// Note that we use `capnp` here, NOT `capnpc` extern crate capnp; // We create a module here to define how we are to access the code // being included. pub mod point_capnp { // The environment variable OUT_DIR is set by Cargo, and // is the location of all the code that was built as part // of the codegen step. // point_capnp.rs is the actual file to include include!(concat!(env!("OUT_DIR"), "/point_capnp.rs")); } fn main() { // The process of building a Cap'N Proto message is a bit tedious. // We start by creating a generic Builder; it acts as the message // container that we'll later be filling with content of our `Point` let mut builder = capnp::message::Builder::new_default(); // Because we need a mutable reference to the `builder` later, // we fence off this part of the code to allow sequential mutable // borrows. As I understand it, non-lexical lifetimes: // https://github.com/rust-lang/rust-roadmap/issues/16 // will make this no longer necessary { // And now we can set up the actual message we're trying to create let mut point_msg = builder.init_root::(); // Stuff our message with some content point_msg.set_x(12); point_msg.set_y(14); } // It's now time to serialize our message to binary. Let's set up a buffer for that: let mut buffer = Vec::new(); // And actually fill that buffer with our data capnp::serialize::write_message(&mut buffer, &builder).unwrap(); // Finally, let's deserialize the data let deserialized = capnp::serialize::read_message( &mut buffer.as_slice(), capnp::message::ReaderOptions::new() ).unwrap(); // `deserialized` is currently a generic reader; it understands // the content of the message we gave it (i.e. that there are two // int32 values) but doesn't really know what they represent (the Point). // This is where we map the generic data back into our schema. let point_reader = deserialized.get_root::().unwrap(); // We can now get our x and y values back, and make sure they match assert_eq!(point_reader.get_x(), 12); assert_eq!(point_reader.get_y(), 14); }