Fine performance, but the scan's mis-ordering is worse than I thought.

This commit is contained in:
Steven Robertson 2011-08-31 10:39:01 -04:00
parent 638d068a00
commit 83704dd303
2 changed files with 282 additions and 30 deletions

View File

@ -1,6 +1,8 @@
#include <cuda.h> #include <cuda.h>
#include <stdio.h> #include <stdio.h>
#define s(x) #x
__global__ __global__
void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) { void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
__shared__ int sh_pfxs[256]; __shared__ int sh_pfxs[256];
@ -34,22 +36,26 @@ void prefix_scan_8_0_shmem(unsigned char *keys, int nitems, int *pfxs) {
#define BLKSZ 512 #define BLKSZ 512
__global__ __global__
void prefix_scan(unsigned short *keys, int *pfxs, const int shift) { void prefix_scan(unsigned short *offsets, int *pfxs,
const int tid = threadIdx.y * 32 + threadIdx.x; const unsigned short *keys, const int shift) {
__shared__ int shr_pfxs[BLKSZ]; const int tid = threadIdx.x;
__shared__ int shr_pfxs[RDXSZ];
shr_pfxs[tid] = 0; if (tid < RDXSZ) shr_pfxs[tid] = 0;
__syncthreads(); __syncthreads();
int i = tid + GRPSZ * blockIdx.x; int i = tid + GRPSZ * blockIdx.x;
for (int j = 0; j < GRP_BLK_FACTOR; j++) { for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int value = (keys[i] >> shift) && 0xff; // TODO: compiler smart enough to turn this into a BFE?
atomicAdd(shr_pfxs + value, 1); // TODO: should this just be two functions with fixed shifts?
// TODO: separate or integrated loop vars? unrolling?
int value = (keys[i] >> shift) & 0xff;
offsets[i] = atomicAdd(shr_pfxs + value, 1);
i += BLKSZ; i += BLKSZ;
} }
__syncthreads(); __syncthreads();
pfxs[tid + BLKSZ * blockIdx.x] = shr_pfxs[tid]; if (tid < RDXSZ) pfxs[tid + RDXSZ * blockIdx.x] = shr_pfxs[tid];
} }
__global__ __global__
@ -110,10 +116,9 @@ void better_split(int *pfxs_out, const int *pfxs) {
// updating the values as it goes, then the results are written coherently // updating the values as it goes, then the results are written coherently
// to global memory. // to global memory.
// //
// This leaves the processor extremely compute-starved, as this only allows // This leaves the SM underloaded, as this only allows 12 warps per SM. It
// 12 warps per SM. It might be better to halve the chunk size and lose // might be better to halve the chunk size and lose some coalescing
// some coalescing efficiency; need to benchmark. It's a relatively cheap // efficiency; need to benchmark. It's a relatively cheap step, though.
// step overall though.
for (int j = 0; j < 8; j++) { for (int j = 0; j < 8; j++) {
int jj = j << 5; int jj = j << 5;
@ -139,17 +144,16 @@ void better_split(int *pfxs_out, const int *pfxs) {
} }
} }
__global__ __global__
void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) { void prefix_sum(int *pfxs, const int nitems) {
// Needs optimizing (later). Should be rolled into split. // Needs optimizing (later). Should be rolled into split.
// Must launch 32x8. // Must launch 256 threads.
const int tid = threadIdx.y * 32 + threadIdx.x; const int tid = threadIdx.x;
const int blksz = 256; const int blksz = 256;
int val = 0; int val = 0;
for (int i = tid; i < nitems; i += blksz) val += pfxs[i]; for (int i = tid; i < nitems; i += blksz) val += pfxs[i];
out_pfxs[tid] = val;
// I know there's a better way to implement this summing network, // I know there's a better way to implement this summing network,
// but it's not a time-critical piece of code. // but it's not a time-critical piece of code.
__shared__ int sh_pfxs[blksz]; __shared__ int sh_pfxs[blksz];
@ -158,23 +162,18 @@ void prefix_sum(int *pfxs, int nitems, int *out_pfxs, int *out_sums) {
__syncthreads(); __syncthreads();
// Intentionally exclusive indexing here, val{0} should be 0 // Intentionally exclusive indexing here, val{0} should be 0
for (int i = 0; i < tid; i++) val += sh_pfxs[i]; for (int i = 0; i < tid; i++) val += sh_pfxs[i];
out_sums[tid] = val;
// Here we shift things over by 1, to make retrieving the
// indices and differences easier in the sorting step.
int i; int i;
for (i = tid; i < nitems; i += blksz) { for (i = tid; i < nitems; i += blksz) {
int t = pfxs[i]; int t = pfxs[i];
pfxs[i] = val; pfxs[i] = val;
val += t; val += t;
} }
// Now write the last column and we're done.
pfxs[i] = val;
} }
__global__ __global__
void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) { void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
const int tid = threadIdx.y * 32 + threadIdx.x; const int tid = threadIdx.x;
const int blk_offset = GRPSZ * blockIdx.x; const int blk_offset = GRPSZ * blockIdx.x;
__shared__ int shr_pfxs[RDXSZ]; __shared__ int shr_pfxs[RDXSZ];
@ -190,12 +189,13 @@ void sort_8(unsigned char *keys, int *sorted_keys, int *pfxs) {
} }
} }
#undef BLKSZ #undef BLKSZ
#define BLKSZ 1024 #define BLKSZ 1024
__global__ __global__
void sort_8_a(unsigned char *keys, int *sorted_keys, void sort_8_a(unsigned char *keys, int *sorted_keys,
const int *pfxs, const int *split) { const int *pfxs, const int *split) {
const int tid = threadIdx.y * 32 + threadIdx.x; const int tid = threadIdx.x;
const int blk_offset = GRPSZ * blockIdx.x; const int blk_offset = GRPSZ * blockIdx.x;
__shared__ int shr_offs[RDXSZ]; __shared__ int shr_offs[RDXSZ];
__shared__ int defer[GRPSZ]; __shared__ int defer[GRPSZ];
@ -244,6 +244,109 @@ void sort_8_a(unsigned char *keys, int *sorted_keys,
} }
} }
__global__
void convert_offsets(
unsigned short *offsets, // input and output
const int *split,
const unsigned short *keys,
const int shift
) {
const int tid = threadIdx.x;
const int blk_offset = GRPSZ * blockIdx.x;
const int rdx_offset = RDXSZ * blockIdx.x;
__shared__ int shr_offsets[GRPSZ];
__shared__ int shr_split[RDXSZ];
if (tid < RDXSZ) shr_split[tid] = split[rdx_offset + tid];
__syncthreads();
for (int i = tid; i < GRPSZ; i += BLKSZ) {
int r = (keys[blk_offset + i] >> shift) & 0xff;
int o = shr_split[r] + offsets[blk_offset + i];
shr_offsets[o] = i;
}
__syncthreads();
for (int i = tid; i < GRPSZ; i += BLKSZ)
offsets[blk_offset + i] = shr_offsets[i];
}
__global__
void radix_sort_maybe(
unsigned short *sorted_keys,
int *sorted_values,
const unsigned short *keys,
const unsigned int *values,
const unsigned short *offsets,
const int *pfxs,
const int *split,
const int shift
) {
const int tid = threadIdx.x;
const int blk_offset = GRPSZ * blockIdx.x;
const int rdx_offset = RDXSZ * blockIdx.x;
__shared__ int shr_offs[RDXSZ];
if (tid < RDXSZ)
shr_offs[tid] = pfxs[rdx_offset + tid] - split[rdx_offset + tid];
__syncthreads();
int i = tid;
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int offset = offsets[blk_offset + i];
int key = keys[blk_offset + offset];
int radix = (key >> shift) & 0xff;
int glob_offset = shr_offs[radix] + i;
/*if (sorted_values[glob_offset] != 0xffffffff)
printf("\nbad offset pos:%6x off:%4x gloff:%6x key:%4x "
"okey:%4x val:%8x oval:%8x",
i+blk_offset, offset, glob_offset, key,
sorted_keys[glob_offset], sorted_values[glob_offset]);*/
sorted_keys[glob_offset] = key;
sorted_values[glob_offset] = values[blk_offset + offset];
i += BLKSZ;
}
}
__global__
void radix_sort(unsigned short *sorted_keys, int *sorted_values,
const unsigned short *keys, const unsigned int *values,
const int *pfxs, const int *offsets, const int *split,
const int shift) {
const int tid = threadIdx.x;
const int blk_offset = GRPSZ * blockIdx.x;
__shared__ int shr_offs[RDXSZ];
__shared__ int defer[GRPSZ];
__shared__ unsigned char radishes[GRPSZ];
const int pfx_i = RDXSZ * blockIdx.x + tid;
if (tid < RDXSZ) shr_offs[tid] = split[pfx_i];
__syncthreads();
for (int i = tid; i < GRPSZ; i += BLKSZ) {
int idx = i + blk_offset;
int value = keys[idx];
int radix = radishes[i] = (value >> shift) & 0xff;
int offset = offsets[idx] + split[radix];
defer[offset] = value;
}
__syncthreads();
if (tid < RDXSZ) shr_offs[tid] = pfxs[tid] - shr_offs[tid];
__syncthreads();
// Faster to reload these or to recompute them in shmem? Need to see if we
// can safely stash both
int i = tid;
#pragma unroll
for (int j = 0; j < GRP_BLK_FACTOR; j++) {
int value = defer[i];
int offset = shr_offs[value] + i;
sorted_keys[offset] = value;
i += BLKSZ;
}
}
__global__ __global__

View File

@ -5,11 +5,14 @@ import pycuda.compiler
import pycuda.driver as cuda import pycuda.driver as cuda
import numpy as np import numpy as np
np.set_printoptions(precision=5, edgeitems=20, linewidth=100, threshold=9000)
import sys, os import sys, os
os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:' os.environ['PATH'] = ('/usr/x86_64-pc-linux-gnu/gcc-bin/4.4.6:'
+ os.environ['PATH']) + os.environ['PATH'])
i32 = np.int32
with open('sortbench.cu') as f: src = f.read() with open('sortbench.cu') as f: src = f.read()
mod = pycuda.compiler.SourceModule(src, keep=True) mod = pycuda.compiler.SourceModule(src, keep=True)
@ -62,12 +65,161 @@ def go(scale, block, test_cpu):
cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs), cuda.In(data), np.int32(block), cuda.InOut(popc5_pfxs),
block=(32, 16, 1), grid=(scale, 1), l1=1) block=(32, 16, 1), grid=(scale, 1), l1=1)
def rle(a): def rle(a, n=512):
pos, = np.where(np.diff(a)) pos, = np.where(np.diff(a))
lens = np.diff(np.concatenate((pos, [len(a)]))) pos = np.concatenate(([0], pos+1, [len(a)]))
return [(a[p], p, l) for p, l in zip(pos, lens)[:5000]] lens = np.diff(pos)
return [(a[p], p, l) for p, l in zip(pos, lens)[:n]]
def frle(a, n=512):
return ''.join(['\n\t%4x %6x %6x' % v for v in rle(a, n)])
# Some reference implementations follow for debugging.
def py_convert_offsets(offsets, split, keys, shift):
grids = len(offsets)
new_offs = np.empty((grids, 8192), dtype=np.int32)
for i in range(grids):
rdxs = (keys[i] >> shift) & 0xff
o = split[i][rdxs] + offsets[i]
new_offs[i][o] = np.arange(8192, dtype=np.int32)
return new_offs
def py_radix_sort_maybe(keys, offsets, pfxs, split, shift):
grids = len(offsets)
idxs = np.arange(8192)
okeys = np.empty(grids*8192, dtype=np.int32)
okeys.fill(-1)
for i in range(grids):
offs = pfxs[i] - split[i]
lkeys = keys[i][offsets[i]]
rdxs = (lkeys >> shift) & 0xff
glob_offsets = offs[rdxs] + idxs
okeys[glob_offsets] = lkeys
return okeys
def go_sort(count, stream=None): def go_sort(count, stream=None):
grids = count / 8192
#keys = np.fromstring(np.random.bytes(count*2), dtype=np.uint16)
keys = np.arange(count, dtype=np.uint16)
np.random.shuffle(keys)
mkeys = np.reshape(keys, (grids, 8192))
vals = np.arange(count, dtype=np.uint32)
dkeys = cuda.to_device(keys)
dvals = cuda.to_device(vals)
print 'Done seeding'
dpfxs = cuda.mem_alloc(grids * 256 * 4)
doffsets = cuda.mem_alloc(count * 2)
launch('prefix_scan', doffsets, dpfxs, dkeys, i32(0),
block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
print cuda.from_device(dpfxs, (2, 256), np.uint32)
dsplit = cuda.mem_alloc(grids * 256 * 4)
launch('better_split', dsplit, dpfxs,
block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
# This stage will be rejiggered along with the split
launch('prefix_sum', dpfxs, np.int32(grids * 256),
block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
print cuda.from_device(dpfxs, (2, 256), np.uint32)
launch('convert_offsets', doffsets, dsplit, dkeys, i32(0),
block=(1024, 1, 1), grid=(grids, 1), stream=stream)
if not stream:
offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
split = cuda.from_device(dsplit, (grids, 256), np.uint32)
pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
tkeys = py_radix_sort_maybe(mkeys, offsets, pfxs, split, 0)
print frle(tkeys & 0xff)
d_skeys = cuda.mem_alloc(count * 2)
d_svals = cuda.mem_alloc(count * 4)
if not stream:
cuda.memset_d32(d_skeys, 0, count/2)
cuda.memset_d32(d_svals, 0xffffffff, count)
launch('radix_sort_maybe', d_skeys, d_svals,
dkeys, dvals, doffsets, dpfxs, dsplit, i32(0),
block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
if not stream:
skeys = cuda.from_device_like(d_skeys, keys)
svals = cuda.from_device_like(d_svals, vals)
# Test integrity of sort (keys and values kept together):
# skeys[i] = keys[svals[i]] for all i
print 'Integrity: ',
if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
print 'pass'
else:
print 'FAIL'
print frle(skeys & 0xff)
dkeys, d_skeys = d_skeys, dkeys
dvals, d_svals = d_svals, dvals
if not stream:
cuda.memset_d32(d_skeys, 0, count/2)
cuda.memset_d32(d_svals, 0xffffffff, count)
launch('prefix_scan', doffsets, dpfxs, dkeys, i32(8),
block=(512, 1, 1), grid=(grids, 1), stream=stream, l1=1)
launch('better_split', dsplit, dpfxs,
block=(32, 1, 1), grid=(grids / 32, 1), stream=stream)
launch('prefix_sum', dpfxs, np.int32(grids * 256),
block=(256, 1, 1), grid=(1, 1), stream=stream, l1=1)
pre_offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
launch('convert_offsets', doffsets, dsplit, dkeys, i32(8),
block=(1024, 1, 1), grid=(grids, 1), stream=stream)
if not stream:
offsets = cuda.from_device(doffsets, (grids, 8192), np.uint16)
split = cuda.from_device(dsplit, (grids, 256), np.uint32)
pfxs = cuda.from_device(dpfxs, (grids, 256), np.uint32)
tkeys = np.reshape(tkeys, (grids, 8192))
new_offs = py_convert_offsets(pre_offsets, split, tkeys, 8)
print new_offs[:3]
print offsets[:3]
print np.nonzero(new_offs != offsets)
fkeys = py_radix_sort_maybe(tkeys, new_offs, pfxs, split, 8)
print frle(fkeys)
launch('radix_sort_maybe', d_skeys, d_svals,
dkeys, dvals, doffsets, dpfxs, dsplit, i32(8),
block=(1024, 1, 1), grid=(grids, 1), stream=stream, l1=1)
if not stream:
#print cuda.from_device(doffsets, (4, 8192), np.uint16)
#print cuda.from_device(dkeys, (4, 8192), np.uint16)
#print cuda.from_device(d_skeys, (4, 8192), np.uint16)
skeys = cuda.from_device_like(d_skeys, keys)
svals = cuda.from_device_like(d_svals, vals)
print 'Integrity: ',
if np.all(svals < len(keys)) and np.all(skeys == keys[svals]):
print 'pass'
else:
print 'FAIL'
sorted_keys = np.sort(keys)
# Test that ordering is correct. (Note that we don't need 100%
# correctness, so this test should be made "soft".)
print 'Order: ', 'pass' if np.all(skeys == sorted_keys) else 'FAIL'
print frle(skeys)
print fkeys
print skeys
print np.nonzero(fkeys != skeys)[0]
def go_sort_old(count, stream=None):
data = np.fromstring(np.random.bytes(count), dtype=np.uint8) data = np.fromstring(np.random.bytes(count), dtype=np.uint8)
ddata = cuda.to_device(data) ddata = cuda.to_device(data)
print 'Done seeding' print 'Done seeding'
@ -115,16 +267,13 @@ def go_sort(count, stream=None):
print 'is_sorted?', np.all(sorted == sorted_np) print 'is_sorted?', np.all(sorted == sorted_np)
#data = np.fromstring(np.random.bytes(scale*block), dtype=np.uint16)
def main(): def main():
# shmem is known good; disable the CPU run to get better info from cuprof # shmem is known good; disable the CPU run to get better info from cuprof
#go(8, 512<<10, True) #go(8, 512<<10, True)
#go(1024, 512<<8, False) #go(1024, 512<<8, False)
#go(32768, 8192, False) #go(32768, 8192, False)
stream = cuda.Stream() if '-s' in sys.argv else None stream = cuda.Stream() if '-s' in sys.argv else None
go_sort(128<<20, stream) go_sort(1<<20, stream)
if stream: if stream:
stream.synchronize() stream.synchronize()