + i] >> shift) & 0xff;
|
||||||
|
int o = shr_split[r] + offsets[blk_offset + i];
|
||||||
|
shr_offsets[o] = i;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int i = tid; i < GRPSZ; i += BLKSZ)
|
||||||
|
offsets[blk_offset + i] = shr_offsets[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__
|
||||||
|
void radix_sort_maybe(
|
||||||
|
unsigned short *sorted_keys,
|
||||||
|
int *sorted_values,
|
||||||
|
const unsigned short *keys,
|
||||||
|
const unsigned int *values,
|
||||||
|
const unsigned short *offsets,
|
||||||
|
const int *pfxs,
|
||||||
|
const int *split,
|
||||||
|
const int shift
|
||||||
|
) {
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int blk_offset = GRPSZ * blockIdx.x;
|
||||||
|
const int rdx_offset = RDXSZ * blockIdx.x;
|
||||||
|
__shared__ int shr_offs[RDXSZ];
|
||||||
|
|
||||||
|
if (tid < RDXSZ)
|
||||||
|
shr_offs[tid] = pfxs[rdx_offset + tid] - split[rdx_offset + tid];
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
int i = tid;
|
||||||
|
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
|
||||||
|
int offset = offsets[blk_offset + i];
|
||||||
|
int key = keys[blk_offset + offset];
|
||||||
|
int radix = (key >> shift) & 0xff;
|
||||||
|
int glob_offset = shr_offs[radix] + i;
|
||||||
|
/*if (sorted_values[glob_offset] != 0xffffffff)
|
||||||
|
printf("\nbad offset pos:%6x off:%4x gloff:%6x key:%4x "
|
||||||
|
"okey:%4x val:%8x oval:%8x",
|
||||||
|
i+blk_offset, offset, glob_offset, key,
|
||||||
|
sorted_keys[glob_offset], sorted_values[glob_offset]);*/
|
||||||
|
sorted_keys[glob_offset] = key;
|
||||||
|
sorted_values[glob_offset] = values[blk_offset + offset];
|
||||||
|
i += BLKSZ;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__global__
|
||||||
|
void radix_sort(unsigned short *sorted_keys, int *sorted_values,
|
||||||
|
const unsigned short *keys, const unsigned int *values,
|
||||||
|
const int *pfxs, const int *offsets, const int *split,
|
||||||
|
const int shift) {
|
||||||
|
const int tid = threadIdx.x;
|
||||||
|
const int blk_offset = GRPSZ * blockIdx.x;
|
||||||
|
__shared__ int shr_offs[RDXSZ];
|
||||||
|
__shared__ int defer[GRPSZ];
|
||||||
|
__shared__ unsigned char radishes[GRPSZ];
|
||||||
|
|
||||||
|
const int pfx_i = RDXSZ * blockIdx.x + tid;
|
||||||
|
if (tid < RDXSZ) shr_offs[tid] = split[pfx_i];
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
for (int i = tid; i < GRPSZ; i += BLKSZ) {
|
||||||
|
int idx = i + blk_offset;
|
||||||
|
int value = keys[idx];
|
||||||
|
int radix = radishes[i] = (value >> shift) & 0xff;
|
||||||
|
int offset = offsets[idx] + split[radix];
|
||||||
|
defer[offset] = value;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
if (tid < RDXSZ) shr_offs[tid] = pfxs[tid] - shr_offs[tid];
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
// Faster to reload these or to recompute them in shmem? Need to see if we
|
||||||
|
// can safely stash both
|
||||||
|
|
||||||
|
int i = tid;
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
|
||||||
|
int value = defer[i];
|
||||||
|
int offset = shr_offs[value] + i;
|
||||||
|
sorted_keys[offset] = value;
|
||||||
|
i += BLKSZ;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
__global__
|
__global__
|
||||||
|
163
sortbench.py
163
sortbench.py
@ -5,11 +5,14 @@ import pycuda.compiler
|
|||||||
import pycuda.driver as cuda
|
import pycuda.driver as cuda
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
np.set_printoptions(precision=5, edgeitems=20, linewidth=100, threshold=9000)
|
||||||
|
|
||||||
import sys, os
|
import sys, os
|
||||||
os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:'
|
os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:'
|
||||||
+ os.environ['PATH'])
|
+ os.environ['PATH'])
|
||||||
|
|
||||||
|
i32 = np.int32
|
||||||
|
|
||||||
with open('sortbench.cu') as f: src = f.read()
|
with open('sortbench.cu') as f: src = f.read()
|
||||||
mod = pycuda.compiler.SourceModule(src, keep=True)
|
mod = pycuda.compiler.SourceModule(src, keep=True)
|
||||||
|
|
||||||
@ -62,12 +65,161 @@ def go(scale, block, test_cpu):
|
|||||||
cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs),
|
cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs),
|
||||||
block=(32, 16, 1), grid=(scale, 1), l1=1)
|
block=(32, 16, 1), grid=(scale, 1), l1=1)
|
||||||
|
|
||||||
def rle(a):
|
def rle(a, n=512):
|
||||||
pos, = np.where(np.diff(a))
|
pos, = np.where(np.diff(a))
|
||||||
lens = np.diff(np.concatenate((pos, [len(a)])))
|
pos = np.concatenate(([0], pos+1, [len(a)]))
|
||||||
return [(a[p], p, l) for p, l in zip(pos, lens)[:5000]]
|
lens = np.diff(pos)
|
||||||
|
return [(a[p], p, l) for p, l in zip(pos, lens)[:n]]
|
||||||
|
|
||||||
|
|
||||||
|
def frle(a, n=512):
|
||||||
|
return ''.join(['\n\t%4x %6x %6x' % v for v in rle(a, n)])
|
||||||
|
|
||||||
|
# Some reference implementations follow for debugging.
|
||||||
|
def py_convert_offsets(offsets, split, keys, shift):
|
||||||
|
grids = len(offsets)
|
||||||
|
new_offs = np.empty((grids, 8192), dtype=np.int32)
|
||||||
|
for i in range(grids):
|
||||||
|
rdxs = (keys[i] >> shift) & 0xff
|
||||||
|
o = split[i][rdxs] + offsets[i]
|
||||||
|
new_offs[i][o] = np.arange(8192, dtype=np.int32)
|
||||||
|
return new_offs
|
||||||
|
|
||||||
|
def py_radix_sort_maybe(keys, offsets, pfxs, split, shift):
|
||||||
|
grids = len(offsets)
|
||||||
|
idxs = np.arange(8192)
|
||||||
|
|
||||||
|
okeys = np.empty(grids*8192, dtype=np.int32)
|
||||||
|
okeys.fill(-1)
|
||||||
|
|
||||||
|
for i in range(grids):
|
||||||
|
offs = pfxs[i] - split[i]
|
||||||
|
lkeys = keys[i][offsets[i]]
|
||||||
|
rdxs = (lkeys >> shift) & 0xff
|
||||||
|
glob_offsets = offs[rdxs] + idxs
|
||||||
|
okeys[glob_offsets] = lkeys
|
||||||
|
return okeys
|
||||||
|
|
||||||
def go_sort(count, stream=None):
|
def go_sort(count, stream=None):
|
||||||
|
grids = count / 8192
|
||||||
|
|
||||||
|
#keys = np.fromstring(np.random.bytes(count*2), dtype=np.uint16)
|
||||||
|
keys = np.arange(count, dtype=np.uint16)
|
||||||
|
np.random.shuffle(keys)
|
||||||
|
mkeys = np.reshape(keys, (grids, 8192))
|
||||||
|
vals = np.arange(count, dtype=np.uint32)
|
||||||
|
dkeys = cuda.to_device(keys)
|
||||||
|
dvals = cuda.to_device(vals)
|
||||||
|
print 'Done seeding'
|
||||||
|
|
||||||
|
dpfxs = cuda.mem_alloc(grids * 256 * 4)
|
||||||
|
doffsets = cuda.mem_alloc(count * 2)
|
||||||
|
launch('prefix_scan', doffsets, dpfxs, dkeys, i32(0),
|
||||||
|
block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
|
||||||
|
print cuda.from_device(dpfxs, (2, 256), np.uint32)
|
||||||
|
|
||||||
|
dsplit = cuda.mem_alloc(grids * 256 * 4)
|
||||||
|
launch('better_split', dsplit, dpfxs,
|
||||||
|
block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
|
||||||
|
|
||||||
|
# This stage will be rejiggered along with the split
|
||||||
|
launch('prefix_sum', dpfxs, np.int32(grids * 256),
|
||||||
|
block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
|
||||||
|
print cuda.from_device(dpfxs, (2, 256), np.uint32)
|
||||||
|
|
||||||
|
launch('convert_offsets', doffsets, dsplit, dkeys, i32(0),
|
||||||
|
block=(1024, 1, 1), grid=(grids, 1), stream=stream)
|
||||||
|
if not stream:
|
||||||
|
offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
|
||||||
|
split = cuda.from_device(dsplit, (grids, 256), np.uint32)
|
||||||
|
pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
|
||||||
|
tkeys = py_radix_sort_maybe(mkeys, offsets, pfxs, split, 0)
|
||||||
|
print frle(tkeys & 0xff)
|
||||||
|
|
||||||
|
d_skeys = cuda.mem_alloc(count * 2)
|
||||||
|
d_svals = cuda.mem_alloc(count * 4)
|
||||||
|
if not stream:
|
||||||
|
cuda.memset_d32(d_skeys, 0, count/2)
|
||||||
|
cuda.memset_d32(d_svals, 0xffffffff, count)
|
||||||
|
launch('radix_sort_maybe', d_skeys, d_svals,
|
||||||
|
dkeys, dvals, doffsets, dpfxs, dsplit, i32(0),
|
||||||
|
block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
skeys = cuda.from_device_like(d_skeys, keys)
|
||||||
|
svals = cuda.from_device_like(d_svals, vals)
|
||||||
|
|
||||||
|
# Test integrity of sort (keys and values kept together):
|
||||||
|
# skeys[i] = keys[svals[i]] for all i
|
||||||
|
print 'Integrity: ',
|
||||||
|
if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
|
||||||
|
print 'pass'
|
||||||
|
else:
|
||||||
|
print 'FAIL'
|
||||||
|
|
||||||
|
print frle(skeys & 0xff)
|
||||||
|
|
||||||
|
dkeys, d_skeys = d_skeys, dkeys
|
||||||
|
dvals, d_svals = d_svals, dvals
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
cuda.memset_d32(d_skeys, 0, count/2)
|
||||||
|
cuda.memset_d32(d_svals, 0xffffffff, count)
|
||||||
|
|
||||||
|
launch('prefix_scan', doffsets, dpfxs, dkeys, i32(8),
|
||||||
|
block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
|
||||||
|
launch('better_split', dsplit, dpfxs,
|
||||||
|
block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
|
||||||
|
launch('prefix_sum', dpfxs, np.int32(grids * 256),
|
||||||
|
block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
|
||||||
|
pre_offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
|
||||||
|
launch('convert_offsets', doffsets, dsplit, dkeys, i32(8),
|
||||||
|
block=(1024, 1, 1), grid=(grids, 1), stream=stream)
|
||||||
|
if not stream:
|
||||||
|
offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
|
||||||
|
split = cuda.from_device(dsplit, (grids, 256), np.uint32)
|
||||||
|
pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
|
||||||
|
tkeys = np.reshape(tkeys, (grids, 8192))
|
||||||
|
|
||||||
|
new_offs = py_convert_offsets(pre_offsets, split, tkeys, 8)
|
||||||
|
print new_offs[:3]
|
||||||
|
print offsets[:3]
|
||||||
|
print np.nonzero(new_offs != offsets)
|
||||||
|
|
||||||
|
fkeys = py_radix_sort_maybe(tkeys, new_offs, pfxs, split, 8)
|
||||||
|
print frle(fkeys)
|
||||||
|
|
||||||
|
|
||||||
|
launch('radix_sort_maybe', d_skeys, d_svals,
|
||||||
|
dkeys, dvals, doffsets, dpfxs, dsplit, i32(8),
|
||||||
|
block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
|
||||||
|
|
||||||
|
if not stream:
|
||||||
|
#print cuda.from_device(doffsets, (4, 8192), np.uint16)
|
||||||
|
#print cuda.from_device(dkeys, (4, 8192), np.uint16)
|
||||||
|
#print cuda.from_device(d_skeys, (4, 8192), np.uint16)
|
||||||
|
|
||||||
|
skeys = cuda.from_device_like(d_skeys, keys)
|
||||||
|
svals = cuda.from_device_like(d_svals, vals)
|
||||||
|
|
||||||
|
print 'Integrity: ',
|
||||||
|
if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
|
||||||
|
print 'pass'
|
||||||
|
else:
|
||||||
|
print 'FAIL'
|
||||||
|
|
||||||
|
sorted_keys = np.sort(keys)
|
||||||
|
# Test that ordering is correct. (Note that we don't need 100%
|
||||||
|
# correctness, so this test should be made "soft".)
|
||||||
|
print 'Order: ', 'pass' if np.all(skeys == sorted_keys) else 'FAIL'
|
||||||
|
|
||||||
|
print frle(skeys)
|
||||||
|
print fkeys
|
||||||
|
print skeys
|
||||||
|
print np.nonzero(fkeys != skeys)[0]
|
||||||
|
|
||||||
|
|
||||||
|
def go_sort_old(count, stream=None):
|
||||||
data = np.fromstring(np.random.bytes(count), dtype=np.uint8)
|
data = np.fromstring(np.random.bytes(count), dtype=np.uint8)
|
||||||
ddata = cuda.to_device(data)
|
ddata = cuda.to_device(data)
|
||||||
print 'Done seeding'
|
print 'Done seeding'
|
||||||
@ -115,16 +267,13 @@ def go_sort(count, stream=None):
|
|||||||
|
|
||||||
print 'is_sorted?', np.all(sorted == sorted_np)
|
print 'is_sorted?', np.all(sorted == sorted_np)
|
||||||
|
|
||||||
#data = np.fromstring(np.random.bytes(scale*block), dtype=np.uint16)
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# shmem is known good; disable the CPU run to get better info from cuprof
|
# shmem is known good; disable the CPU run to get better info from cuprof
|
||||||
#go(8, 512<<10, True)
|
#go(8, 512<<10, True)
|
||||||
#go(1024, 512<<8, False)
|
#go(1024, 512<<8, False)
|
||||||
#go(32768, 8192, False)
|
#go(32768, 8192, False)
|
||||||
stream = cuda.Stream() if '-s' in sys.argv else None
|
stream = cuda.Stream() if '-s' in sys.argv else None
|
||||||
go_sort(128<<20, stream)
|
go_sort(1<<20, stream)
|
||||||
if stream:
|
if stream:
|
||||||
stream.synchronize()
|
stream.synchronize()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user