Another non-working checkin

This commit is contained in:
Steven Robertson 2011-05-05 23:35:54 -04:00
parent fac6f838a4
commit 3d94c256a9
2 changed files with 169 additions and 105 deletions

View File

@ -4,32 +4,22 @@ from cuburn.code.util import *
class ColorClip(HunkOCode): class ColorClip(HunkOCode):
defs = """ defs = """
__global__ __global__
void logfilt(float4 *pixbuf, float k1, float k2, void colorclip(float4 *pixbuf, float gamma, float vibrancy, float highpow) {
float gamma, float vibrancy, float highpow) {
// TODO: test if over an edge of the framebuffer // TODO: test if over an edge of the framebuffer
int i = blockDim.x * blockIdx.x + threadIdx.x; int i = blockDim.x * blockIdx.x + threadIdx.x;
float4 pix = pixbuf[i]; float4 pix = pixbuf[i];
if (pix.w <= 0) return; if (pix.w <= 0) return;
float ls = k1 * logf(1.0 + pix.w * k2) / pix.w;
pix.x *= ls;
pix.y *= ls;
pix.z *= ls;
pix.w *= ls;
float4 opix = pix; float4 opix = pix;
// TODO: linearized bottom range // TODO: linearized bottom range
float alpha = powf(pix.w, gamma); float alpha = powf(pix.w, gamma);
ls = vibrancy * alpha / pix.w; float ls = vibrancy * alpha / pix.w;
float maxc = fmaxf(pix.x, fmaxf(pix.y, pix.z)); float maxc = fmaxf(pix.x, fmaxf(pix.y, pix.z));
float newls = 1 / maxc; float newls = 1 / maxc;
// TODO: detect if highlight power is globally disabled and drop
// this branch
if (maxc * ls > 1 && highpow >= 0) { if (maxc * ls > 1 && highpow >= 0) {
// TODO: does CUDA autopromote the int here to a float before GPU? // TODO: does CUDA autopromote the int here to a float before GPU?
float lsratio = powf(newls / ls, highpow); float lsratio = powf(newls / ls, highpow);
@ -65,15 +55,18 @@ void logfilt(float4 *pixbuf, float k1, float k2,
class DensityEst(HunkOCode): class DensityEst(HunkOCode):
""" """
NOTE: for now, this *must* be invoked with a block size of (32,16,1), and NOTE: for now, this *must* be invoked with a block size of (32,32,1), and
a grid size of (W/32) for vertical filtering or (H/32) for horizontal. a grid size of (W/32,1). At least 7 pixel gutters are required, and the
stride and height probably need to be multiples of 32.
It will probably fail for images that are not multiples of 32.
""" """
# Note, changing this does not yet have any effect, it's just informational
MAX_WIDTH=15
def __init__(self, features, cp): def __init__(self, features, cp):
self.features, self.cp = features, cp self.features, self.cp = features, cp
headers = "#include<math_constants.h>\n"
@property @property
def defs(self): def defs(self):
return self.defs_tmpl.substitute(features=self.features, cp=self.cp) return self.defs_tmpl.substitute(features=self.features, cp=self.cp)
@ -81,109 +74,184 @@ class DensityEst(HunkOCode):
defs_tmpl = Template(""" defs_tmpl = Template("""
#define W 15 // Filter width (regardless of standard deviation chosen) #define W 15 // Filter width (regardless of standard deviation chosen)
#define W2 7 // Half of filter width, rounded down #define W2 7 // Half of filter width, rounded down
#define NW 16 // Number of warps in each set of points #define FW 46 // Width of local result storage (NW+W2+W2)
#define FW 30 // Width of local result storage per-lane (NW+W2+W2) #define FW2 (FW*FW)
#define BX 32 // The size of a block's X dimension (== 1 warp)
__shared__ float de_r[FW2], de_g[FW2], de_b[FW2], de_a[FW2];
__device__ void de_add(int ibase, int ii, int jj, float4 scaled) {
int idx = ibase + FW * ii + jj;
atomicAdd(de_r+idx, scaled.x);
atomicAdd(de_g+idx, scaled.y);
atomicAdd(de_b+idx, scaled.z);
atomicAdd(de_a+idx, scaled.w);
}
__global__ __global__
void density_est(float4 *pixbuf, float *denbuf, int vertical) { void logscale(float4 *pixbuf, float4 *outbuf, float k1, float k2) {
__shared__ float r[BX*FW], g[BX*FW], b[BX*FW], a[BX*FW]; int i = blockDim.x * blockIdx.x + threadIdx.x;
float4 pix = pixbuf[i];
int ibase; // The index of the first element within this lane's strip float ls = fmaxf(0, k1 * logf(1.0 + pix.w * k2) / pix.w);
int imax; // The maximum offset from the first element in the strip pix.x *= ls;
int istride; // Number of indices until next point to filter pix.y *= ls;
pix.z *= ls;
pix.w *= ls;
if (vertical) { outbuf[i] = pix;
ibase = threadIdx.x + blockIdx.x * BX; }
imax = {{features.acc_height}};
istride = {{features.acc_stride}};
} else {
ibase = (blockIdx.x * BX + threadIdx.x) * {{features.acc_stride}};
imax = {{features.acc_width}};
istride = 1;
}
for (int i = threadIdx.x + BX*threadIdx.y; i < BX*FW; i += NW * BX) __global__
r[i] = g[i] = b[i] = a[i] = 0.0f; void density_est(float4 *pixbuf, float4 *outbuf, float *denbuf,
float k1, float k2) {
for (int i = threadIdx.x + 32*threadIdx.y; i < FW2; i += 32)
de_r[i] = de_g[i] = de_b[i] = de_a[i] = 0.0f;
__syncthreads();
for (int imrow = threadIdx.y + W2; imrow < {{features.acc_height}}; imrow += 32)
{
int idx = {{features.acc_stride}} * imrow +
+ blockIdx.x * 32 + threadIdx.x + W2;
for (int i = threadIdx.y; i < imax; i += NW) {
int idx = ibase+i*istride;
float4 in = pixbuf[idx]; float4 in = pixbuf[idx];
float den = denbuf[idx]; float den = denbuf[idx];
int j = (threadIdx.y + W2) * 32 + threadIdx.x; if (in.w > 0 && den > 0) {
float ls = k1 * 12 * logf(1.0 + in.w * k2) / in.w;
in.x *= ls;
in.y *= ls;
in.z *= ls;
in.w *= ls;
float sd = {{0.35 * cp.estimator}} / powf(den+1.0f, {{cp.estimator_curve}}); // Calculate standard deviation of Gaussian kernel.
{{if cp.estimator_minimum > 1}} // flam3_gaussian_filter() uses an implicit standard deviation of 0.5,
sd = fmaxf(sd, {{cp.estimator_minimum}}); // but the DE filters scale filter distance by the default spatial
{{endif}} // support factor of 1.5, so the effective base SD is (0.5/1.5)=1/3.
sd *= sd; float sd = {{cp.estimator / 3.}};
// TODO: log scaling here? matches flam3, but, ick // The base SD is then scaled in inverse proportion to the density of
// TODO: investigate harm caused by varying standard deviation in a // the point being scaled.
// separable environment sd *= powf(den+1.0f, {{-cp.estimator_curve}});
float coeff = rsqrtf(2.0f*M_PI*sd*sd);
atomicAdd(r+j, in.x * coeff);
atomicAdd(g+j, in.y * coeff);
atomicAdd(b+j, in.z * coeff);
atomicAdd(a+j, in.w * coeff);
sd = -0.5/sd;
// #pragma unroll // Clamp the final standard deviation. Things will go badly if the
for (int k = 1; k <= W2; k++) { // minimum is undershot.
float scale = exp(sd*k*k)*coeff; sd = fmaxf(sd, {{max(cp.estimator_minimum / 3., 0.3)}} );
idx = j+k*32;
atomicAdd(r+idx, in.x * scale); // This five-term polynomial approximates the sum of the filters with
atomicAdd(g+idx, in.y * scale); // the clamping logic used here. See helpers/filt_err.py.
atomicAdd(b+idx, in.z * scale); float filtsum;
atomicAdd(a+idx, in.w * scale); filtsum = -0.20885075f * sd + 0.90557721f;
idx = j-k*32; filtsum = filtsum * sd + 5.28363054f;
atomicAdd(r+idx, in.x * scale); filtsum = filtsum * sd + -0.11733533f;
atomicAdd(g+idx, in.y * scale); filtsum = filtsum * sd + 0.35670333f;
atomicAdd(b+idx, in.z * scale); float filtscale = 1 / filtsum;
atomicAdd(a+idx, in.w * scale);
// The reciprocal SD scaling coeffecient in the Gaussian exponent.
// exp(-x^2/(2*sd^2)) = exp2f(x^2*rsd)
float rsd = -0.5f * CUDART_L2E_F / (sd * sd);
int si = (threadIdx.y + W2) * FW + threadIdx.x + W2;
for (int jj = 0; jj <= W2; jj++) {
float jj2f = jj;
jj2f *= jj2f;
float iif = 0;
for (int ii = 0; ii <= jj; ii++) {
iif += 1;
float coeff = exp2f((jj2f + iif * iif) * rsd) * filtscale;
if (coeff < 0.0001f) break;
float4 scaled;
scaled.x = in.x * coeff;
scaled.y = in.y * coeff;
scaled.z = in.z * coeff;
scaled.w = in.w * coeff;
de_add(si, ii, jj, scaled);
if (jj == 0) continue;
de_add(si, ii, -jj, scaled);
if (ii != 0) {
de_add(si, -ii, jj, scaled);
de_add(si, -ii, -jj, scaled);
if (ii == jj) continue;
}
de_add(si, jj, ii, scaled);
de_add(si, -jj, ii, scaled);
if (ii == 0) continue;
de_add(si, -jj, -ii, scaled);
de_add(si, jj, -ii, scaled);
// TODO: validate that the above avoids bank conflicts
}
}
} }
__syncthreads(); __syncthreads();
float4 out; // TODO: could coalesce this, but what a pain
j = threadIdx.y * BX + threadIdx.x; for (int i = threadIdx.x; i < FW; i += 32) {
out.x = r[j]; idx = {{features.acc_stride}} * imrow + blockIdx.x * 32 + i + W2;
out.y = g[j]; int si = threadIdx.y * FW + i;
out.z = b[j]; float *out = reinterpret_cast<float*>(&outbuf[idx]);
out.w = a[j]; atomicAdd(out, de_r[si]);
idx = ibase+(i-W2)*istride; atomicAdd(out+1, de_g[si]);
if (idx > 0) atomicAdd(out+2, de_b[si]);
pixbuf[idx] = out; atomicAdd(out+3, de_a[si]);
__syncthreads(); }
if (threadIdx.y == 5000) {
for (int i = threadIdx.x; i < FW; i += 32) {
idx = {{features.acc_stride}} * (imrow + 32)
+ blockIdx.x * 32 + i + W2;
int si = 32 * FW + i;
float *out = reinterpret_cast<float*>(&outbuf[idx]);
atomicAdd(out, 0.2 + de_r[si]);
atomicAdd(out+1, de_g[si]);
atomicAdd(out+2, de_b[si]);
atomicAdd(out+3, de_a[si]);
}
}
__syncthreads();
// TODO: shift instead of copying // TODO: shift instead of copying
idx = threadIdx.x + BX * threadIdx.y; int tid = threadIdx.y * 32 + threadIdx.x;
if (threadIdx.y < NW-2) { for (int i = tid; i < FW*(W2+W2); i += 512) {
r[idx] = r[idx + BX*NW]; de_r[i] = de_r[i+FW*32];
g[idx] = g[idx + BX*NW]; de_g[i] = de_g[i+FW*32];
b[idx] = b[idx + BX*NW]; de_b[i] = de_b[i+FW*32];
a[idx] = a[idx + BX*NW]; de_a[i] = de_a[i+FW*32];
} }
__syncthreads();
r[idx + BX*(NW-2)] = 0.0f; __syncthreads();
g[idx + BX*(NW-2)] = 0.0f; for (int i = tid + FW*(W2+W2); i < FW2; i += 512) {
b[idx + BX*(NW-2)] = 0.0f; de_r[i] = 0.0f;
a[idx + BX*(NW-2)] = 0.0f; de_g[i] = 0.0f;
de_b[i] = 0.0f;
de_a[i] = 0.0f;
}
__syncthreads(); __syncthreads();
} }
} }
""") """)
def invoke(self, mod, abufd, dbufd): def invoke(self, mod, abufd, obufd, dbufd):
fun = mod.get_function("density_est") # TODO: add no-est version
t = fun(abufd, dbufd, np.int32(0), # TODO: come up with a general way to average these parameters
block=(32, 16, 1), grid=(self.features.acc_height/32,1), k1 = self.cp.brightness * 268 / 256
time_kernel=True) area = self.features.width * self.features.height / self.cp.ppu ** 2
print "Horizontal density estimation: %g" % t k2 = 1 / (area * self.cp.adj_density)
t = fun(abufd, dbufd, np.int32(1), if self.cp.estimator == 0:
block=(32, 16, 1), grid=(self.features.acc_width/32,1), fun = mod.get_function("logscale")
t = fun(abufd, obufd, np.float32(k1), np.float32(k2),
block=(self.features.acc_width, 1, 1),
grid=(self.features.acc_height, 1), time_kernel=True)
else:
fun = mod.get_function("density_est")
t = fun(abufd, obufd, dbufd, np.float32(k1), np.float32(k2),
block=(32, 32, 1), grid=(self.features.acc_stride/32 - 1, 1),
time_kernel=True) time_kernel=True)
print "Vertical density estimation: %g" % t print "Density estimation: %g" % t

View File

@ -220,19 +220,15 @@ def render(features, cps):
npix = features.width * features.height npix = features.width * features.height
k1 = cp.brightness * 268 / 256 obufd = cuda.to_device(abuf)
area = features.width * features.height / cp.ppu ** 2 de.invoke(mod, abufd, obufd, dbufd)
k2 = 1 / (area * cp.adj_density)
de.invoke(mod, abufd, dbufd) fun = mod.get_function("colorclip")
t = fun(obufd, f(1 / cp.gamma), f(cp.vibrancy), f(cp.highlight_power),
fun = mod.get_function("logfilt")
t = fun(abufd, f(k1), f(k2),
f(1 / cp.gamma), f(cp.vibrancy), f(cp.highlight_power),
block=(256,1,1), grid=(npix/256,1), time_kernel=True) block=(256,1,1), grid=(npix/256,1), time_kernel=True)
print "Completed color filtering in %g seconds" % t print "Completed color filtering in %g seconds" % t
abuf = cuda.from_device_like(abufd, abuf) abuf = cuda.from_device_like(obufd, abuf)
return abuf, dbuf return abuf, dbuf