bspeice.github.io/event-studies-and-earnings-releases.html
2016-10-22 22:29:18 -04:00

5377 lines
427 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="Or, being suspicious of market insiders. Use the button below to show the code I&#39;ve used to generate this article. Because there is a significant amount more code involved than most other posts ...">
<meta name="keywords" content="earnings, event study">
<link rel="icon" href="https://bspeice.github.io/favicon.ico">
<title>Event Studies and Earnings Releases - Bradlee Speice</title>
<!-- Stylesheets -->
<link href="https://bspeice.github.io/theme/css/bootstrap.min.css" rel="stylesheet">
<link href="https://bspeice.github.io/theme/css/fonts.css" rel="stylesheet">
<link href="https://bspeice.github.io/theme/css/nest.css" rel="stylesheet">
<link href="https://bspeice.github.io/theme/css/pygment.css" rel="stylesheet">
<!-- /Stylesheets -->
<!-- RSS Feeds -->
<link href="https://bspeice.github.io/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Bradlee Speice Full Atom Feed" />
<link href="https://bspeice.github.io/feeds/blog.atom.xml" type="application/atom+xml" rel="alternate" title="Bradlee Speice Categories Atom Feed" />
<!-- /RSS Feeds -->
<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
<!-- Google Analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-74711362-1', 'auto');
ga('send', 'pageview');
</script>
<!-- /Google Analytics -->
</head>
<body>
<!-- Header -->
<div class="header-container gradient">
<!-- Static navbar -->
<div class="container">
<div class="header-nav">
<div class="header-logo">
<a class="pull-left" href="https://bspeice.github.io/"><img class="mr20" src="https://bspeice.github.io/images/logo.svg" alt="logo">Bradlee Speice</a>
</div>
<div class="nav pull-right">
</div>
</div>
</div>
<!-- /Static navbar -->
<!-- Header -->
<!-- Header -->
<div class="container header-wrapper">
<div class="row">
<div class="col-lg-12">
<div class="header-content">
<h1 class="header-title">Event Studies and Earnings Releases</h1>
<p class="header-date"> <a href="https://bspeice.github.io/author/bradlee-speice.html">Bradlee Speice</a>, Wed 08 June 2016, <a href="https://bspeice.github.io/category/blog.html">Blog</a></p>
<div class="header-underline"></div>
<div class="clearfix"></div>
<p class="pull-right header-tags">
<span class="glyphicon glyphicon-tags mr5" aria-hidden="true"></span>
<a href="https://bspeice.github.io/tag/earnings.html">earnings</a>, <a href="https://bspeice.github.io/tag/event-study.html">event study</a> </p>
</div>
</div>
</div>
</div>
<!-- /Header -->
<!-- /Header -->
</div>
<!-- /Header -->
<!-- Content -->
<div class="container content">
<script type="text/javascript" src="https://cdn.jsdelivr.net/jquery/3.0.0/jquery.min.js"></script>
<p>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Or, being suspicious of market insiders.</p>
<hr>
<p>Use the button below to show the code I've used to generate this article. Because there is a significant amount more code involved than most other posts I've written, it's hidden by default to allow people to concentrate on the important bits.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="k">import</span> <span class="n">HTML</span>
<span class="n">HTML</span><span class="p">(</span><span class="s1">&#39;&#39;&#39;&lt;script&gt;</span>
<span class="s1">code_show=true; </span>
<span class="s1">function code_toggle() {</span>
<span class="s1"> if (code_show){</span>
<span class="s1"> $(&#39;div.input&#39;).hide();</span>
<span class="s1"> } else {</span>
<span class="s1"> $(&#39;div.input&#39;).show();</span>
<span class="s1"> }</span>
<span class="s1"> code_show = !code_show</span>
<span class="s1">} </span>
<span class="s1">$( document ).ready(code_toggle);</span>
<span class="s1">&lt;/script&gt;</span>
<span class="s1">&lt;form action=&quot;javascript:code_toggle()&quot;&gt;&lt;input type=&quot;submit&quot; value=&quot;Click here to toggle on/off the raw code.&quot;&gt;&lt;/form&gt;&#39;&#39;&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[1]:</div>
<div class="output_html rendered_html output_subarea output_execute_result">
<script>
code_show=true;
function code_toggle() {
if (code_show){
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="The-Market-Just-Knew">The Market Just Knew<a class="anchor-link" href="#The-Market-Just-Knew">&#182;</a></h1><p>I recently saw two examples of stock charts that have kept me thinking for a while. And now that the semester is complete, I finally have enough time to really look at them and give them the treatment they deserve. The first is good old Apple:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">secrets</span> <span class="k">import</span> <span class="n">QUANDL_KEY</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">matplotlib.dates</span> <span class="k">import</span> <span class="n">date2num</span>
<span class="kn">from</span> <span class="nn">matplotlib.finance</span> <span class="k">import</span> <span class="n">candlestick_ohlc</span>
<span class="kn">from</span> <span class="nn">matplotlib.dates</span> <span class="k">import</span> <span class="n">DateFormatter</span><span class="p">,</span> <span class="n">WeekdayLocator</span><span class="p">,</span>\
<span class="n">DayLocator</span><span class="p">,</span> <span class="n">MONDAY</span>
<span class="kn">import</span> <span class="nn">quandl</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="k">import</span> <span class="n">datetime</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="o">%</span><span class="k">matplotlib</span> inline
<span class="k">def</span> <span class="nf">fetch_ticker</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">end</span><span class="p">):</span>
<span class="c1"># Quandl is currently giving me issues with returning</span>
<span class="c1"># the entire dataset and not slicing server-side.</span>
<span class="c1"># So instead, we&#39;ll do it client-side!</span>
<span class="n">q_format</span> <span class="o">=</span> <span class="s1">&#39;%Y-%m-</span><span class="si">%d</span><span class="s1">&#39;</span>
<span class="n">ticker_data</span> <span class="o">=</span> <span class="n">quandl</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;YAHOO/&#39;</span> <span class="o">+</span> <span class="n">ticker</span><span class="p">,</span>
<span class="n">start_date</span><span class="o">=</span><span class="n">start</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="n">q_format</span><span class="p">),</span>
<span class="n">end_date</span><span class="o">=</span><span class="n">end</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="n">q_format</span><span class="p">),</span>
<span class="n">authtoken</span><span class="o">=</span><span class="n">QUANDL_KEY</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ticker_data</span>
<span class="k">def</span> <span class="nf">ohlc_dataframe</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="c1"># Much of this code re-used from:</span>
<span class="c1"># http://matplotlib.org/examples/pylab_examples/finance_demo.html</span>
<span class="k">if</span> <span class="n">ax</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">f</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
<span class="n">vals</span> <span class="o">=</span> <span class="p">[(</span><span class="n">date2num</span><span class="p">(</span><span class="n">date</span><span class="p">),</span> <span class="o">*</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">date</span><span class="p">]))</span>
<span class="k">for</span> <span class="n">date</span> <span class="ow">in</span> <span class="n">data</span><span class="o">.</span><span class="n">index</span><span class="p">]</span>
<span class="n">candlestick_ohlc</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">vals</span><span class="p">)</span>
<span class="n">mondays</span> <span class="o">=</span> <span class="n">WeekdayLocator</span><span class="p">(</span><span class="n">MONDAY</span><span class="p">)</span>
<span class="n">alldays</span> <span class="o">=</span> <span class="n">DayLocator</span><span class="p">()</span>
<span class="n">weekFormatter</span> <span class="o">=</span> <span class="n">DateFormatter</span><span class="p">(</span><span class="s1">&#39;%b </span><span class="si">%d</span><span class="s1">&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_major_locator</span><span class="p">(</span><span class="n">mondays</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_minor_locator</span><span class="p">(</span><span class="n">alldays</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_major_formatter</span><span class="p">(</span><span class="n">weekFormatter</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ax</span>
<span class="n">AAPL</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="s1">&#39;AAPL&#39;</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">AAPL</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Apple Price 3/1/2016 - 5/1/2016&quot;</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXu1D40bRJ0yJJtaUtClJQEFbkKgRdtsIu
FwUR+CEg6HpDWDSr6PrbpojKJeKusAishYJSFcUtKIKAENyiqCsod+RiWygkwLaQNlwK6ef3xzmJ
0+lMMrnMzMnk/Xw85pGZc75zvp85mfnMd77n+z1HEYGZmY19E6odgJmZjQ4ndDOzGuGEbmZWI5zQ
zcxqhBO6mVmNcEI3M6sRTujjlKQTJf13her6tqR/qURdZuOZE/oYIKlD0mpJE0d508OahJDG87Kk
bknPSrpWUlPRSiI+GRFfHX6YBWP4kKSHJb0oqVPSFZIm55WZIenJ9P6nJf1e0iuSLi+yzTMlnS1p
T0k3S/pfSV2SfiipOa/suZKel/ScpHPy1p0l6V5Jr0n61wL1bC3pakkvpHV8dwT7YYGk9en/Ym36
d05emb0k3VlKbGmZSyR9VNIhkv5b0hpJT0u6TFJdTrktJF2e/g+elnRG3nYuTf9HvZJOKFDPXEk/
zXkfnZNfxobGCT3jJM0G9gM2AIdVOZw+AXwqIuqBHYCpwDcLFZRUrvfYncD+EdEAbAdMBM7OK3MI
cGN6fxXwFWDRANv8e+DnQCNwKTA7va0DrugrJOnjJP+LtwO7AIdK+sec7TwK/DPwsyL1/AR4GpgJ
bAO0DxBTKX4QEfURMSX9u7zA67qhxNgADibZDw0k+2wGMC+N9/yccguBNwOzgPcAn5f0dznr/wh8
EvhDfgVp4+QW4FaSfTAT+N6gr9QG5ISefScAvwEWAyflrkhbpd9OW5Pdkm6XtG3O+g2SPiPp8bQF
dF6xSiTtmNMqfUjSBweJSwAR8QJwLfC2nJgulnSDpLVAS7rsrJy6Dpd0T9qye7QvCUiql/SdtLX3
pKSvSFKhyiPiqYh4Nn04AegF3pJX7BCSxERELI2I64HVRV7/VGB74DcRcVNEXBsR6yLiFeAiYJ+c
4icA34iIZyLiGZKEfFJObN+NiF+QfBHk13MQSfL6fLr93oj4U6GYRlHufigaWxrf24E1EfF0RHw/
Im6OiFci4kXgP4F9c4qfAJwVEd0R8TBwGRvvh29HxO3AqwWqOglYFRH/nm5/fUTcP/KXOr45oWff
CSQtlyXAfElvyFt/HElLaTrwJ+DqvPVHALunt8MlnZxfgaRJwM1pPVsDxwD/IWnHwYKTtDVwJHB3
zuJjga9ExBSSlnRu+XcBVwKfS1vX+wPL09VXAutJWty7AQcBHx2g7n0lvQB0Ax8g51eCpM3Tbd8y
2GtIzQd+GYXPhXEA8EDO451J9nWfP6XLSrEX8GfgqrTL5reS9i/xucUcmm7rPkmfyF2RdhVtExF/
LHFbh/DX1ny+/v2QfgHOAO7NWT/U/bBC0s/TbqvbJL2txOdaEU7oGSZpP2Bb4JqIuBt4jCSB57oh
Iu6MiNeAfwH2lvSmnPXnRMSLEfEU8G8kyTbfPwB/iYirIvEnkm6BgVrpF0paDdxD0n3wuZx110XE
XQARkd86OxlYFBG3peufiYg/S9qG5Kf+GWmL7fkB4iV97p0RMRV4E0lXwMqc1fsDf4yIngFeQ66+
7paNSNoF+H9Aa87iycCLOY+702WlmEnyRfVLoAm4ALhO0rQSn5/vhyTdIW8A/hH4V0kfyll/CHDT
ELZXbD8cBHyYZF9A8nqDTffDlBLrmQl8iOR/PCOt87r0i9iGyQk9204Abo6INenj7wMn5pV5su9O
mrxWA2/MWf9Uzv0Veev6zAb2UnLgdbWkNSRfHM0Fyvb5TERMi4hZEfHhiPjfQjEVMAt4vEgME4Fn
cmK4hOQXw4DSbo9fAD/IWdzfzTCYtFvnIPISn6S3pNv4TET8OmfVOqA+53EDRbowCngZWB4Ri9Pu
lh+S7K998wtKOi7nQGfBVnNEPBwRnekX8W+AfweOyikylP3QALwV+HXe8r1IfvkdGRF9/7u+15u/
H9aWUhfJfliWdum8HhHtJL8y55X4fCvA34YZJen/AEcDEyQ9ky7eApgq6e0RcV+6bFbOcyYD00gO
AJKz/qH0/rYkrel8TwIdETF/lMIfaPTMkyQH0gotfwWYXqTbYzATSbpq+hwCvL/E5+5BkmT7v5TS
g9G3AAsjYkle+QeAXYH/SR+/g427ZAZyL8kvolwFX29ab37dgwnS4xtpa/cA8o69DGA+cFvu/pe0
G7AUOCkiOnJieyF9X+5K8muD9P5Q9sM+g5ayIXELPbveD7xO0mLZNb3NA5aRtNz7HCJpH0lbkIxI
+E1E5Cbtf5Y0VdIs4HQ2bsX2+Rmwg6TjJW0uaaKkd5bShz4Mi4CPSDpQiTdKemtEdJL0439T0pR0
3XbF+pfT1uus9P5skhEut6aP5wBbRMQjOeU3S78kNwM2l7SlpM3S1Rv1G6ddVr8ELoyI/yxQ/VXA
Z9PY3wR8lo1HwWye1jUBmJjW1fdZ+y+gUdKHJU2QdBRJl9GdDIOkw9L+7L7jE6eTJGBIRkf9KSLW
5ZQfKLb8/fA2klFCn4mIQq387wJfTt9f84CP5e2HiWldArZI6+o7yP09kl+F70n3wxnAc/y18WHD
ERG+ZfBG8kE6r8DyD5K0sieQfHguJkmEa4EOYHZO2Q3AqSRdHM8B5wFK150I/Cqn7PYkif3ZtOyt
wC5FYrsNOLnIustJRj4UXQYcTnIArZvkAOFB6fIp6et5ElhDMtzt6CL1nJ2WW0vSd/5toDFd92ng
W3nlF6T7ozfn9q/put8Du+eU/dd0fXd6Wwt0523vHOB/geeBr+etu6JAXSfkrN+XpIXaDfwO2GcE
75MlaQzdwIPAp3PWnQ98ttTYgGeArfP+b6/n7IO1wH0567cg+YJ+MX3u6Xl13V6grv1z1h9BMozy
hfQ9Na/an7uxfuv7cBclaRHJT8SuiNglXXYU0EbSYtwjkgN2fS2lh4CH06ffFRGfGrACGzZJVwBP
RkSxCSIbgLdExBOVjay60v7mCyNi0IOB6cHYuyNiZvkjqyxJD5D0ez9cQtk9SPbZXuWPzMqllC6X
K0j61nLdR9IlcEeB8o9FxO7pzcncquH29FaKBjYeoVMTlEzcubKUZJ5jQbniscoY9KBoRCxLW965
yx6B/tEB+QpOBLGyGOzg4bi8vmAkIyZKLfsoyc/+mhLJMNaiE8kKlP99GcOxCinHKJc5ku4m6Vf7
fxGxrAx1GBARm0wSylu/2UDrzay2jHZCfxrYNiLWSNodWCppp8g5ym5mZuUxqgk9/Zm3Jr1/t6TH
SU7edHd+WUnjsjvAzGykIqJg13ap49BF8b7x/uVKTgs6Ib2/HcnJkoqOsFiwYEHBoTeFlg+l7FC3
ccABB1S0vqEsLxRbNeIYyr6rRhy1/r/1vhv+vqvGPh0sPhh+HAMZtIUuaQnQAkyXtJLkSPga4EKS
adk/k/THiDiY5PwZZ0laTzL+9OORnI2voJaWlpKXD6XsULcxZ86citY3lOWFYqtGHEPZd9WIo9b/
t953g8dWjTiq8bkYUKFvgErckqqzYcGCBdUOoagsxxbh+EYiy7FFZDu+LMcWMXh8I0l/ae4smFc9
9Z9hfhNWSJZjA8c3ElmODbIdX5Zjg+rFN+hM0bJVLEW16jYzqyYJhpv+JBEjPChqZmYZ54RuZlYj
nNDNzGqEE7qZWY1wQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZlYjnNDNzGqEE7qZWY1w
QjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZiO2ePHiIS238nBCN7MRW758eenLneTLxgnd
rEpqvfXa3NxMe3v7pitOPRWamysf0DjghG5WJcVatWNRe3s7zXlJuquri56enk0L9/RAV1eFIhtf
Nq92AGY29vX09BRO3lZRbqGbmdUIJ3QzsxrhhG5mZdHU1ERdXV21wxhXnNDNrCw6OztpbW2tdhjj
ihO6mZXNnDlzqh3CuOKEbmZlc9JJJ1U7hHFFEVGdiqWoVt1mWTB58mQmT55MZ2dntUMZMUkAlPSZ
Tssyjj//0vBfviQiQoXWuYVuViU9PT10lTjBptZnldrocAvdrEqG0qrNemveLfShKVcL3TNFzcaA
rM/ErK+vZ6uttqp2GOOeu1zMMmYsdq+8+OKLmf31MJ44oZtlTFZO2jUWv1jGu0ETuqRFkrok3Zuz
7ChJ90vqlbR7XvkvSnpU0kOS/q4cQZuVQ6UTWF1dHU1NTSPbSBljLvTF0tDQsMlZFS07SmmhXwHM
z1t2H/B+4I7chZLmAUcD84CDgYvVd7TELOMq3TJubW0deTdFhWPu7u4ueWSOVd6gCT0ilgFr8pY9
EhGPAvnJ+nDgBxHxekQsBx4F3jVKsZrVlKHMohyV1rzVvNHuQ38T8GTO41XpMjPLM5RZlKPSmrea
V9Vhi21tbf33W1paaGlpqVosZkPR0NDAVltt5SRrZdfR0UFHR0dJZUc7oa8CZuU8npkuKyg3oZtl
1uLFkNea7u7upru7uyrhbKS9HS65BPzFUrPyG7sLFy4sWrbULhexaX957ro+1wPHSNpC0lzgLcDv
SqzDLJsqeOCx6IWViyl2fc4sDzmsqwMfDyiLUoYtLgF+DewgaaWkj0g6QtKTwF7AzyTdCBARDwLX
AA8CPwc+5fn9NqY1Nyet4AopemHlocrIWPaCLrrIvyjKZNAul4g4rsiqpUXKfx34+kiCMqu05uZm
1q1bt2k3oIfojT6fUrdsfC4XM8jM2OqmpiZefvnlaodhY5QTulmGZH3UTF1dHZMnT652GFaEz+Vi
NgZk5VJuHg+fbU7oZmOAL+VmpXBCNxtIU1MyzG6caWtrK3kyi2WHE7rZQDo7k2F2Y8koDLVsa2vL
9szthobkddpGfFDUbDAFujsyfXBwlEbsZKXfvqDu7uRmG3EL3YxkuGDdELpWMn1wcJS6iQr122c6
yZtb6GaQDBcck1foqauD/F8KnZ1QpvMk+eBstrmFbpYak8mqtdXT6K2fE7qZWY1wQjcbBvclWxY5
oZsNQ2a6Z4p9sfgLZyNj8vjIMDihm41lxb5YsvKFU2lFEnelLwBeLU7oZlYbmpvhIx8Z1xOOnNBt
3BkvP7/Hnb4JVRk5FXI1OKHbyIzB5HjqqafSPI5bcVa7PLHIRmYM9k329PSMzmXezDLGCd3Mxp5C
M2TNXS5WHu6ntrLyDNmCnNCtLMbLMDGzLHFCt8pxq92qoLm5mfYRnh9+rHAfulWOW+1WBV3jaBij
W+hmNvYUOrVBU9PGfwdTg1c9ckI3s7Gn0KkNOjthwYLSD5Z2d9fcJCQndBt146nP0rJvqFejGsuc
0MezMh2k7Orq8sQdy4zOzk5aW1urHUZFOKGPA0XHhFf6IGV7e831WVrtGctzKJzQa0yhN2PBMeHN
zbBwYWUTbE9PzfVZWu0Zy3MonNBrTMlvxgydma6sLaIx3NqyYRjnF/bwOHSrnCLn3yhri2gMt7Zs
GIpc2GO8XDLQLfQakvnRJZU+/0Zzc9Jvb+NewUsG1tWVPmZ9jHBCryFDGl0y1EkYhbS1Jf3wbW2l
la90K6mrK+m3NyukBk/w5YQ+DrS3t296QYehTsIopK0t2UapCX28XufSrEKc0MeBnp6ezJ7Porm5
mYULF/oKQpYJo/V+rNbQx0ETuqRFkrok3ZuzrFHSzZIekfQLSQ3p8tmSXpJ0d3q7uJzBW2nq6upo
ymhfYd8XTVa/cKyGFegCHK33Y7WGPpbSQr8CmJ+37Ezg1oh4K3Ab8MWcdY9FxO7p7VOjFKeNQGtr
K50Z7Svs+6LJ6heO1bAa7AIcNKFHxDJgTd7iw4Er0/tXAkfkrNPohGbjQWdnJwsWLMjsF47ZaCp3
V8xw+9C3iYgugIjoBLbJWTcn7W65XdJ+I47QChqVN0aZRp00NTVRX19flm0PMZBkaJpZRpS7K2a0
JhZF+vcZYNuIWCNpd2CppJ0iYt0o1WOpUXljjMZPzgJfCplpbXd2eqaoVVxzczNdXV1ccsklFf8s
DDehd0lqioguSc3AswARsR5Yn96/W9LjwA7A3YU20pYz3K2lpYWWlpZhhmMDKessuaz3Q2Y9PsuU
pqYmurq6MnVMp6Ojg46OjpLKlprQxcZ949cDJwHnAicC1wFI2hpYHREbJG0HvAV4othG20odv2wj
UnCWXIZUelp2fX09W221VUXrtLGhs7OTtra2EeWm0dhGrvzG7sKFC4uWHTShS1oCtADTJa0EFgDn
AD+SdDKwAjg6Lb4/cJak9cAG4OMR8cKwXoWNG5X+wnnxxRcrWp9ZpQya0CPiuCKr/rZA2Z8APxlp
UDY8TU1NrFvnwxVmIzGWT+TlmaJjVKHp/J2dnVx00UVVisisNozGL8ZqfSn49LljVE9PT8ETcWW9
v9xsPKjW51ARMXipclQsRbXqrgVScoza+9BsbGhubmbdunWsW7cOCYb70ZVERBScwOmEPkY5oZuN
Lbmf2XIldPehm5nVCPehj1F1dXVMLnA5NzMbv9xCH6Muuuii7EyxN7NBVeIcR2O+D33x4sUe2WFm
Y4r70Iuo1onkzcyyZswndDMzSzihm5nVCCd0M7Ma4YRuZlYjnNDNzGrEmB62mHtuBDOzscLDFgvo
6uoqeMbBIcvwdSfLfZVwM6sdYzqhj5oMj2X3OHszK5UTuplZjXBCz7hCVyYyMyvEB0Wbm2HduuSW
QT7vuVnt8UHRAjo7O2ltbR3ZRrq6YDQOrBbQ0NDg1rWZVcyYTuiZUmA0Sm9vb+XjMLNxywl9tBQY
jdLa2upzlptZxfiKRRnnKxOZWancQm9qgrq6akdRlFv5ZlaqMZPQyzZjsrMTChxYzcoMzTlz5lQ7
BDMbI8ZMQq/0jMmi9VU40fvyemZWqjGT0DMzwWYIXyxuXZtZJY2ZhN7T00NXV9cmyzORNJubob19
k8VuXZtZJY2ZhF5MxZNme3uSwHOVcXKSmVmpPGxxqHp6Nk3eTU2ZPXWAmY0fY76FXi5F++zr6pIE
nqvISBkzs0pyQgco0A9frM+e1tYkgZuZZUwmE3rFx4D74KWZ1YCqJvRCibu5uZlTTz218sHkqaur
oym/a8XMLMOqmtALTd4pdp3QSidYT7k3s7Fm0IQuaZGkLkn35ixrlHSzpEck/UJSQ866L0p6VNJD
kv5uoG23Fxi73dTURF2Bc6s4wZqZDayUFvoVwPy8ZWcCt0bEW4HbgC8CSNoJOBqYBxwMXKy+S+4U
UKglXuyiFZWeQJSJCUtmZkMwaEKPiGXAmrzFhwNXpvevBI5I7x8G/CAiXo+I5cCjwLtGI9BKTyAq
Wp8TvZll1HD70LeJiC6AiOgEtkmXvwl4MqfcqnRZ7XCiN7OMGq2Dor6CsYc+mlmVDXfqf5ekpojo
ktQMPJsuXwXMyik3M11WVFtbGwAtLS20tLQMMxwzs9rU0dFBR0dHSWUVMXjjWtIc4KcR8fb08bnA
6og4V9IXgMaIODM9KHo1sCdJV8stwPZRoBJJAVCo/ra2tv5Eb2ZWayQoIfUWea6IiIKDTQZtoUta
ArQA0yWtBBYA5wA/knQysIJkZAsR8aCka4AHgdeATxVK5mZmNvoGTegRcVyRVX9bpPzXga+PJCgP
GTQzG7qSulzKUvEAXS5mZrWsXF0umTw5l5mZDZ0TuplZjXBCNzOrEU7oZmY1wgndzKxGOKGbmdUI
J3QzsyoazUtuOqGbmVVRoSu3DZcTuplZjXBCNzOrEU7oZmY1wgndzKxGOKGbmdUIJ3QzsywaxnBG
J3Qzsypqb2+nubl50xXDGM443GuKmpnZKOjp6aGnp2dUtlXVC1zU1dWxbt26qtRvZlYtuRe4kJJr
VWyUi5ubYd265LbJc0dwTdFyam1trWb1ZmbZ1NU1rKdVtQ/d1w41Mxs9Ve1y8fVEzWw8GrTLJV1W
6MKjvqaomdk44IRuZlYjnNDNzGqEE7qZWY1wQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRu
ZlYjfPpcM7MqqqurY/LkyaOyLbfQzcyqqLW1lc7OzlHZlhO6mVmNcEI3M6ui0TyNuE+fa2ZWYbmn
zy1aACp7+lxJp0u6L72dli5bIOkpSXent/eNpA4zMyvNsEe5SNoZOAV4J/A6cKOkG9LVF0TEBaMQ
n5mZlWgkwxbnAb+NiFcBJP0K+EC6ruDPATMzK5+RdLncD7xbUqOkScAhwEwggFMl/VHSdyQ1jEag
ZmY2sGG30CPiYUnnArcA64B7gF7g28BXIiIknQ1cQNI1s4m2trb++y0tLbS0tAw3HDOzmtTR0UFH
R0dJZUdtlIukrwJPRsQlOctmAz+NiF0KlPcoFzMbl7I6yuUN6d9tgfcDSyQ15xT5AEnXjJmZlaqp
Cerqhvy0kZ7L5VpJ04DXgE9FRLekiyS9A9gALAc+PsI6zMzGl85OyOmSLtWIEnpE7F9g2Qkj2aaZ
mQ2Pp/6bmdUIJ3QzsxrhhG5mlkXDOGmXT85lZlZhgw5bHPC5ZRq2aGZmFdTcPOBqt9DNzCps2C10
CYFb6GZmY15T04Cr3UI3M6sw96GbmdmAnNDNzGqEE7qZWY0Y6cm5Rt2cOXNYsWJFtcOwGjF79myW
L19e7TDMKiJzB0XTDv8qRGS1yO8nyyIfFDUzswE5oZuZ1QgndDOzGuGEbmZWI5zQM2zZsmXMmzev
2mEMyYEHHsjll19e7TDMxiUn9CGaM2cOkyZNor6+nilTplBfX89pp51Wlrr2228/HnroobJsu5gr
r7ySzTffnPr6eqZOncpuu+3GDTfcUNEYzGx4MjcOPeskccMNN3DggQeOaDu9vb1sttlmoxTV6Npn
n3341a9+BcBll13GMcccw6pVq6ivr69yZGY2ELfQh6HYuOYnnniC9773vWy99dZss802HH/88XR3
d/evnzt3Lueddx677rorkydPpre3l7lz5/KNb3yDXXfdlcbGRo499ljWr18PwB133MGsWbM2en6x
sgDnnXceb3zjG5k5cyaLFi1iwoQJPPHEEwD8/Oc/Z+edd6a+vp5Zs2ZxwQUXlPRaP/zhD9PT08Oj
jz7av+yuu+5i3333pbGxkd1224077rij6PMvv/xydtppJ6ZPn87BBx/MypUr+9f90z/9E9tuuy0N
DQ3sscceLFu2rH/d73//e/bYYw8aGhqYMWMGra2tw6rfbFyJiKrckqo3VWx5VsyZMyd++ctfFlz3
2GOPxa233hqvvfZaPP/883HAAQfEGWecsdFzd9ttt1i1alW88sor/cv23HPP6OzsjDVr1sS8efPi
0ksvjYiIjo6OmDVr1kbPL1b2xhtvjBkzZsRDDz0UL7/8chx//PExYcKEePzxxyMiYsaMGXHnnXdG
RMQLL7wQ99xzT8HXsHjx4nj3u98dERGvv/56XHTRRbHlllvGc889FxERq1atiunTp8dNN90UERG3
3nprTJ8+PZ5//vmIiGhpaYlFixZFRMTSpUtj++23j0ceeSR6e3vjq1/9auyzzz79dV199dWxZs2a
6O3tjQsuuCCam5vj1VdfjYiIvffeO773ve9FRERPT0/89re/Lan+fFl/P9n4NJK3ZfqeLpxXi60o
920kCT2ZYzXy23DMmTMnpkyZEo2NjTF16tRobGyM73znOwXLLl26NHbfffeNnrt48eJNtrdkyZL+
x5///Ofjk5/8ZEQUTujFyp588snxpS99qX/dY489FpL6E/rs2bPjsssui+7u7gFf3+LFi2PzzTeP
xsbGmDhxYkyaNCl+9KMf9a8/99xz44QTTtjoOfPnz4+rrroqIjZO6AcffHBcfvnl/eV6e3tj0qRJ
sXLlyoJ1NzY2xr333hsREQcccEC0tbVtkqgHqz+fE7plUbkS+pjschmtlD5c1113HatXr2bNmjWs
Xr2aU045BYBnn32WY489lpkzZzJ16lSOP/54nn/++Y2eO3PmzE2215Rz0vpJkyaxbt26onUXK/v0
009v1D2Tex/g2muv5YYbbmD27NkceOCB3HXXXUXr2HvvvVm9ejUvvPAChx12WH9/OsCKFSu45ppr
mDZtGtOmTaOxsZE777yTzs7OTbazYsUKTj/99P6y06dPRxKrVq0CoL29nZ122onGxkYaGxvp7u7u
31+LFi3ikUceYccdd2TPPffsPzBbrP5nnnmm6OsxGy98UHQYosi3wZe+9CUmTJjAAw88QENDA9dd
dx2f+cxnNiojFTwFw4jNmDGDp556qv/xypUrN6rrb/7mb1i6dCm9vb1ceOGFHH300Rv1ZxcyadIk
Lr74YrbbbjtOOeUUdt11V2bNmsUJJ5zApZdeOmhMs2bN4stf/jLHHnvsJuuWLVvG+eefz+23385O
O+0EwLRp0/r37Zvf/GaWLFkCJF9GRx11FKtXrx5S/WbjzZhsoWfV2rVrmTx5MlOmTGHVqlWcf/75
Fav76KOP5oorruDhhx/mpZde4uyzz+5f99prr7FkyRK6u7vZbLPNmDJlSskjbBobG/nYxz7GwoUL
ATj++OP56U9/ys0338yGDRt45ZVXuOOOO3j66ac3ee4nPvEJvva1r/Hggw8C8OKLL/LjH/8YSPbV
xIkTmT59OuvXr+ess85i7dq1/c+9+uqr+1vrDQ0NSGLChAlDqt9svHFCH4ZDDz2U+vr6/tuRRx4J
wIIFC/jDH/7A1KlTOfTQQ/uX9ynUOh9Ki32gsu973/s47bTTOPDAA9lhhx3Ye++9Adhyyy0B+O53
v8vcuXOZOnUql112WX/rtxSnn346N954I/fffz8zZ87kuuuu42tf+xpveMMbmD17Nu3t7WzYsGGT
GI844gjOPPNMjjnmGKZOncouu+zCTTfdBMD8+fOZP38+O+ywA3PnzmXSpEkbdRPddNNN/aNyzjjj
DH74wx+y5ZZbDlq/2Xjm0+fWqIcffpi3v/3tvPrqq0yYMH6/t/1+sizy6XNtUEuXLmX9+vWsWbOG
L3zhCxx4t7f9AAAH8ElEQVR22GHjOpmbjTf+tNeQSy+9lG222Ybtt9+eiRMncvHFF1c7JDOrIHe5
WE3z+8myyF0uZmY2ICd0M7Ma4YRuZlYjMjdTdPbs2WWbTWnjz+zZs6sdglnFjOigqKTTgY+mD/8z
Ir4lqRH4ITAbWA4cHREvFnhuwYOiZma1LnMHRSXtDJwCvBN4B/APkt4MnAncGhFvBW4DvjjcOiql
o6Oj2iEUleXYwPGNRJZjg2zHl+XYoHrxjaQPfR7w24h4NSJ6gV8BHwAOA65My1wJHDGyEMsvy2+O
LMcGjm8kshwbZDu+LMcGYzOh3w+8W1KjpEnAIcAsoCkiugAiohPYptgGir3oQsuHUnao21i+fHlF
6xvK8kKxVSOOoey7asRR6/9b77vBY6tGHNX4XAxk2Ak9Ih4GzgVuAX4O3AP0FipabBtZ3vl+45ZW
1klp+Mu974a/fDx/LgYyajNFJX0VeBI4HWiJiC5JzcDtETGvQHkfETUzG4ZiB0VHNGxR0hsi4jlJ
2wLvB/YC5gInkbTeTwSuG0pAZmY2PCMdtvgrYBrwGnBGRHRImgZcQ9KfvoJk2OILoxGsmZkVV7WT
c5mZ2ega81P/JW2QdFXO480kPSfp+hFu932SHpb0Z0lfyFn+A0l3p7e/SLq7SvEtktQl6d4i6z+X
1j2t0vFJminpNkkPSLpP0mk5646SdL+kXkm7Zyy2XSX9RtI9kn4n6Z0lbvOINNYdhhtXzrYaJd0s
6RFJv5DUkLd+W0lrJX22CrEV/N9Jmpbu07WSvjXEbVYivs0lLZZ0b/p/P7MKsZ0n6SFJf5R0raT6
dPlsSS/l5JQRnfN6zCd0oAd4m6Qt08cHkRycLZmkzfIeTwAuAuYDOwPHStoRICKOiYjdI2J34Frg
J5WOL3VFGl+h8jPTelaUsPlyxPc68NmI2BnYG/h03/4D7iM53nJHBmM7D1gQEbsBC4BSLwp7DPDf
wKZXwx48vvzP4GAT875BMqqsVKMZW7H/3SvAl4HPDbWOCsX3QWCLiNiFZCLkx9PjfpWM7WZg54h4
B/AoG/9fH+vLKRHxqaHWlasWEjokb/C/T+8fC3y/b4WkPST9WtIfJC2TtH26/ERJ10n6JXBr3vbe
BTwaESsi4jXgB8DhBeo9OreuCsZHRCwD1hSp75vAP5cQV1nii4jOiPhjen8d8BDwpvTxIxHxKFDq
QfGKxQZsAPpaxFOBVYMFJ6kO2Jdk1vSxOcsPkHSHpJ8p+aV3cc66tZLaJd1DMpAg1+EUmZgn6XDg
CeCBweIqR2zF/ncR8VJE/Bp4tZS4Kh0fydDpuvTLfVIaZ3eFY7s1IvoufHsXMDO3uoFiGZKIGNM3
kn/M24AfAVuSjIffH7g+XT8ZmJDefy/w4/T+icBKoKHANo8ELst5fDzwrbwy7wZ+V434crY9G7g3
b9lhwAXp/b8A06oVX1puDsk5fSbnLb8d2D1LsQE7kvyqWUnyS2BWCf/f40jOYwSwDNgtvX8A8FL6
PxJJC+0D6boNwJFFtrc67/GanNd6J0lCWkDyK6OisQ32v0v3+7cGi6vS8ZGM5vs+8CywFvhotWJL
y10PHJfzGV4L3J3GvV+p+6/QrSZa6BFxP8mH81jgBjb+xpsK/FjSfSQt151y1t0SBU4cVqKNWotZ
iE/SVsCXSD7w/YurFZ+kycCPgdMjaQ0PWYVj+2T6eFvgDODyEkI8luQXHCQnpTsuZ93vIvmVFyTv
lf3S5b0M3lXXp69VtwD4ZkS81PcSMhDbSFUqvneRdLU1A9sBrZLmVCM2Sf8CvBYRS9JFTwPbRtKF
+zlgSfreHJbMnT53BK4n6fNsAbbOWf4V4LaI+ICk2STfgn16imxrFZDbxzaTnJ/f6U+3DwADHtQr
Y3zFvJkk+f1JktK4/yDpXRHxbCXjk7Q5ScL8bkQUnIswBJWK7cSIOB0gIn4sadFAQSk5s+h7SPr5
A9iM5Od9X3dX/hCyvscvp8mgkC5JTfHXiXl9/7c9gSMlnQc0Ar2SXo6IggfRyhTbqKlwfMcBN0XS
5fGcpDtJ+tKXVzI2SSeRnCLlPf1PTLp016T375b0OLADSYt9yGqhhd7XUrkcWBgR+f2LDfw1GX+k
xG3+HniLkiPQW5AcHMkdWXEQ8FBEPF2l+HK33d9Si4j7I6I5IraLiLnAUyQ/FQdK5uWK73LgwYj4
9xLqzkpsqyQdACDpvcCfB9nOB4GrImJuus9nA3+R1Ndie1f6HpoAfIjkAFvu6yrkepKJeZAzMS8i
9k/r2A74N+BrxZJ5GWPLVaxcqc+vZHwrSZNo2je+F/BwJWOT9D6SL4TDIuLVnOVbp9tB0nbAW0iO
kwxLLST0AIiIVRFxUYH15wHnSPoDJb7eSM4eeSpJ/9gDwA8i4qGcIh+ixO6WcsQHIGkJ8GtgB0kr
JRVKaMHgH4BRj0/SvsD/Bd6jZAjg3ekbum8o2JMkH6qfSboxK7EB/wh8Iz2odXb6eCAfAv4rb9m1
/PUg2v+QjJZ6AHg8Ipbmvq4izgUOkvQIyXGBc0p4WRWJbaD/naS/kIzAOTF9P+5YbDtViO8/gCmS
7gd+CyxKu/IqFhtwIclxkFu08fDE/YF7lQx/vgb4eIxgIqYnFpmVQdrS/1xEHFbtWPJlOTbIdnxZ
jg1qo4VuZma4hW5mVjPcQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZlYj/j87ypbKS6Xw
rgAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The second chart is from Facebook:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="n">FB</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="s1">&#39;FB&#39;</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">FB</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Facebook Price 3/5/2016 - 5/5/2016&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFPWd//HXGxCVAYZDndGAgEbiETUab00cj4jGn1c0
RlgPjJtj/bm6xEmibjYM2WiMjia/jXGjmxG8iDGaFS88UAfFKzEeiAdBDYKYGTUMwoyKOHx+f1T1
WNPTPd0z3T3dXf15Ph79mO5vXZ+qqf70t771rSqZGc455+JjULEDcM45l1+e2J1zLmY8sTvnXMx4
YnfOuZjxxO6cczHjid0552LGE7tzzsWMJ/aYk/SYpNMLMN8bJf043/MN5/0/ki4oxLydqwSe2AeY
pOWSPpC0VtK68G9tseMqJEmLJH0YrmurpD9I2ird+Gb2LTO7NM8xTJP0qqT3Jf1dUpOkYUnjjJO0
PEXM6yS9mGKeP5LUIGl/SQ9K+ke4fr+Lrp8CjeHwdyVdkjSfiyW9KGmDpItSLGdLSXMlrQnnMSeH
7fCfkj5O2v/GJY1zkKTm8P1b4f6aGPeeFPP8raTpko6R9LikNkmrJP13dBtL2lTSnPB/sErSuSnm
s1RSp6RpKZazvaR7wjjekXRxf7dD3HliH3gGHG1mI81sRPi3pdhBFZgB3zazkcCOwJZAY6oRJRVq
n3wU+JKZVQOfBYYBP0ka52jg3vB9V8zh/2nXFPNMjD8auBrYFpgIrAeaIuOdDRwJ7AzsDnxN0jcj
w5cC5wPz08Q+D3gT+AywFfCLTCubwU1J+99bScOPBhIJ3IApkXGPTjG/I8PYRwANQC2wC7AdEP2B
/inBNhoHHAFcJOnQyPBnge8AzycvQNJQ4MFwOVsC44G52a9yZfHEXhzqURD4Q1ibXC3pYUk7RoZv
LukXkt4Ma0TNkjYJhx0o6cmw/FlJX0qa/WRJfw6H3y6pOjLfEyQtCZe5QNLkyLCdw+W0SXpB0ldT
row0UtJCSVdkWmczawP+CHw+nPZGSVdJmi9pHXCQkpp5JH1N0nNhTe+vkg4Py6slXSfpbUkrJM1K
t3Aze8vM3g0/DgI2EiT4qK/yaWLvijnNOo8FJprZn8zsXjP7XzPrMLMPgV8DB0RGPx1oNLNWM3sb
uAKYHontBjN7AOhIsZyjgC3N7MJw/p1m9kK6uPKkL9thD6AlXLe5Zvagma03szXAb4EDI6OfBswy
s3Vm9hLBj9/0xEAzu9rMmoGPUyzqLOBvZnZVOP/14TxcCp7YS8tdwPYENZ4lwI2RYb8kSIZ7A2OA
i4CN4WH0POA/zGw0cAHwR0mjI9OeBpwKbEPwP/8lgKSdgBuA/0tQC3oIuFPS4PBH4+4wpi2A7wG/
l7RdNOAwwT0MLDCz8zOtoKQtga8R1M4SpgIzzWwE8FTS+AcQJIAZYW37EILaK8BNBMlwEvBF4KuS
zuxl2V+WtAZ4HziGSM03rBEeGG6DhMvDQ/5HU/xYHgk8kGZRBwPRpLMLEE3GL4Rl2dgP+KukmyW9
J+kpSQdmnKp3J4TzWizp29EB4f5UnZQ0b5HUEv74fj5pXl/l09p9sq7tIGkLgn1scWR4X7fDSkn3
KWjOWiBp5yynrTxm5q8BfAF/A9YCq8PXH9OMtwVBrXJzgmT8EbBjivEuApqSyhYAU8P3jwE/iQzb
FfggfN9AcFieGCbgbYLaZh2wMmm+twIXhe9vBP6H4It7boZ1fgxoD9d3JXA9MDoyn98mjX8j8OPw
/W+Bn6eY5zbAB8AmkbJTgQey+B9sA/wY2D5SdgQwP/J5H4Lmmk2AM8P/2baR4XOBb6SY9x7AP4B9
I2Ubge0in3cEPk4x7e8S2zdS1gR0hus2GJgWzn9UP/e/nYCa8H99INACnBgZ/m3gvyOfDwCGhvvh
j4BVwIjI8Cei6xopPwp4j+CoBoImqk5gUGScI4G/ppj2SWBaUtlDBN+Bw4AhBBWYZcDggfrultPL
a+zFcZyZjQlfX4OgbVnSZZJeD2uVywjaN7cg+CJuAryRYl4TgGlhU8pqSW3AvsDWkXFWRt6/CWwa
1ui34dPaLxZ8g1YRtOVuA6xIWlainTfhGIJk89ss1vlfwvUdb2ZnWNAkkyq+ZOOB11OUTwA2BVoj
630VQa2wVxY0hzxE9zbabs0PFjSxfGBmG8xsNvA0QbJKnAc4DLg/Ot+wGetu4Gwzezoy6ANgZORz
NbAuU5yhD4HXzOwmC5ph5gKtwP7JI0o6XZ+e5JyXZt1fsaDZxMzsceBXwEm9bIcnzOxjM/vQzH4a
rssB4fLGAJOS1jVxlHU9cIKZLQ+L28O/uWyHhWb2kJl9AvycYB+f3PtklckTe3GkarM8naAGU2dm
owjafxW+WgnaHbdPMd1K4LrID8VoC050XRkZZ3zk/QRgfZhY3w4/B0FJIjixtSoctm3SsrYNhyX8
N/AIcK+kzfqxzgm93Tt6JenXuyNpvUeZ2R4Z4kjYhODkXkJyu3KqGBPrsB9BTXNNYqCkSQQn9/7D
zH6fNO1LBCdNE75A96aa3iym5/ZJub0saKtPnOQ8Lsv5d61X2Px2EMERX8bxCfbXbuNK2ovgHMpp
ZvZYJLb3gHfpvh12pwDbwXliLyUjCHpTtEmqAi4h3HHNbCMwB/ilpJqwdn+ApMEEzRYnSDo8LN9M
Up26d6E8XdLnwvk2AInEcytwbNj2PAT4AUGTw9MEh9gbJH1P0hAFvReOAm6JzNfM7F8IjiTukrRp
AbZLE/DPkg5W4DOSJlvQk2OhpCskjQiHbZ+iLRwASf8Uth8jaSJBj5gF4efPAhvN7PXw82hJX1HQ
PW+IgusA9uPTGnq3dmVJ4wmOAK4ws+tSLP4G4HxJW4cxzABmR6YfEv4wDgI2CZebSJ63AzWSpob/
328QHJU82cftmFjWcQpPnkvaF/hX4I5w8MHAMxacAEbSBAVdOYeEMV1IsJ8mlp28HXYPP59tZt2O
ZkI3Av8RnvTeBfhm0nbYJNwOAoYm7U83EpxYrwuPmOoJKhlL+7MdYi9TWw3BF6sVWBwpuwx4haBb
0u3AyLD8cOAZgpMifwYOKXZbU6m9CJLgoSnKhwN3EiTWNwhOeHYStusStHH+EngLaCOoKQ8Jh+0L
LCRoe20J57NNOOxR4D/D/8cagtrUqMhyTwBeJmj/fgj4XGTYLuH0awhqTEdHht3Ap+3gIjiReQ+R
Nu/IuI8Cp6fZHl3zSVdGcLJ1cbhtlia2H8Gh/G8Iau9twF+Ak9Is59Jw260jaGL6NcFJQoDzgCsj
424Vbq/3w+2yiOBIKjH8OWC3yOefhP+rteFrHbA6MlzA5eG83gMuTortRoJ2+M7Ia1pk+JeBF/n0
R7dHm3Yf9r/fh/vJ2vD//t3IsF8QOV9CcLI+sd3fJfhh+0JknVoJz5VE/m8bIttgHfBcZPhmBBWU
tQRHhOckxfZY0jboBA6IDD+RoFluDcG+2uOck7+Cl8INlpakgwjax24ws93CssOBh81so6RLCWpu
F4a/2K1m1hL+It9vZuPSz9254pN0P3C5mfXWBJEYd2vgaTNLbqYqe5KWEvx4v5bFuPsTbLODCh+Z
66uMTTFmtoigNhQtW2BB8wAE3dPGheUvWHixjQXdpTYL2+2cK2UPERzxZGMkwcVEsRI2e/w2m6Qe
2gikvW7AFVfGGjsEbW3AXYkae9KwO4FbLDhbHy0/ieDKvSPyFaxzzrnMhuQysaR/BzakSOq7AD8D
vpLL/J1zzvVdvxO7pOkEZ8UPTSofx6fdnZb3Mr13VXLOuX4ws966D2fd3THRnzr4IB0JfB841szW
R8qrCS7Q+KGZPdVjLklmzpzZ42xuvsvSlR988MEFX3ZfYvR4+va/8njKK56+fDdLIR4ofjzpYsxG
xsQuaS5Bn+bJCm60dCbB1WrDgQcV3HTq6nD0cwguJvmxgps2PRveIyKlurq6gpelK584cWJR4kkX
o8eTvixVLB5PecXTl++mx5O+LGupfhEG4hUsunhmzpxZ1OUn83jSK6VYzDyeTOIQTyHTU67bJ8yd
vebXir3yNKdfwwLweNIrpVjA48nE4+ndQMSTVXfHgixYsmIt2znneiNBqaYnSViGk6c5dXcshIkT
J/Lmm29mHtG5LEyYMIHly5cXOwznBlTJ1djDX6MiROTiyPcn1x/lXmOv2DZ255yLK0/szjkXM57Y
nXMuZjyxl7BFixax0047FTuMPjnkkEO47rpUz5pwzg0UT+x9NHHiRIYNG8bIkSMZMWIEI0eO5Nxz
zy3Isg466CBeeeWVgsw7neuvv54hQ4YwcuRIRo0axR577ME996R7CL1zrhSVXHfHUieJe+65h0MO
OSSn+XR2djJ48OA8RZVfBxxwAI8++igA1157LaeccgqrVq1i5MiRGaZ0zpUCr7H3Q7ruc2+88QaH
HXYYW2yxBVtttRWnnnoqa9eu7Ro+adIkLrvsMnbffXeGDx9OZ2cnkyZN4oorrmD33Xdn9OjRTJ06
lY8//hiAhQsXMn78+G7TpxsX4LLLLmObbbZh3LhxNDU1MWjQIN544w0A7r33XnbZZRdGjhzJ+PHj
ufLK6LOu0zvttNPo6Ohg2bJlXWVPPfUUBx54IKNHj2aPPfZg4cL0z6i47rrr2HnnnRk7dixHHXUU
K1as6Br2b//2b2y77bZUV1ez9957s2jRoq5hf/7zn9l7772prq5m6623pr6+vl/Ld64iZbrnQKFe
pLkZQ7ryUjFx4kR76KGHUg577bXXbMGCBbZhwwZ777337OCDD7YZM2Z0m3aPPfawVatW2UcffdRV
tu+++1pLS4u1tbXZTjvtZNdcc42ZmTU3N9v48eO7TZ9u3Pnz59vWW29tr7zyin344Yd26qmn2qBB
g+z11183M7Ott97aHn/8cTMzW7NmjT333HMp12HOnDn2pS99yczMPvnkE7vqqqts0003tXfffdfM
zFatWmVjx461++67z8zMFixYYGPHjrX33nvPzMzq6uqsqanJzMzuuOMO22GHHWzp0qXW2dlpF198
sR1wwAFdy7r55putra3NOjs77corr7Ta2lpbv369mZntv//+dtNNN5mZWUdHhz399NNZLT9Zqe9P
rjR1221mzy5WGCkR13vFSPl59dfxxx/PmDFjGD16NGPGjKGpqQmA7bffnsMOO4whQ4YwduxYZsyY
0aM2ed5557HNNtuw6aabdiurqalh1KhRHHPMMTz//PNpl51u3D/84Q+ceeaZ7Ljjjmy22WY0NDR0
O7IYOnQoL730EuvWraO6upovfOELaZfx5JNPMmbMGDbffHN+8IMfcNNNN7HFFsFNOm+66SaOPvpo
pkyZAsBhhx3GXnvtxb333ttjPtdccw0XXnghkydPZtCgQVxwwQU8//zzrFy5EoBp06YxatQoBg0a
xIwZM1i/fj1Lly7tive1117jH//4B8OGDWOfffbp8/Kdy4syvHK5LBN78Hua+6u/5s2bx+rVq2lr
a2P16tWcddZZALzzzjtMnTqVcePGMWrUKE499VTee++9btOOG9fz2d41NTVd74cNG0Z7e3vaZacb
9+233+7WbBN9D3D77bdzzz33MGHCBA455BCeeir97fL3339/Vq9ezZo1azj22GO72tsB3nzzTW69
9VbGjBnT9eP2+OOP09LS0mM+b775Juedd17XuGPHjkUSq1atAqCxsZGdd96Z0aNHM3r0aNauXdu1
vZqamli6dCk77rgj++67b9cJ3HTL//vf/552fZyrNH7ytB8sza/CRRddxKBBg3jppZeorq5m3rx5
/Ou//mu3cZTLoUIvtt56a956662uzytWrOi2rC9+8YvccccddHZ28qtf/YqTTz65W3t3KsOGDePq
q69mu+2246yzzmL33Xdn/PjxnH766VxzzTUZYxo/fjw/+tGPmDp1ao9hixYt4vLLL+eRRx5h5513
BmDMmDFd23b77bdn7tzgiYu33347J510EqtXr+7T8p2rVGVZYy9V69atY/jw4YwYMYJVq1Zx+eWX
D9iyTz75ZGbPns2rr77KBx98wE9/+tOuYRs2bGDu3LmsXbuWwYMHM2LEiKx75IwePZpvfetbzJoV
PJD+1FNP5a677uKBBx5g48aNfPTRRyxcuJC33367x7Tf/e53ueSSS3j55ZcBeP/997ntttuAYFtt
sskmjB07lo8//pif/OQnrFu3rmvam2++uav2Xl1djSQGDRrUp+U7V6myeYJSk6RWSYsjZZdJekXS
85JulzQyMuxCScvC4UcUKvBiOuaYYxg5cmTX68QTTwSCR/395S9/6Wr/TpQnpKqt96UG39u4Rx55
JOeeey6HHHIIkydPZv/99wfoasu/8cYbmTRpEqNGjeLaa6/tqg1n47zzzmP+/PksWbKEcePGMW/e
PC655BK23HJLJkyYQGNjIxs3buwR4/HHH88FF1zAKaecwqhRo9htt9247777AJgyZQpTpkxh8uTJ
TJo0iWHDhnVrPrrvvvu6evHMmDGD3//+92y66aYZl++cy+LujpIOAtqBG8xst7DscOBhM9so6VKC
s7QXStoZuBnYGxgHLAB2sBQL8bs7Ftarr77Krrvuyvr16xk0qHIPzHx/cv3R7e6ODQ3Bq0Tk5e6O
ZrYIaEsqW2BmiSrSUwRJHOBY4BYz+8TMlgPLgH36GrjrnzvuuIOPP/6YtrY2fvjDH3LsscdWdFJ3
rlLl41v/TSDR1+wzwMrIsFVhmRsA11xzDVtttRU77LADm2yyCVdffXXmiZxzsZNTrxhJ/w5sMLPf
9Wf6hsjhTV1dXck9m7DczJ8/v9ghOOfyrLm5mebm5j5Nk9UTlCRNAO5KtLGHZdOBbwGHmtn6sOwC
gvb2n4ef7wNmmtnTKebpbeyu4Hx/cv0R+zb2xLzCV2LGRwLfB45NJPXQncApkoZKmgR8FvhT38J2
zjmXi4xNMZLmAnXAWEkrgJnARcBQ4MGwe9tTZna2mb0s6VbgZWADcHbKarlzzrmCyZjYzWxaiuLZ
vYz/M+Bn/Q1owoQJBbs601WeCRMmFDsE5wZcyd1SYHkZ3nDHOedKSVYnTwuy4DQnT51zrti6Tp7W
1kJ7e/AqEdmcPPXE7pxzSboSe6JZuIRyVT57xTjnnCsTntidcy5mPLE751zMeGJ3zrmY8cTunHMx
44ndOedixhO7c87FjCd255yLGU/szjk3gObMmVPwZXhid865ATQQ98PyWwo451ySQt5SYPjw4Qwf
PpyWlpZ+xub3inHOuT4rZGJP3Ja8v/nP7xXjnHMVKGNil9QkqVXS4kjZSZKWSOqUtGekfIikOZIW
S3opfAaqc865PsrlJGs2NfbZwJSksheBE4CFSeVfB4aGD73eC/iOpG37HZ1zzlWoXE6yZkzsZrYI
aEsqW2pmy4g84DoxCKiSNBgYBqwH1vY7OuecqwR57gKZ7zb224APgL8Dy4FGM1uT52U451y8pKid
NzY2Ultb26/Z5fuZp/sAnwC1wFjgMUkLzGx5qpEbGhq63tfV1VFXV5fncJxzrjx1dHTQ0dFBc3Mz
zc3NQWFjY1bTZtXdUdIE4K6w7Txa/ghwvpk9G36+CnjSzG4OPzcB883sthTz9O6OzrmSNODdHRsa
glem8SQUlOWlu6Po2Z4eHZawAjg0DKoK2A94NctlOOdcWcilx0pVVRU1NTX5CyaFbLo7zgWeACZL
WiHpTEnHS1pJkLjvljQ/HP3XwAhJS4CngSYzW1Ko4J1zrhhy6bFSX1/f76tOyfIHIWMbu5lNSzPo
jhTjdgAnZ7Vk55xzfdPS8mnzUC/8ylPnnOuD2tpaGrM8iVksntidc64PWltb6ejoyO9MGxuhn10b
U/HE7pxzMeOJ3Tnniq2+Pmg/zxNP7M45FzOe2J1zLmY8sTvnXMx4YnfOuWKbODGvs/PE7uJlAJ4A
71zeTZ+e19l5YnfxMgBPgHeu1Hlid865PqipqaGqqqrYYfTKE7uLj9rarO9X7VxWamogKYm3tLRQ
X19fpICyk+8HbThXPK2txY7AxU1LS4/7pA+Uqqoqhg8f3q9pvcbunHMDaGKWPWCuuuqqft/e1xO7
c84NoOlZ9oDJdrxUPLE751zMZPMEpSZJrZIWR8pOkrREUqekPZPG303SE+HwFyQNLUTgzuXyeDLn
4iybGvtsYEpS2YvACcDCaKGkwcCNwLfN7PNAHbAh9zCd6ymXx5M5l7U8XxU6EDImdjNbBLQllS01
s2X0fMD1EcALieecmlmbWR4f7+1cKNen2Hht32Utz1eFDoR8t7FPBpB0n6RnJH0/z/N3Dsj9KTbn
nHMOtXl8Yo1zpSTf/diHAAcCewEfAQ9JesbMHkk1ckOkf2hdXR11dXV5Dse51Do6OvL/eDPnCqC5
uZnm5uY+TZPvxP4W8KiZtQFIuhfYE8iY2J1zzvWUXOmdNWtWxmmybYoRPdvTo8MS7gd2lbSZpCHA
wcDLWS7DOefKQrYXGRWLMp3blDSXoHfLWKAVmElwMvVXwBbAGuB5MzsqHH8acBGwEbjHzC5MM18/
r+r6TQrqE932obCMLParlNM7F5Ky2o2KQhJmlq6iHYxTrB3bE7vLhSd2V0jlntj9ylPnnIsZT+zO
ORczntidcy5mPLE751zMeGJ3zrmY8cTunHMx44ndOedixhO7iz+/k6OrMJ7YXfz5fdtdhfHE7txA
8yMIV2Ce2J0baH4E4QrME7uLj5oaqKrqXlZbCzk8acm5cuSJ3ZW8rB9j19IC9fXdy1pbwR+o4SqM
J3ZX8kruodXeRu5KnCd25/qq1H5onEuSMbFLapLUKmlxpOwkSUskdUraM8U020paJ+l7+Q7YuV6V
+JNtnBsI2dTYZwNTkspeBE4AFqaZ5grg3hzicq5/pk8vdgT94807Lo8yPszazBZJmpBUthRAicfQ
REg6DngD8DNWzmWjthba28v3R8mVnLy2sUuqAn4AzCL9w6+dc1Hec8flWb5PnjYAvzCzD8LPntxd
caXq256rxsaglu0KIuvurS6tjE0xfbQvcKKky4DRQKekD83s6lQjNzQ0dL2vq6ujrq4uz+G4itfS
ApH9LC86OryGXUAl1721yJqbm2lubu7TNNkmdpG+9t1VbmZf7iqUZgLr0iV16J7YnXPO9ZRc6Z01
a1bGabLp7jgXeAKYLGmFpDMlHS9pJbAfcLek+f2O2rl+qKmpoSrfTSwF0KNZwW9x4AZANr1ipqUZ
dEeG6TL/rDjXTy0tLdkf8aXo215VVcXw4cPzGlOy2tpa2tvbmR7t7dLaWtBlOgd+5akrA42NjdSm
OFk5MduLkVJ0I6yvr6elpSW3wDJobW2lI7ktvhAnc51Lku+Tp87lXUdHR88ECd1rwuWiECdznUvi
NXbnnIsZT+zOuZJRW1tLo59czpkndlfyqqqqqKmpyes8s26f7wO/sCZ3Kc9LuD7zxO5KXiFOdBai
fd4vrOkH/zEsCE/sLideS3U58R/DgvDE7nKSqpbqyT4Dv2e8KzBP7C6vamtrOeecc4odRmkrx26a
rqx4P3aXV60FuLKyECc6nYszr7G7rBWriaUsL0Ryrog8sbusea8P58qDJ/Y48JOVzrkIT+xx4DVp
ly2vBFQET+xlppS6Elbs5d9VVcFdGstRiVcCyuU++6XOE3uZybqdewB+ACr28u/6+uAujRnU1NQw
cuTIAQio9KWskDQ0QNIj31paWqivrx+IkGItmycoNUlqlbQ4UnaSpCWSOiXtGSk/XNIzkl6Q9GdJ
hxQqcJdBjjWzUjoyKFctLS28//77xQ6jJKSskDQ0gD/nuCCyqbHPBqYklb0InAAsTCp/F/g/ZrY7
MB24MdcAXXEkfxErttnF5UW6h6Wk4tct5C5jYjezRUBbUtlSM1tG0gOuzewFM2sJ378EbCZpkzzG
W9GKmVwrttklS2Xxw1fE5612dHRkffGaX7eQu4JdeSrpJOBZM9tQqGVUmpRfjNra4Dmav/lNVu2+
hVZTU0N7e3uxw3Cp+PNWK0ZBTp5K2gX4GfDtQszfRSS+rEX40qbqwVCpJ7/Keb39fEr85L3GLmkc
8EfgNDNb3tu40afM19XVUecnUspKS0uLJ4UY8CuKS1tzczPNSb2HMsk2sYuk9vSkYcEbqRq4G/ih
mT2VaaYN/lDfklRbW0t7e3tW/x9vD/2Un/RzhZBc6Z01a1bGabLp7jgXeAKYLGmFpDMlHS9pJbAf
cLek+eHo5wDbAz+W9JykZyVt0fdVccXkJ0r7x3/kXKnIWGM3s2lpBt2RYtyLgYtzDco557qZM8fv
Y98HfuWp6yHXy7pj3yQR9/UrRX4eoE88scdVY2PQFbIfcu3hEfsmibiv30DyH8mC8MTunCse/5Es
CE/scZXljaqcc/Hjid1lxW+n6lz58MTuslLOV1a6MlfEe9yUK0/sLmux7+0SM7G5Kri1Ffy6ij4p
2E3AXPzEvrdLzJTSrQKqqqoYPnx4scOoGF5jL3eJR7Tl+VFtXjuvcHmu7dfX19PiJ/MHjCf2ctfS
AjNn5r0HjNfOy0ghmlxKqLbv+s4TewmLTRupK6wcknAhHhDi+23xeWIvYVm3kXqzieunlDd8y7EX
Sim17VcqT+wlqk81KW82qWw53D4ipZj1QqnEIwhP7CXKb51bQWpqIJeLvzo6ejxBK9uKQVlceJbj
9qnEI4iSS+yV+OuarbL4Erq+a2kJbgGRRykrBikSZFlceFaA7UN1dX6PckpMySX2Svx1zVZZfAld
6SpEgkyhsbGR2lJPmmvXxvrh3tk8QalJUqukxZGykyQtkdQpac+k8S+UtEzSK5KOKETQceRHKi4u
Ojo6aI1x0iwH2dTYZwNTkspeBE4AFkYLJe0EnAzsBBwFXC0p3bNSsxfzwyYowJGK95RxWfKL0eIn
Y2I3s0VAW1LZUjNbRs8HXB8H3GJmn5jZcmAZsE/OUcb8sKkgvKeMy5JfjBY/+W5j/wywMvJ5VVjm
8sRrV871TVm0+edZUW8C1tDQ0PW+rq6Ourq67CeurobNN6+4h0l47cq5vuno6CjrrsPNzc00Nzf3
aZp8J/bzrcTQAAAOfUlEQVRVwPjI53FhWUrRxA5B39v29vYe5SmtXRu8nHMuxpIrvbNmzco4TbZN
MaJne3p0WMKdwCmShkqaBHwW+FOWy6jYi3IKcb8OV2a8ia1gqqqqqMnz3U9LXTbdHecCTwCTJa2Q
dKak4yWtBPYD7pY0H8DMXgZuBV4G7gXONjNLN+/q6up8rEPZq9QfNBfhTWwFU4m3DM7YFGNm09IM
uiPN+D8DfpbNwtcmNaXU1NTQ3t6ezaTOuRLlD9UovpK68tSvrHSuBOR4b5ZKrCGXmpJK7GlVVeX9
CUHOuTQG6NYDrnDKI7HX11dct0bnnOuv8kjsZaC6urriLoJwzpWmol6gFCdr167tcTI4W37S2OWb
71OVzWvsJcBPGrt8y3mfyqFfvd/2ovg8sZcof6iGK6oc+tWnuu2FJ/uB5Ym9RHkt3sVJMe9xVIk/
Kt7G7ly5q6qCFBcExSqh5bAulXjjPK+xO1fu0nQHjlVCG4B1qa2tjc1tTrzGXsJiVeNyrsTF6XF+
JZfYKzWZpVrvWNW4XOFU6HcmJ2mar+Ki5JpiyiKZFeDB02Wx3q40+b7TdzG/mr3kEntZyPeDp51z
Lo9KrikmpTI41PRblTrnSkV51NhTHWqW2B0f/ValzrlSkc0TlJoktUpaHCkbLekBSUsl3S+pOiwf
ImmOpMWSXpJ0QcEij3kbmXPO9Vc2NfbZwJSksguABWb2OeBh4MKw/OvAUDPbDdgL+I6kbfMVrHPO
ucwyJnYzWwS0JRUfB1wfvr8eOD4xOlAlaTAwDFgP9O+Wh845VyhlcN4uF/1tY9/KzFoBzKwFSDR2
3wZ8APwdWA40mtmaXIPMu9paiMkVZs65foh5F9F89YrZGP7dF/gEqAXGAo9JWmBmy9NN2NDQAEBd
XR11dXV5CieDGF1h5pyLt+bmZpqbm/s0TX8Te6ukGjNrlVQLvBOWTwXuM7ONwLuSHidoa1+ebkaJ
xN5nxTyUamyE3/ym28nbSr1i1rm4KNWHkyRXemfNmpVxmmybYhS+Eu4EpofvpwPzwvcrgEMBJFUB
+wGvpptpTvcbL+ahVEdHj1q/XznqXHmL062ys+nuOBd4ApgsaYWkM4FLga9IWkqQyC8NR/81MELS
EuBpoMnMlqSbd1w2onPOlZKMTTFmNi3NoMNTjNsBnJxrUM455/qvqFeeeru0c87lX1ETe6m3S8fp
xvvOucpRHjcBK5I43XjfOVc5yuMmYANkTgHus+6ccwPNa+wRy7O9z3rMn77inCtvXmPvD7+zpHOu
hHlid865mPHE7pxzMeOJ3TnnYsYTu3POxYwnduecixlP7L2oqanJ7Q6UzjlXBJ7YexGn23g65yqH
J3bnnIsZT+zOVRK/o2pF8MTuXCUp8TuquvzI5glKTZJaJS2OlI2W9ICkpZLul1QdGbabpCckLZH0
gqShhQreOefyKS7PiMimxj4bmJJUdgGwwMw+BzwMXAggaTBwI/BtM/s8UAdsyFu0zjlXQKX+jIhs
ZUzsZrYIaEsqPg64Pnx/PXB8+P4I4IXEc07NrM3MLE+xOuecy0J/29i3MrNWADNrAbYKyycDSLpP
0jOSvp+HGJ1zzvVBvu7HnqiVDwEOBPYCPgIekvSMmT2SaqKGhoau93V1ddTV1eUpHOeci4fm5maa
m5v7NE1/E3urpBoza5VUC7wTlr8FPGpmbQCS7gX2BDIm9mKrra2lvb29pGJyzrnkSu+sWbMyTpNt
U4zCV8KdwPTw/RnAvPD9/cCukjaTNAQ4GHg5y2UUVWtrKx0dHcUOwznncpaxxi5pLkHvlrGSVgAz
gUuBP0j6JvAmcDKAma2RdCXwDLARuMfM5hco9v6rqYH29v5PH5MuUc65eMqY2M1sWppBh6cZfy4w
N5egCq6lBXJpcolJlyjnXDz5lafOORczntgziMuVaM65yuGJPYO4XInmnKscntidcy5mPLE751zM
eGJ3zrmY8cTunHMx44ndOedixhO7c87FjCd255yLGU/soZqaGqqqqoodhnPO5axyE3vSFaUtLS3U
19cXJxbnnMujyk3sfkWpcy6mKjexO+dcTHlid865mMmY2CU1SWqVtDhSNlrSA5KWSrpfUnXSNNtK
Wifpe4UIulD8To7OuTjIpsY+G5iSVHYBsMDMPgc8DFyYNPwK4N7cwyucVA+HLeadHPv6sNpCK6V4
SikW8Hgy8Xh6NxDxZEzsZrYIaEsqPg64Pnx/PXB8YoCk44A3gJfyFGNBVOI/uy9KKZ5SigU8nkw8
nt6VRGJPYyszawUwsxagBkDScOAHwCy6P/w6pVQrmO+ydOXLly8vSjzpYvR40pelisXjKa94+vLd
9HjSl2UrXydPN4Z/ZwK/MLMPws+9JndP7B5PNmXlkLg8nt7jKYdEWmrx5JLYZWaZR5ImAHeZ2W7h
51eAOjNrlVQLPGJmO0l6FBgXTjYa6AR+bGZXp5hn5gU755zrwcx6rTQPyXI+onvt+05gOvBz4Axg
XriwL3dNIM0E1qVK6tkE5pxzrn+y6e44F3gCmCxphaQzgUuBr0haChwWfnbOOVcCsmqKcc45Vz7K
8spTSRsl3RD5PFjSu5LuzHG+R0p6VdJfJf0wUn6LpGfD198kPTtA8fS4OCxp+PnhsscUOh5J4yQ9
LOklSS9KOjcy7CRJSyR1StozxbQDHc/ukp6U9JykP0naK808jg9jm9zfOCLzyvmivTzHk/J/ImlM
uN3WSfqvDPMYiHiGSJojaXH4v7xggOK5TNIrkp6XdLukkWH5BEkfRL7vVydNV5DvemR+F0paFsZ2
RFi2uaS7w7IXJV2SaT5lmdiBDuDzkjYNP38FWNmXGUganPR5EHAVwcVYuwBTJe0IYGanmNmeZrYn
cDvwx0LHE0p1cVhi/HHhct5MMbgQ8XwCfM/MdgH2B/5vYvsALwInAAvTzG6g47kMmGlmexD01Lo8
zWxPAR4DpvYlljCe5O9OPi7ay2c86f4nHwE/As7PYrYDEc/XgaFhx4y9gO9I2nYA4nkA2MXMvgAs
o/v/67XE993Mzk6aLud9uZcYdwJOBnYCjgKulpQ4F3m5me0E7AEcJCllXkgo18QOwZfk6PD9VOB3
iQGS9pb0hKS/SFokaYew/AxJ8yQ9BCxImt8+wDIze9PMNgC3EFyIlezk6LIKGE+6i8MSfgF8P82w
vMdjZi1m9nz4vh14BfhM+HmpmS2j9+6tAxYPQffbRI15FLAqORhJVcCBwFlEEoWkgyUtDGtIr0Zr
bGEtt1HSc8B+SbPM6aK9fMeT7n9iZh+Y2RPA+nSxDGQ8gAFV4Q/3sDCutQMQzwIzS3TTfopPe/OR
IsZk/dmXF0raLTLeY5J2TZrvccAtZvaJmS0n+MHZx8w+NLOFYdyfAM8mxduTmZXdi+Af/3ngD8Cm
wHPAl4E7w+HDgUHh+8OA28L3ZwArgOoU8zwRuDby+VTgv5LG+RLwp4GIJzLvCcDipLJjgSvD938D
xgxUPOF4E4HlwPCk8keAPQdy+6SKB9iR4EhmBUFtanyKaaYB/xO+XwTsEb4/GPgg3O4iqNl9LRy2
ETgxTQyrkz63RdbtcYKkNZPgKCPV9HmNJ4v/yRkk7d/FiIegZ97vgHeAdcA/D2Q84Xh3AtMi37d1
BMnzEeCgPO3LpxFc4wOwA6nzyK8ScYSff5tYl0jZKOB1YGJv61S2NXYzW0LwhZ4K3EP3X9lRwG2S
XiSo2e4cGfagmb3fz8V2+3UuRjySNgcuIkgSXcUDFY+Cq4tvA86zoKaclQGO51/Cz9sCM4DrUkw6
leCoDOD3BIkj4U8WHLkZwf/7oLC8k57NcOn09aK9QsfTVwMVzz4EzWq1wHZAvaSJAxWPpH8HNpjZ
3LDobWBbC5pdzwfmhvtYl37uy7cBR4dHJt8E5vQWV5pYBwNzgV9aUKNPK9t+7KXqToL20zpgi0j5
fwIPm9nXFFxc9UhkWEeaea0Com1744gcwocb9WtAj5ODBYonne0JdqoXwva3ccBfJO1jZu8UMh5J
Qwh20BvNbF4f4x7IeM4ws/MAzOw2SU1J040GDiVoKzVgMEGTQKJpK7mrWOLzh2HySKVVUo19etFe
4n+xL3CipMsIL9qT9KFFru8oUDz9NsDxTAPus6BZ5F1JjxO0tS8vdDySpgNfDecdTBg0w7aF75+V
9DowmaAGH9WnfdnMPpT0IEET3deBL6YIaRUwPvK5Ww4CrgWWmtmv0q1TQrnW2BO/kNcBs8wsue2y
mk83yJlZzvPPwGcVnBUfSnCiJnqm+yvAK2b29gDFE513V43AzJaYWa2ZbWdmk4C3CA5L30maphDx
XAe8bGb/L0O86coGKp5Vkg4GkHQY8Nek4V8HbjCzSeF2nAD8TVKiprdPuB8MAr5BcMIu3bolJC7a
g6SL9sJlbAf8ErjEel60V4h4otKNl658IONZQZhYw3b0/YBXCx2PpCMJfhiONbP1kfItwvkgaTvg
swTnR5Jj78++3AT8F8ERRqqj0DuBUyQNlTQpXPafwlh+Cow0sxnp1imqXBO7AZjZKjO7KsXwy4BL
Jf2FLNfRzDqBcwja6F4iOInxSmSUb5CmGaYQ8UDai8NSLTvVCam8xiPpQOCfgEMVdCN8NvxyJLqh
rST4Ut4taX4x4wG+DVwRnjT7afg56hvA/yaV3c6nJ+WeIegh9RLwupndEV2PNH5O/y/ay3s8vf1P
JP2NoJfOGeF+tWPS5AMZz6+BEZKWAE8DTWFTR0HjIWjPHg48qO7dGr8MLFbQpflW4DtmtiYyXb/3
ZTN7lqCNfnaqgMzs5XCZLxOcoD3bzEzSZwiaX3eO7Ovf7GXd/AIl56LCmv75ZnZssWMBjyeTUoun
N5K2IWimSf4hzbtyrbE751zZkHQa8CRBzbvwy/Mau3POxYvX2J1zLmY8sTvnXMx4YnfOuZjxxO6c
czHjid0552LGE7tzzsXM/wfgLII59KYqMQAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>These two charts demonstrate two very specific phonomena: how the market prepares for earnings releases. Let's look at those charts again, but with some extra information. As we're about the see, the market "knew" in advance that Apple was going to perform poorly. The market expected that Facebook was going to perform poorly, and instead shot the lights out. Let's see that trend in action:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="k">def</span> <span class="nf">plot_hilo</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">end</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">date2num</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="n">date2num</span><span class="p">(</span><span class="n">end</span><span class="p">)],</span>
<span class="p">[</span><span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">start</span><span class="p">][</span><span class="s1">&#39;High&#39;</span><span class="p">],</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">end</span><span class="p">][</span><span class="s1">&#39;High&#39;</span><span class="p">]],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">date2num</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="n">date2num</span><span class="p">(</span><span class="n">end</span><span class="p">)],</span>
<span class="p">[</span><span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">start</span><span class="p">][</span><span class="s1">&#39;Low&#39;</span><span class="p">],</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">end</span><span class="p">][</span><span class="s1">&#39;Low&#39;</span><span class="p">]],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">)</span>
<span class="n">f</span><span class="p">,</span> <span class="n">axarr</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">ax_aapl</span> <span class="o">=</span> <span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">ax_fb</span> <span class="o">=</span> <span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="c1"># Plot the AAPL trend up and down</span>
<span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">AAPL</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax_aapl</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_aapl</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">AAPL</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_aapl</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">18</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">),</span> <span class="n">AAPL</span><span class="p">)</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax_aapl</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">&#39;AAPL Price History&#39;</span><span class="p">)</span>
<span class="c1"># Plot the FB trend down and up</span>
<span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">FB</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax_fb</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_fb</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">30</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">),</span> <span class="n">FB</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_fb</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">28</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">FB</span><span class="p">)</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax_fb</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">&#39;FB Price History&#39;</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">18</span><span class="p">,</span> <span class="mi">6</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjfX7x/HXZc++ZUaRUZE2soWIQUVJEam00V7fXyRa
5Fto07ekfVF20kbRpj1KWixFSrI0iGbabJFtfH5/fM5ojNmdM/c5M+/n4zGP4b7vc9/XbZnzOdf9
+VyXOecQEREREREREclJsaADEBEREREREZHYoCSCiIiIiIiIiOSKkggiIiIiIiIikitKIoiIiIiI
iIhIriiJICIiIiIiIiK5oiSCiIiIiIiIiOSKkggiRYCZPWNmQwK47mAze66grysiIiLBMLOlZtY2
gOu+Y2aXFvR1RYoiJRFE8sHMZpvZX2ZWMov9w8xsr5k1z7D9cjPbY2ZbzGyTmS0ysy6hfe3MbF0e
rv9P6Dy/mdl0M4vL6njn3PXOufvyco+5iGGomU3OZPteMzsydN0RzrlrcnGuT8zsinDGJyIiUlSZ
WZKZbQ+NE7aGvsebWZ3Q+/SW0NevZvaUmRXP5lx7051jnZk9bGaW1fHOuROcc5+G+X4OGCdkHDc5
585yzh0wLsnkXPvGKSKSP0oiiOSRmdUB2gB7gXOyOOxS4E/gskz2zXPOVXTOVQbGAa+YWaXQPpfL
MBxwg3OuIlAfqAw8kkW8kfx/nlm8ub2HsMluMCMiIlIEOaBLaLxRIfQ9Od2+SqExxIlAK+A/OZyr
Yej4jkBv4OqMB2WXiIig/Iw58j1OCegeRaKOkggieXcZ8AUwAeiTcWdoCl880A+4yMxKZHOuccAh
wFH5iMMAnHObgOnACaHrjzezp83sbTPbCiSGtt2dLsZzzewbM9tsZivM7IzQ9opmNsbMNoSeNtyT
jw/o+45PP1vBzEqb2WQz+8PMNprZV2Z2qJndC5wKPBl6yvF46PhTzOzrdMe2SnfeT8zsXjOba2bb
gIFmtmC/IMxuNrPX8xi7iIhIYZHd+3faGOIP4APguByOTTv+J+Az/h1z/Gxmt5rZYuBvMyse2tYh
tL+Ymd1hZitDY475ZnZ4aF8DM3vfzP40s2Vmdv5B3Wy62QpmdlRo1uam0IzNF0Pb54TuZUlozHF+
aPvVofHQH2Y2w8xqpjvvXjO7wcx+An4ysyfNbGSGa880s/4HE79ILFESQSTvLgOmAFOBTmZ2aCb7
3wReDf2+a2YnCSUXrga2AivyG4yZVQd6AIvSbb4IuMc5VwH4PMPxJwMTgYHOuUpAWyAptHsisAs4
EmgMnA5cld/YQtIy/pcDFYHDgarAdcA/zrn/4gck/xd6UtLPzKoAbwGPAtXwsyzeDm1Pc0kotgrA
40CCmR2TYf/Eg4xdRESkMDIAMzsM6IR/OJLzi8yOwyf+0485LgTOBCo751IzvGQgcAHQOTTmuALY
bmZlgffx46nqoXM8ZWYN8noPWbgHeC8067MW8ASAc65daP+JoTHHq6GEx/1AT6AmsBZ4KcP5zgWa
45MtE0Px+iDMquFnaLyQh9hFYpqSCCJ5YGZtgCOAV5xzi4CV+Gl9afsPAc4HXnDO7QGmceCShlZm
9hewAf/G2s05tzUf4TwROs83oXMNTLdvpnPuSwDn3M4Mr7sCGOuc+zi0/1fn3E9mVgM/CBjgnNsR
ejrxKD4hkZULzNeGSPvaSNbTBHfjEwL1nfeNc+7vLI7tAvzknJvqnNvrnHsJ+JH9EzITnHM/hvbv
Al7GJw4ws+OBOsDb2cQuIiJSmM1I9/78WrrtBvwees9eB/yNn9GYnUVm9icwE3jOOTch3b7HnHMb
MhlvAFwJDHHOrQRwzn3nnNsInA387JybFBoTLAZew4+hsvJE+jEH/oFNVnYDdczscOfcLufcvAz7
0ycgeuPHRYudc7uBwfix2hHpjrnfObfZObfTOTcf2GxmHUP7LgRmh8ZNIkWCkggieXMZ8H7oDRDg
RfwT9jTn4d+4ZoV+PxU4K5SlTvOFc66qc66Gc+4U59wn+YzlxtB5ajvnLnXO/ZluX3YFGmsDqzLZ
XgcoCfyaLiHwLP4JQVZeDsWQ9lWFrJ8MTAbeA14ys1/M7H/ZrC08DFiTYdsa/CyGNBnvcRL/JnQu
wSd6dmcTu4iISGF2brr35/PSbXdAtdB7dllgHn5WQHYaO+eqOefqOeeGZtj3Szavqw2szmR7HaBl
hocQvfHLQbNyY/oxBz4RkZVb8J9zvjaz78ysbzbH7jfmcM5tw9e1Sj/myHiPkwg9uAh9z7Ggo0hh
kt1abRFJx8zKAL2AYmb2a2hzKaCymZ3onPsOn2QoD6wN1RIw/P+z3oSm0hWQ7IoGrSPzGgzrgB34
gUXYiyOGZmbcA9wTyu7Pws8uGM+B8W7AL9FIL+01+06Z4fxfmdkuMzsV/+ed3QwKERGRwi6nmgjO
ObfTzCYAg8ysqnPur3ycKzdjjh8y2T7bOdcpm9fmm3PuN+AaADNrDXxoZnOcc5klNDbgkxqEji+H
nzmZPnGQ8R6nAN+ZWUOgATAjjOGLRD3NRBDJve7AHuBYoFHo61j8ev7LQusKO+Kn4p8U2t8QeJD9
Zytkx0IFCPd9hfkeAMYCfc2svXmHmdkxoarN7wOPmFmF0L4jLUy9ns0s0cxOMN8t4m/8jI20tZMp
+DoMad4B6pnZhaEiTRfg/6yzm7oI/knAk0BmUxdFREQkXaHE0DjjMuDXbBIIB2MM/uHB0aHrnZiu
7lF9M7vEzEqYWUkza5bHmghZMrOeaQUcgU34jlp7Q79PZv8xx4v4cVHD0J/H/cCXzrksZ3U659YD
C/DjjulZLOUQKbSURBDJvcuAcc659c6539K+gKeAi/GdGr5xzn2UYf/jwImhYkQ5OQzYHvr6B198
KLNextll/bNtuxhay9cXX+9gMzAb/5Q/7R5L4Z8Y/IUvDpnd1MLcXp/QeaaFrvk98Ak+kw/wGHB+
qELzo6GBzNnAIOCP0Pcu6ZaRZHWNyfiK0ZpWKCIiRVlO44SNZrYF+BVoQdYtq3Nzruy2jQJeAd43
s834pMIhoZpIZ+DrCWwIfT2AH4PkNYbMjmkOfBW6xxlAP+dcUmjfMGBSaBlFT+fcR8Cd+JoM64G6
pCucmM21J+LHHJNyEZtIoWI5zVo2s7H4wXyKc65haFtP/H/AY4HmoQJzmFkdYBl+ijL4LN4NkQld
RGR/oSUnKUAT51xmdR9EJEZlMR55EF9wdSe+1ktf59wWMzsN/4GkJL7jzK0HUX9GROQAoeWTk51z
CUHHIlLQcjMTYTy+9Ut63+Gnds/J5PiVzrkmoS8lEESkIN0AzFcCQaRQymw88j5wvHPuJHyr3MGh
7b8DZzvnGuFniWl2koiEjZmVBPoDzwcdi0gQciys6JybG5phkH7bcvCLtzN5SXaFV0REIsLMfg79
sluggYhIRGQxHvkw3W+/JFSQNdQuLu2Y782sjJmVVMcWETlYoboNC/Atth8LOByRQESiO0OCmS3C
r3u+0zk3NwLXEBHZj3OubtAxiEigrgBeyrgxtARzkRIIIhIOzrkf8Z24RIqscCcRNgBHOOc2mlkT
YIaZHRcqniIiIiISdmY2BNjtnJuaYfvxwAjg9EACExERKYTCmkQIZfk3hn69yMxWAfWBRRmPNbOw
96EXEREpLJxzWh6YC2bWBzgL6JBhey18tfVL01Vlz+z1Go+IiIhkIbPxSG5bPO7rJ5vFPv8Ls+qh
HvCE2tIdDazO6qRDhw7FOZfl18Hsj+S527VrF7FzF9b7imTcui/dl+5L9xX0fTGMsN6XZGm/8YiZ
dQZuAc5x6fq0m1klfB/625xzX+Z00vz+fRX0vuz+XUZTnLqH6N+ne4iOfbqH6NgXrntIPxaI1XvI
uC8rOSYRzGwqMA+ob2ZrzayvmXUzs3VAS+AtM5sVOrwtsCRUE+EV4Frn3Kaszp2YmJjttQ9mfyTP
nZCQELFz57Q/Vu8rknHntF/3lff9uq/w79d95X2/7kvSy2w8AjyBX5v8gZktMrOnQ4f/H3AUcJeZ
fRPaVz2rc+f376ug92X37zKa4tQ9RP8+3UN07NM9RMc+3UPe92WZeYj0l790bBo6dGjQIUSE7iu2
6L5ii+4rtuT1vhgW3ve00HtkYO/RRekrlsYjheH/m+4hOugeooPuITqE6x7CPRbIi0j9PWQ1Hsnt
cgZJp7A+JdJ9xRbdV2zRfcWWwnpfEtsKw79L3UN00D1EB91DdNA95J35BEPBMzMX1LVFRETCyYYb
bmj43tPMDKfCigVC4xEREQmHcI8FokFW45Fwt3g8aAkJCaxZsyboMKSQqFOnDklJSUGHISIiMUbj
EQknjUdEpDCJuiTCmjVr0BMBCRczPcgTEZG803hEwknjEREpTFQTQURERERERERyRUkEERERERER
EckVJRFEREREREREJFeURIhic+fO5dhjjw06jDxp374948aNCzoMERERCRONR0REJD0lEfIoISGB
smXLUrFiRSpUqEDFihXp169fRK7Vpk0bli1bFpFzZ2XixImUKFGCihUrUrlyZRo3bszbb79doDGI
iIhI9jQeERGRoERdd4ZoZ2a8/fbbtG/f/qDOk5qaSvHixcMUVXidcsopfPrppwA899xzXHjhhaxf
v56KFSsGHJmIiIiAxiMiIhIczUTIh6xaPq1evZqOHTtSvXp1atSowSWXXMKWLVv27a9bty4PPvgg
jRo1onz58qSmplK3bl0efvhhGjVqRJUqVbjooovYtWsXAHPmzKF27dr7vT6rYwEefPBBDjvsMGrV
qsXYsWMpVqwYq1evBuCdd97h+OOPp2LFitSuXZtRo0bl6l4vvfRStm3bxooVK/Zt+/LLL2ndujVV
qlShcePGzJkzJ8vXjxs3juOOO45q1apx5plnsnbt2n37brrpJo444ggqVapE8+bNmTt37r598+fP
p3nz5lSqVImaNWsyaNCgfF1fRESksNJ4ROMREZFAOOcC+fKXPlBW26NFQkKC++ijjzLdt3LlSvfh
hx+63bt3uz/++MO1a9fODRgwYL/XNm7c2K1fv97t2LFj37YWLVq45ORkt3HjRnfssce60aNHO+ec
mz17tqtdu/Z+r8/q2FmzZrmaNWu6ZcuWuX/++cddcsklrlixYm7VqlXOOedq1qzpPv/8c+ecc5s2
bXLffPNNpvcwYcIEd+qppzrnnNuzZ4978sknXenSpd3vv//unHNu/fr1rlq1au7dd991zjn34Ycf
umrVqrk//vjDOedcYmKiGzt2rHPOuRkzZrh69eq55cuXu9TUVHffffe5U045Zd+1XnjhBbdx40aX
mprqRo0a5eLj493OnTudc861atXKTZkyxTnn3LZt29xXX32Vq+tnFO3/nkSkcGBYeH/WhH52BfYe
XZS+NB7ReETjEREJh3CPBaJBVuMRzUTIh27dulG1alWqVKlC1apVGTt2LABHHXUUHTt2pESJElSr
Vo0BAwYckJXu378/hx12GKVLl95vW1xcHJUrV6Zr1658++23WV47q2NfffVV+vbtS4MGDShTpgzD
hg1LGxwBUKpUKb7//nu2bt1KpUqVOOmkk7K8xhdffEHVqlU55JBDuPXWW5kyZQrVq1cHYMqUKXTp
0oVOnToB0LFjR5o1a8Y777xzwHlGjx7N4MGDqV+/PsWKFeP222/n22+/Zd26dQD07t2bypUrU6xY
MQYMGMDOnTtZvnz5vnhXrlzJn3/+SdmyZTn55JPzfH0REZHCTOMRjUdERIIQkzURbLiF5TxuaObT
AHMyc+bMTNcg/vbbb/Tv35/PPvuMv//+m9TUVKpWrbrfMbVq1TrgdXFxcft+XbZsWX799dcsr53V
sRs2bKB58+b79qWfdggwffp07rnnHm677TYaNWrEiBEjaNmyZabXaNWqFZ9++inbt2/nyiuv5NNP
P6Vnz54ArFmzhldeeYU333wT8DNZ9uzZQ8eOHQ84z5o1a+jfvz8DBw7cd6yZsX79emrXrs3IkSMZ
N27cvnvYunUrf/zxBwBjx47lzjvvpEGDBhx55JHcdddddOnSJcvrd+jQIcs/MxERkUgIx3gkv2MR
0HhE4xERkWDEZBLhYN5ww3J9l/n177jjDooVK8b3339PpUqVmDlzJjfeeON+x5iFJwGSUc2aNfnl
l1/2/X7t2rX7Xatp06bMmDGD1NRUnnjiCXr16rXfesDMlC1blqeffpojjzySK6+8kkaNGlG7dm0u
u+wyRo8enWNMtWvX5r///S8XXXTRAfvmzp3LQw89xCeffMJxxx0HQNWqVff92R511FFMnToV8AOO
nj178tdff+Xp+iIiIpGk8ciBNB4RESn8tJwhjLZu3Ur58uWpUKEC69ev56GHHiqwa/fq1Yvx48fz
448/sn37du699959+3bv3s3UqVPZsmULxYsXp0KFCrmuxFylShWuvvpqhg8fDsAll1zCm2++yfvv
v8/evXvZsWMHc+bMYcOGDQe89rrrruP+++/nhx9+AGDz5s1MmzYN8H9WJUuWpFq1auzatYu7776b
rVu37nvtCy+8sO8pQKVKlTAzihUrlqfri4iIFEUaj+xP4xERkfBSEiEfunbtSsWKFfd99ejRA4Ch
Q4eycOHCfesD07anySzrn5cnAdkd27lzZ/r160f79u2pX78+rVq1Ati31nHy5MnUrVuXypUr89xz
z+3LqudG//79mTVrFkuXLqVWrVrMnDmT+++/n0MPPZQ6deowcuRI9u7de0CM3bp14/bbb+fCCy+k
cuXKNGzYkHfffReATp060alTJ+rXr0/dunUpW7bsflMe33333X3VmwcMGMDLL79M6dKlc7y+iIhI
UaHxiMYjIiJBsKymwkX8wmYus2ubWZbT8yT3fvzxR0488UR27txJsWJFN1ekf08iUhBsuIV1anvo
Z1dk5pvLfjQeiSyNRzz9exIp/NLGAjt2QMmSkMuJVlEtq/FI0f1pXgjNmDGDXbt2sXHjRm677TbO
OeecIv2GLSIiIgVP4xERKcqefBI6dICffw46ksjRT/RCZPTo0dSoUYN69epRsmRJnn766aBDEhER
kSJG4xERKcoGDICu8fM5+WQYOxYK4ySkmOzOIJmbNWtW0CGIiIhIEafxiIgUZcWLw6Bj36bznc25
9FJ4/XUYMwbi44OOLHw0E0FEREREREQkjE44Ab76Cho3hpNOglBTmEJBSQQRERERERGRMCtVCu65
B2bMgDvugEsugY0bg47q4CmJICIiIiIiIhIhLVvCt99ClSrQsCG8/37QER0cJRFEREREREREIqhs
WXjiCRg/Hq66Cv7zH9i2Leio8ifqCivWqVMHM7XGlvCoU6dO0CGIiEgM0nhEwknjERFJc9ppsGQJ
9OvnayVMmgStWgUdVd5EXRIhKSkp6BBERESkiNN4REREIqVyZZ88mD4duneHK6+EoUN9DYVYoOUM
IiIiIiIiIgWsRw9YvBi++w5OPtl/jwVKIoiIiEjUM7OxZpZiZkvSbXvQzJaZ2bdmNt3MKqbbN9jM
VoT2nxFM1CIiItmLi4OZM6F/f+jQAR58EFJTg44qe0oiiIiISCwYD3TKsO194Hjn3EnACmAwgJkd
B/QCjgXOBJ42FTgQEZEoZQZ9+8L8+fDOO9CuHaxaFXRUWVMSQURERKKec24usDHDtg+dc3tDv/0S
qBX69TnAS865Pc65JHyC4eSCilVERCQ/EhLg44/9MoeWLeG558C5oKM6kJIIIiIxbsKECVnuS0qC
L78ssFBEgnQF8E7o14cD69LtWx/aJiIiEtWKFYMBA2DOHJ9E6NIFNmwIOqr9KYkgIhIDsk8UJB2w
7csvoVcvaNYMvn7iq8gFJhIFzGwIsNs592LQsYiIiITDccfBF1/4gouNG8PLLwcd0b+irsWjiIgc
KDft5vbsgRkzYNQoSEmBm26CsWOhwsOzgBYRj1EkCGbWBzgL6JBu83qgdrrf1wpty9SwYcP2/Tox
MZHExMRwhigiIpIvJUvCsGF+NsKll/px3lNPQdWqkbne7NmzmT17do7HKYkgIlFlwoQJ9OnTJ+gw
YsrOnaV59FF47DGoVQtuuQXOOQeKFw86MpGws9CX/41ZZ+AWoK1zbme6494AXjCzR/DLGI4Gvs7q
pOmTCCIiItGmeXP45hsYPBgaNoQxY6Bz5/BfJ2Miffjw4ZkepySCiESV3DxxF2/NGnj8cRg16hpK
l36dTz/tzskZS8fFx/tpCc8+C8nJgcQpEg5mNhVIBKqZ2VpgKHAHUAr4INR84Uvn3A3OuR/M7BXg
B2A3cINz0ViaSkREJHcOOQQefdQ/KOrbF848E0aOhPLlCz4W1UQQEYly8fHxjBw5ct/vv/oKLrgA
mjTxxXegMTt3nndgAgF8AiH9d5EY5Zzr7Zw7zDlX2jl3hHNuvHOunnOujnOuSejrhnTHj3DOHe2c
O9Y5936QsYuIiIRLhw6wZAns2AEnnQSff17wMSiJICIS5VJSUti27R+mT4fWreGii+CUU3znhYce
gv2L0IuIiIhIYVapEkyY4Gci9OwJt98OO3fm+LKwURJBRCSKbd0K0A9YwSOPwMCBsGIF9O8PFSoE
HJyIiIiIBKZbN1i8GJYv93UTFi8umOsqiSAiEoXWrvUFEhMSAFoBFzF3Lpx3ngomioiIiIhXowa8
9pp/0HTaaTBihO/YFUlKIoiIRJGvv/bLFRo3Budg0SKAi8imsLyIiIiIFGFmcPnlsHAhfPghtG0L
K1dG7npKIoiIBCw11WeQ27TxBRNbtICff/br3OrUyfn15cqVIy4uLvKBioiIiEj24uNh+HD/vYAd
cQR88AFceCG0bAnPPOMfSoWbkggiIgHZutW3aKxXzycMbrrJ1zu46SaoWDH35xk0aBDJat8oIiIi
EryAO2MVKwb9+sHcuTB+vG8FuX59mK8R3tOJiEhO1q2DW2+FunV9W56pU2HePF9dt0SJoKMTERER
kVjXoIEfX55yil8mO3Vq+GYlKIkgIlJA5s+H3r19T9/UVFiwAF5+2U83ExEREREJpxIl4K67YNYs
uPdev2z2zz8P/rxKIoiIRFBqKrz+Opx6Kpx/vm+/8/PP8PDDaZ0XDl5CuE4kIiIiIoVO06a+6GLt
2tCwIbz99sGdTxNnRUQi4O+//Tq0Rx/1rXduvhm6d4/McoU+ffqE/6QiIiIiUmgccoh/iHXOOdCn
D8yc6X9foULez6WZCCIiYfTLL3DbbX6WwWefwZQp8MUXfhaC6h2IiIiISJDatYPFi2HvXmjUCD79
NO/nUBJBRKLKyJEjiQ+gJc7BWrAALr7Y/zDevdvXP3jlFWjVKujIRERERET+VbEijBkDjz3m20He
cgvs2JH71yuJICJRZdu2baQE1BInr1JTYcYMn9Ht0cOvN1u9GkaN8p0XRERERESiVdeuflbC6tXQ
rBl8803uXqfJtSJSaMTHx/PPP/+wefPmiF7n779hwgRf76BaNRg4EM47T8sVRERERCS2HHooTJsG
L7wAnTpBv35w++3Zj2s1E0FECo2UlBS2bNkSsfP/8ov/oZqQALNnw6RJ8OWX0KuXEggiIiIiEpvM
4JJLfAeHOXOgTRv46aesj1cSQUQkBwsX+h+sjRrBzp2+3sG0aXDKKf6HbqTFxcVRsWLFyF9IRERE
RIqs2rXhvffg0kth7gNzszxOSQQRiSkTJkwokOvs3QtvvAGJib41Y+PGfr3YI48UfL2D5OTkiC/R
EBEREREpVgz+8x+44ogPszxGE3BFJKYkJSVF9PzbtsHEiT5ZUKXKv/UOSpaM6GVFRERERGKCZiKI
iADr18Pgwb7ewUcf+cKJX30FF1wQngRCQc2gEBERERGJJCURRKRIW7TIr/s68UTYvt0XSpw+HVq3
Dm+9g5xmUCjJICIiIiKxQEkEkSIqWj+0litXjri4uMicPHTPe/fCm29C+/bQrRs0bOjrHTz2GBx1
VGQunZ34+Hj69u1LfHx8wV9cRERERGJaQY/rc0wimNlYM0sxsyXptvU0s6VmlmpmTTIcP9jMVpjZ
MjM7IxJBi8jBi3RtgfwaNGgQycnJETn3tp/W8/TT0KAB3H03XHstrFoFt9wClStH5JK5kpKSst93
EREREZHcKuhxfW4KK44HngAmpdv2HdAdGJ3+QDM7FugFHAvUAj40s3rOOReecEWksEtISAj7OTds
gCefhOcfu4lTO8G4ceFfriAiIiIiUhTkOBPBOTcX2Jhh23Ln3Aog4xD8XOAl59we51wSsAI4OUyx
ikgR0KdPn3y/Ni4ujnLlyu37/TffwGWXwQknwN9/w5dXjuG116BNGyUQRERERCT2xcfHM3z48AJd
FhvumgiHA+vS/X59aJuISMQlJyczcOAtvPUWdOgA55zjCyauWgWPPw5HVd2Y80lERERERGJEEMti
c7OcQUQk6m3fDpMmwVNP/YeEBBg4EHr2DE97RhERERER8cKdRFgP1E73+1qhbZkaNmzYvl8nJiaS
mJgY5nBEJNzi4+NJSUkhLi4uYgUQ82LDBnjqKXj+eV/noGvXNxg37gotV5CYMnv2bGbPnh10GCIi
IiI5ym0SwTiw/kH6fWneAF4ws0fwyxiOBr7O6qTpkwgiEkUmTIAsahNESyeBb7+FRx7xrRovvhjm
zYOjj4Zhw9ZmnUAYORKefRaiIPkhkl7GRPrw4cODC0ZEREQkG7lp8TgVmAfUN7O1ZtbXzLqZ2Tqg
JfCWmc0CcM79ALwC/AC8A9ygzgwiMShK2z/u3Qs//VSPjh3h7LPhuON8vYMnnvAJhBxt2wZFrY1i
XBypFIO4uKAjEREREZEoMmHChHy9LseZCM653lnsmpHF8SOAEfmKRkQkE9u3w+TJ8J//rCA1tQEV
K17PH388E/56B9nMwIhF8+fDiFOSOXTNAkYvbBZ0OCIHxczGAmcDKc65hqFtPYFh+NbSzZ1zi0Lb
SwBjgCZAcWCyc+6BIOIWERGJVkn5fHAY7u4MIlIYjBwJBdgmJivJyXDnnZCQALNmQWrqlUAztmx5
NjIFE6NDDbsDAAAgAElEQVR0BkZeOAeffAKnnw49ekD79vDINcuCDkskHMYDnTJs+w7oDszJsP18
oFQo2dAMuNbMjoh8iCIiIlEmn7MNsqPuDCJyoG3b/FdAlizx9Q5mzoTeveHzz6FePTD7LLCYot3e
vfDWW3D//bBpE9x2m68VUaoUwKVBhydy0Jxzc82sToZtywHMDqiE4oByZlYcKAvsBLYUSKAiIiLR
JAIPyZREECmC0josPPvss1HRYQH8h+B334VRo2DZMrjxRli5EqpWDTqy6LZnD7z8MowYAaVLw+DB
0L07FC8edGQigZoGnAv8ChwCDHDObQo2JBERkehxMJ8HlEQQKYKipcMCwD//+HoHjzwChxwCN98M
vXqlPUHfX1xc3L72kkXdjh0wcSL8739QuzY8/DCccQZqbSninQzsAeKBasBnZvahcy4ps4PVclpE
RIqazD4P7Gs5PXJktrOSlUQQkUAkJ8PTT8Po0dCype+82LZt9h+Ck5OTmTBhAn0KUfHDvNq61f+Z
jRoFTZr4BEzr1kFHJRJ1egPvOuf2Ar+b2ef42ghJmR2sltMiIiLpEumhVtNZNZxWYUURKVBLlkDf
vr49459/wmef+doH7drl7il6YUwgpM2syG6GxZ9/wtChcOSRsHChLzT51ltKIEiRY6GvrPalWQt0
ADCzcviW1D9GNjQREZGiQUkEEYm4vXv9h97TT4czz4T69WHFCnjqKf/roi45OZmhQ4dmuh5t/Xq/
xKNePfj1V/jiC3jxRWjUKIBARQJkZlOBeUB9M1trZn3NrJuZrcMnCd4ys1mhw58CKpjZUuArYKxz
bmkwkYuIiPxrQgS6JRQ0LWcQkYj55x+YMsXXOyhd2n8YvuCCzOsdhEtCQkLkTl6AVq709Q6mT/cz
N777Dg4/POioRILjnOudxa4ZmRy7DegV2YhERETyLinM3RIiUjMsLg6yqZ2mmQgiEnYpKX7qfUIC
vPmmn3GwaBFcemlkEwgQ+8sdFi+Giy6CVq180mDFCl80UQkEEREREckouxmtB3FSP5jPgpIIInKg
cuV8BjKPli6FK6+EY4+F33+HTz+FN96A9u3VNWDkyJHEx8dnuX/t2tqcfTacdRY0bQqrV8OwYVCt
WsHFmFe//w7PPQfOBR2JiIiIiBQUJRFE5ECDBvkMZC44B+++C506+RaDRx3ln54//TQcc0yE44xx
zsF77/mikq+/fh5du8KqVf6Pv0KFoKPL2T//wDP3/cmll8L27UFHIyIiIiIFQUkEETlQruoKlGbM
GDjhBLj9drj4Yvj5Z7jjjuh+ep6l+Hjfziab2QIHY9CgQfummaWmwrRpfsbBoEFw7bVw441PcO21
UKZMRC4fEUecHM/na2tj01+ldWv/9y8iIiIimYuPj2f48OHZzk6NBUoiiMiBsqkrcOihxwNDKVZs
LTNmwBNPwDffwGWX+eKJMSuteEw2RWQORkJCArt2wfjxvr3lyJF+ucLixdC7NxQrtjci142olBTK
8g+TdvTiiiugZUt4//2ggxIRERGJTimhcWZKhMabB4jQQzJ1ZxCRXPn+e99lYc+epTRtOp8pU2rQ
oEHQUcWG7dthy5Y+HH00NGgAzz4LiYmFp06EATfe6NtOXnih//Xttxee+xMRERGJSRF6SKaZCCJF
UFoLmJxawTjnnyx37gynnw5168JPP8HZZ79d+BIIaX8WYWyPs2kT3H8/HHkkzJ7t2zW+/37mhSYL
Q2vKtm1h/nyYORN69ICtW4OOSERERKQIi8D4FpREECmSkpOTGT9+fJatYHbsgHHj4MQT4ZZbfMvB
n3+GIUOgevUCDragpLWyCUN7nJQUGDzYF5lcvhw+/hheew2aN8/6NbHemjLN4YfDnDlw6KFw8sn+
/kVEREQkAGEc36anJIJIEZXZh9bffvPLphIS/FPzxx6Db7+Fyy+P8XoHafLZujK31qyB//s/3+Jy
61ZYuBAmTvQ1EIqS0qVh9GgYOBBOPdXPTBARERGR2LBtGyT/XT7L/UoiiAg//ABXX+3X62/YAJ98
Am+/DR07FrJ17XloXZkXy5b5REuTJr4147Jl8OSTuWxyUYhddRW8+aavkXDnnb4rhYiIiIhEH+fg
66/hmmugdm14aUPbLI9VEkGkiHIOPvgAzjzTJwvq1PH1DkaP9k/SJWfz58N55/kiicccA6tWwYgR
EZ3sEHNatPB/Tp9+Cl27wsaNQUckIiIiIv+qxqOPQsOGvmNYQgJ89x3cNPXkLF+h7gwiRcyOHTB1
qu+0YAY33wwzZhSS5QoFwDlfJHHECPjxR18zYsoUKFs26MiiV1wcfPgh3Hqrrwvx+uu+3oaIiIiI
FDw/O/QM4ErgDBYu9G3b27aFYrmYZqAkgkgR8fvv8Mwz8PTTftr9I4/kf7lCYegkkKls7mvvXnjr
LZ88+Osv38Lw4ouhVKmCCy+WlSzp/801bw4dOvg3qgsvDDoqERERkaIjKQnGj/dfcB8wFriGyZM3
5ek8SiKIFHI//ACPPgqvvgrnn+87BRxsob+Y7SSQU/Ijk/vaswdeecUnD0qWhDvugO7doXjxiERY
6PXuDccf75eBLFgADzwAJfROJCIS9ZYuhSpVfBceEYkdO/aUYMZLMHYsfPON77r2xhvQuHE2bcNy
oJoIIoWQc376+Fln+ae+tWr5egfPPVf0OgXsJw/Jjx07fH2IY47x30eO9N0WevZUAuFgNWrk6yQs
XQonnvgrv/8edEQiIpKTzz+HZsdv54MPgo5ERHJj8WLo1w9qPTaIMWPgiivgl1/8bNCTTjq4cyuJ
IFKI7NwJEyb4D2kDBviZB0lJcNddcOihQUcXG7Zu9QmDI4/0nQUmTYI5c6BTp0LWqaKgTJiQ6eaq
VX0HkOrVV9CsmU8qiIhI9Lr2Wnjh3Fe5/HLfDlodd0Siz+bN8Oyzfvno2WdD5cowf0kZPvzQz0Ao
UyY811ESQaQQ+P13uOceP1v/5Zfh4YdhyRLo2zd8PywKuz//hKFDffJg4UKYNcvXQGjdOujIYlh8
vP9HGB+f6e7ixaFjx4959FE/a2bcuAKOT0RE8qRD3Z9ZsAA++sj/3NZMMpHgOQdJSXW47DLfbe2j
j/zngqQkuPtuqFs3/NdUEkEkhi1b5p8M1K8Pa9f6JQyzZsHpp+upeW6tXw8DB0K9erBhA8ybBy++
6GdzyEFKSdn/exa6d/ctIB98EK6/HnbtKoDYREQkXw47zNdXatwYmjb175sikjtxoT7gcWHoB75h
g6/ZVb8+vPNOFxo3hhUrfB20zp0ju/xWSQSRGOOczzB26QLt2/s38+XL4fnnfcG6NBOymEYu3sqV
cM01vtWgc37mxvPP+2SCFLxjj4Wvv4Zff4XERP/GKCIi0alECV8Y98knoVs3X8DZuaCjEol+ycnJ
DB06lOTk5Hy9fvdu35q9a1c/7l+9GiZPhuuvf5oBAwpu+bKSCFL4FZIP0zt3wsSJvhBK//7Qo4ef
pjR0KNSosf+x8fHx9O3bl/gsppEXZUuW+DVhrVpBzZq+4OSoUb74pASrYkV47TU/RbZ5c5g7N+iI
RERkn/h4Xwwh3djinHPgq69gyhRfh2nz5gDjE4kWabMMwjDbIM3y5XDrrVC7tq/ddd55sG6dfwDW
smXBz0BWEkEKv6SkoCM4KH/8Affd59czvfgiPPQQfPedr7CaVb2DlND08ZQcppEXJfPm+QIznTv7
6ZerV/uxUPXqQUcm6RUrBv/9L4wZ4xNlTz2lp1siIlEhiyVqdev6pG+NGtCsGXz7bQCxiUST5GT/
lC+fsw3SbNvmn4Weeiq0a+e3zZ7t/7/17Qvlyx90pPmmJIJIlPrxR7juOr/O6eef4f334d134Ywz
VO8gt5yD997zP3gvucRP/Vq9GgYNggoVgo5OsnPmmT7xM3q0f6P855+gIxIRkayUKQNPP+2T86ef
rkK5IvnlnJ/dc801ftbB9Om+dte6db52VIMG4bvWwdRnUBJBJIo454sVnX22/+AbH++LJ44ZAyec
EHR0sSM1FaZN809EBg70xSd/+sl/V7eKMIrAdL30jjoKvvjCL+Vp0wbWrInIZUREJEx69/ZtkUeO
9Ang7duDjkgkNvzxBzzyiK/VdfHFfobP0qW+3Xi3blCyZPavT0hIyPM1k5OTGT9+fL7qMyiJIBIF
du2CSZN8peMbb/Q/LJKSYNiwiH0+K5R27YLx432hmZEj/UyyJUv8oKZEiaCjK4TCNF0vO+XKwdSp
fiZJixa+A4mIiESv447zhXJ37fJrtX/6KeiIRKJTaqqfMXv++XD00bBokV/GuWIFDB7si6fnVp8+
ffIVQ35fpySCFHlBdjH480+4/35ISIAXXoD//c9nHa+6Cg45JLCwYs727fDEE/4H8NSp8Mwz/gn2
Oef4NfYS28xgwABfE+TSS31dENVJEBGJXuXL+2KLN9wArVv7lnMi4m3aVJmhQ/1sgyFDoEMH//Bw
8mQ/EzkWli3r2ZwUeUkBFF5cvty3Q3rpJV9d9b33/PQlyZtNm/wazMce84OU6dN9VX8pnNq390+3
zjsP5s/3a26DLCokIiJZM/O1nZo3909a5871SeBSpYKOTKTg7djhWzOOHQuff34NV13llyo0ahR0
ZPmjZ3QiBcQ5+OQTX9yvbVtfxfjHH/0PEyUQ8iYlxU/zOuoon5D55BPfGlAJhNgSHx/PyJEj8/Sa
2rXhs898YcyWLf2UPxERiV5Nm8LChb5IdNu2sHZt0BGJFJzFi6FfP99KfOxYuPJKuPnmUTz+eOwm
EEBJBJGcHeRyh127/PSkJk3gP//xU+yTknwFY9U7yJs1a3zNiGOPha1b/aBk4kS//lJiT0pKCtu2
bcvz68qU8cVG/+///AyUt96KQHAiIkVUJJZ5Vqnin8Kedx6cfLLvNiVSWG3aBM/Mb0azZr5YeuXK
fgblBx/AhRdCiRJ7gg7xoCmJIJKTfC53+OsvGDHCr3eaNMnXPli6FK6+WvUO8mrZMujTxydiypWD
H36AJ5/0tSQkOL/8AnfPacfOnQV/7bRpsjNn+u/Dh8PevQUfhxQcMxtrZilmtiTdtp5mttTMUs2s
SYbjG5rZvND+xWamSdQiuRCpZZ7FisGtt8Irr/jaT3fe6QvLiRQ2EyfCx7+dwL33+o8Rd9/tPw8U
JkoiiITZTz/5GQdHH+2nWs+a5TOPZ56pIn95tWAB9OgBiYlQrx6sWgUPPOBbX0rwSpSAhZuOomlT
n2E/wMG2gKxUKce/7Fat/s3ud+sGmzfn71ISE8YDnTJs+w7oDsxJv9HMigOTgWuccycAicDuAohR
RDKRfnZD27Z+JuHnn8MZZ/gliiKFSf/+8Or8BDp3huLFg44mMvSRRiQMnIPZs+Hcc30/+2rV/NPy
ceOgYcOgo4staX+WZ5zhpz22a+fXUQ4Z4qeDSfSIj4cZi45gyBA/Xe+22+Cff9IdcLAtILdsydXo
smZN+PhjqFPH18X4/vv8XU6im3NuLrAxw7blzrkVQMZa1mcAi51zS0PHbXROPT1EchIfH8/w4cOJ
D3O2PuPshrg4n/xt1crXTPjss7BeTkQiTEkEkYOwa5dvYdS0KVx/PXTp4tft3323npbn1d69vkrt
KafAtdfCRRfBypW+GE3ZskFHJ1kx839XS5b4ZE/jxv7pUkErVcq3+RwyxM9cmTat4GOQqFIfwMze
NbMFZnZL0AGJxIKUUOI2JYzTA7JKTBQvDvfeC889Bz17qn2vSCxRi0cp0uLj40lJSeHZZ58lOQ9P
S//6y7/pPfkkNGjg3wQ7d9ZyhfzYs8evjxwxAkqWhDvugO7dC+/0r8IqLs7/PU6f7geDF1wA990H
5Qo4jssv991O0tpA3nefX3YhRU4JoDXQDNgBfGRmC5xznwQblkjRk1Ni4qyzfPveXr18EnrCBM08
FIl2GlpJkZbXjPuKFfDYYzB1ql+68Pbbsd2eJUg7dvjCMw8+6NvePPQQdOrkn2xL7EqrYXHTTX4p
z5g2CbTP4ti4uDj+/vvvsMfQpImvp3Hhhb4WyYsvQvXqYb+MRLdfgE+dcxsBzOwdoAmQaRJh2LBh
+36dmJhIYmJi5CMUkX3q1PFLGgYN8rM7X3nFfxeRgjV79mxmz56d43FKIojkwDn47FMYNQrmzfNT
7b//3q/DlrzbuhVGj4ZHHoGTTvKJhDZtgo5KwqlaNd/W9K234LKLu3P29T5ZVKHC/sclJyfv9+Et
nKpX9y3EhgzxdRKmT/fJBYl5xoH1D9LvS/MecIuZlQH2AO2AUVmdNFL/DkUk90qVgscf92OCzp39
LM9rrtHDBZGClDGRPnz48EyP0+RrKRA59hyOQE/ig7V7N7xQ6Qaa3d2Vazqs4MwzfZuWe+5RAiE/
/vwThg2DI4/0T4nfftt/KYFQeJ19Nnx3/TPs3g0nnADvvRfe8+f0c6VECfjf/3wCo1Mn32pVYpeZ
TQXmAfXNbK2Z9TWzbma2DmgJvGVmswCcc5vwSYMFwCJggXNuVlCxi0ju9eoFc+f6JaOXXQbbtgUd
kYhkpCSCFIgcew5HqCdxfmzc6D941K0L47b04G7u4ofUY7j2WhX4y4/162HgQN+icf16P5vjpZf8
LAQp/CqX2cGYMfD8834Wz5VXwqZN4Tl3bnuZn38+fPKJTwDeeKNPEErscc71ds4d5pwr7Zw7wjk3
3jk3wzlX2zl3iHOupnPuzHTHT3XOneCca+icGxxk7CKSN8ccA1995WtNnXwyLFsWdEQi4ZOQkBB0
CAdNSQQJmxxnG2QlPh6GDw+8ncHKlf4DxlFH+faMb70FH3EaXXiHYqhccF6tXOmnIZ54ol8SsmSJ
/yBZr17QkUkQzjgDvvsOypTxsxLefLNgr3/CCb7QYlISdOiQ/66TIiJSMMqW9RNVBwyAtm19fRuR
wqBPnz5Bh3DQlESQsMntU8EDpBU1DGM7obxpA7zGKadApUq+3sHEibl7Up7vxEkhtmQJ9O7tez/X
rAk//eTrSdSqFXRkEoh02fYKFeCpp3xb1AED4OKLYfv2QwoslMqVYeZM6NjR10n44osCu7SIiOSD
GVx1FXzwAdx5J9xwA+zcGXRUIqIkghRJu3f7DgswHxgDvEdSki/ik5d6B/lOnIRDlCUw5s2Drl19
MaTGjWH1aj/BRFXxi7hMsu2JibB4MdSoAc88cwPTphVcOMWK+doczzzjO6yMHq2+5CIi0e6kk2Dh
Qj+LrE2bqFoFK1IkKYkgRcrGjb7I2pFHwpgxAMOAY4HRmdc7iIvb/3s0iYJ3UOd8sbzERLjkEujS
xScPbrnlwEr8IumVK+c7dPTq9Qr//a+vW1CQk5HOPtv3I3/8cbj6at9yVEREolelSr7TzkUXQYsW
ftmpiARDSQQpElatgn79fL2DpUvhjTfg448B3obs6h0kJ8PQoVpAncHevf6NvFkzXzTx6qv9soXr
rvNr3kVy69RTi/Ptt/7/ZsOG8MILBTczoF49X7hr82a/3nbduoK5roiI5I8Z3HwzvPYaXH89DB4M
e/YEHZVI0aMkgoRFfHw8w4cPJz7g4ojpOedbBJ13bxNa1vuT8uV9YbdJk/x0+5g3cmSBF6Pcvduv
ojjuOD+j4667fA2Eiy/27fRE8qpPnz6UKQMPPOCfKj3wgF9msH49frpChGcBlS8Pr7wCPXv6CuCz
Z0f0ciIiEgatW8OiRX6Jw2mnwa+/Bh2RSNGiJIKERUpoHnJKfuYjh3nJwO7dvoVgixZwxRVwevGP
STq0OfffD4cfno8TRmsblm3bCmz+9/bt8MQT/mnxCy/A00/Dl1/6D3vF9FNEwqR5cz8gbNzYf43v
OAX3a+RnAZnBrbf6BOOFF/plFqqTICIS3Q49FGbNgvbtoWlT38pXRAqGhv9SIEaOHJn1LIUwLRnY
tAkeesh/0B092lfx/fFHuH5wZcqlrM7/iQtBG5b82rQJ7r/f15D45BO/hOGDD3yLPLOgo5PCqFQp
X5Dzgw/gia9b0LkzrF1bMNc+/XSfHJs82c+u2batYK4rIiL5U7y4H0JOmOBrJYwY4ZdcikhkKYkg
BWLbtm35m6WQC6tXQ//+/oPukiUwY4b/wNu1q56S51dKil9nePTRPhHz0Ud+/WHz5kFHJkVFo0bw
1VXP066df8L07LMFMzBMSPAFF0uUgFNO8fVUREQkup1xBixYAG++6cd/f/0VdEQihZs+YklMcs4P
9Hv08MsWypb19Q4mT4YmTQoujmxnWMSgNWvgxhvh2GNhyxb/hjxpEhx/fNCRSVFUsvhe7rjD1ykY
Px46dvz3Q30k67Accgi0bz+Bq6/2iYR33w37JUREJMxq1YI5c+CYY/xYcP78oCMSKbyURJCYsmcP
vPwytGzpVxl07Og7HY4Ykc96BwcpkjMsCtKyZf7Ps0kTX8vuhx/gqaeitxyEFC3HHw/z5vm2jC1a
wGOPQUrK70A+67Dkwpo1Sfzf/8G0aXDllXDffZoiKyIS7UqWhFGj/FeXLvDkk6pxIxIJSiJIgShX
rhxxB1E4cfNmePhhX+/gmWdgyBA/zf6GG/yHXsmfBQv8bI7ERN/ubtUqXx2/EE2ukFiWLotVvLhv
J/rFF742B3wK1I94CKeeCl9/7TtH9OjhZ+iIiEh0O+88n3weM8bXSti6NeiIRAoXJRGkQAwaNIjk
fBRO/PlnuOkmX+/gm2/8uvzZs+Gcc/yHiqAdbHIkCM75P8NOnaB7d2jXzteVGDIEKlcOOjqRdDIp
alqvXlobxheBz4FbIt4j/PDD/TXj4/1MiB9/jOz1RETk4B19tE88ly/vazotXRp0RCKFR45JBDMb
a2YpZrYk3bYqZva+mS03s/fMrFJoex0z225mi0JfT0cyeCmcnPPZ4549/Q/9MmVg8WKYMsUXWIsm
+U2OBME5X3CodWu49lq44AI/86BfP83mkNjiC6Y+BTQHOnHKKZEfHJYu7WdB3XKLn50wa1Zkryci
IgfvkEP8bITbb/etICdPDjoikcIhNzMRxgOdMmy7HfjQOXcM8DEwON2+lc65JqGvG8IUpxQBe/bA
K69Aq1Zw2WV+in1Skp9eX6tW0NHFrj17YOpUX+3+rrtgwABf8+CKK3w7PZHYlQScxtVX+8HhPffA
7t2RveIVV8A778DChTMieyERkVgzYULQEWSpTx/4+GO491645hrYsSPoiERiW45JBOfcXGBjhs3n
AhNDv54IdEu3T93jJU82b4ZRy8/i6KN9Mb/Bg2H5cvi///NT0CIpbSlCrC1JAPz0gWzjLgVczTHH
+PZ4Dz4IixbB+edHx1IQkXC5+mr/b/uLL/zspW++iez1mjeHPXu+jexFRERiTVJS0BFk68QTfceG
zZv9Ayu18BXJv/zWRKjhnEsBcM4lAzXS7UsILWX4xMzaHHSEEjUmhDnD/PPP/ql43bqwsNjJTJvm
W/Oce26YP+Rm02IgOTkZ51zMLEnYz6BBkEncf/8NcDOwGjiXiRPh00+hc2cwpfikkKpdG95+2/9M
6dQJ/vtf2Lkz6KhERCSaVKwIL73kZ5W1agUzMk4qi+LZFCLRJFyFFdOap/wKHOGcawIMBKaaWYSf
JUtBSQpThvmLL/zT8ObN/XT6xYvhhRegWbOwnP5AmRRnKxQyJEf+/BOGDfNJGb9WvAtwNm2UypMi
wgwuv9z/TFm61Lcs/eqrvJ8nPj6e4cOHE682JSIihY4Z3HijrxPVv79/JrNvKVyUz6YQiRYl8vm6
FDOLc86lmFk88BuAc24XsCv060Vmtgrfg2tRZicZNmzYvl8nJiaSmJiYz3Ak2tWuXZdXX/V9e3/7
zXdcGD8+8ssVCrVQcmT9ev/nOn68b0E3bx7Ur39RsLGJRFhcXBwpKSmZLkWqWRNefx1eftnPbLr0
Urj7bl9gK1rNnj2b2b7thIiIFIAWLfxSuEsv9XV1Xn4ZDg86KJEYkdskgrF/rYM3gD7A/4DLgZkA
ZlYd+Ms5t9fMjgSOxs+pzlT6JIIUTlu2wNix8Nhjl1O7Ntx6a/S0ZwyHhGyWSkTaypW+zsG0af7p
65Il/xagzO4DlkhhkJyczLBhw7J8HzGDCy+EDh18B5JGjWDcOHI1Myenc0dCxkT68OHDC+zaIiJF
VbVq8NZbMGKEnxE7+fQjOS3ooERiQG5aPE4F5gH1zWytmfUFHgBON7PlQMfQ7wHaAkvMbBHwCnCt
c25TZEKXaLZmDQwc6KfWz58Pr74Kn30G3bsXngQCQJ8AlkosWQK9e/u1fPHx8NNP8Mgj+3ewSE5O
Zvz48bFZ60EkjGrU8Otf//c/6NXLJxS2bQs6KhGRGJT2YCKzBxTx8TB8uP8eY4oVgyFD/NLay17v
zt13w969QUclEt1y052ht3PuMOdcaefcEc658c65jc6505xzxzjnzkhLFDjnXnPOnRBq79jMOfdO
5G9BoksLLrgAmjb1yYJvv/XtBZs3Dzqu2PfFF9C1qy+Q2Lixryp8991QvXrmxweR4BCJVt27+zoJ
mzb5Ct0ffxx0RCIiMSY5GYYOzbSoMykp+3+PQR06wIJrnuPDD+Gss+CPP4KOSCR6hauwohRhe/YA
9AA+B6bSurXvvPDgg75iuuSfc/D++5CYCBdfDF26wOrVcMstvsKwiORe1aowaRI88YRfAnTddX7J
lYhIURPujluFxWEVtvLxx34JXJMm/gGOiBxISQTJty1b4NFHoV49KFnyFmAkNWq0oV8/qFAh6Ohi
2969MH26n8Fx881w9dV+2cJ110GZMkFHJxId8luTpEsXPyshNRVOOAHefTe8cYmIRLtwddwKVIQS
ISVK+CVwTz7pi/M+9ph/qCMi/1ISQXIlfcuzNWt8O5y6dX37tJdfhl27WuDca6SkbAg61Ji2e7d/
Tzz+eD+T4847fQ2Eiy/2b2oi8q+DWbJTqRI8/7wv/Hr99dC3L2zc+O/+IIumiohILkQ4EXLOOX6c
O7aqLUgAACAASURBVGmSb02+eXNELycSU5REkFxJSUkBmpOS8ihNmvjK5998Ay++CCefHHR0sW/7
dj/F+uijYcoUeOop+PJLnwEvpv+lIhFz+unw3XdQrpyflfDGG367aoqIiOzvyy/hxz+yKMRUSNWt
C59/Doce6rs3LF4cdEQi0UEfTyRbqal+Wj3MBV4GviApCR56CI44ItDQCoXNm31boSOP9IXeXn0V
PvzQF/cxy/n1InLwypf301ZffNF3lendWwW1REQyWrUKTp14FS+9FHQkBatMGXjmGRg2DE47zbcL
FinqlESQTG3d6teA1asHo0YBjAKOBh5XvYMw+O03uOMOnzxYtgw++ghef12zOkSC1Latf8pUs6bv
4PDqq5mvg02/vEtEpKi4+GJ4b04ZhgyBG2+EnTuDjqhgXbx7AnPmwMiRcMUVfhapSFGlJILsZ+1a
X/m/bl2YN8+3Z/z8c4DXADXNPVhr1vg33gYN/CyEBQv8Wrvjjw86MhEBKFsWHn4YXnsN7roLevY8
sJtZSqiFWUoMtzKLRWY21sxSzGxJum09zWypmaWaWZNMXnOEmW01s5sLNlqRwqlJE1i4ENatg1NP
9eOaIiE+Hvr25bgO8Xz9tU+gtGzpi16LFEVKIggAX38NF10EjRv7J28LF/qCiS1bBh1Z4bBsGfTp
4998y5WDH37wdQ/q1g06MhHJTKtWvu7LMcf4Vl9Tpqg6dxQYD3TKsO07oDswJ4vXPAy8E8mgRIqa
ypX97MlevfwMyrffDjqiApCWNE5JoXx5/55www3QurWftSZS1CiJUISlpvqnbW3awAUXQIsW8PPP
fppWnTpBR1c4LFgAPXpAYqIvmrhyJTzwgE9oi0h0K1MG7r8f3nnHd0s55xxYvz7oqIou59xcYGOG
bcudcyuAA6rImNm5wGrg+4KJUKToMPOduqZP9+2n7+A+9lA86LAKjJm/71mz4NZb4aabYNeuoKMS
KThKIhRBW7fC449D/fo+YXDTTbBihf9esWLQ0cU+52D2bOjUCbp39+usV6+G//4XqlQJOjoRyaum
TX1CsFkzOOkkgCuCDklyYGblgFuB4WSSYBCR8GjTxs9e/bpUG07nA5Krn1AwF46Ph+HDA38q06wZ
LFrki062a+eXBYsUBUoiFCHr1vlsad26MHeun4o1b55f81uiRPavjYuL2++7HMg5eOstP7Xtmmv8
7I5Vq6B/f7+EQURiV6lSMHSoL4IKNwD/CTgiycEw4BHnXFrpMyUSRCKkRg14b3tbTm1bjKalvmNO
VouLwind8oKgVakCM2dCt25+ece7/9/efcdHWWV/HP8cqsquyApmbBjAFbFTRETRCIpgQUQQwRZ0
Lau/tWIvAVcFlbUXLAisLvYCKiqgRkGk61IUBBRRdIKuWEBkKff3x51oyCZkkinPzDPf9+vFK8kz
k5lzw5Q757n3nDeCjij7jRo1KugQpApVfHSUMJg1y3dYePNNOPNM/3N+fvVuIxqNMmrUKPVOr8CG
DX4/3JAhULu277rQq5f/XkTCZb/9YIcderBy5fdKqma2g4CTzOx2oBGw0czWOucerOjKgwYN+u37
goICCgoK0hGjSGjUrg03HfEOHa85nL59/erWK6+EWjlyurJWLbjqKl9Pp18/OPtsn3jWXLBmli1b
FnQIOau4uJji4uIqr6ckQkht3AivvOKTB8uX+7Phw4cntl1BCYTNrVsHo0f7vdI77eS/Hn203ycn
IuFVUqLCCAEyKl9V8Ntx59xhvx00KwJ+riyBAJsnEUSk5rp1g5kzfdHF99/386RccthhfntH//5+
TjhmjF+pIZItyifSBw8eXOH1QpsfzNVlMKtXw333+YriQ4f6doJLlsCll6reQbKsXu1bwDVvDi+/
DCNHwnvv+TdOJRBERFLDzMYAU4E9zGy5mQ0ws55m9iXQAXjVzF4PNkoR2XVXePddX1C6bVuAtkGH
lFaRCEyY4AuWt2njtxCLhE1okwi5tgzmq6/8Mqr8fP+B9oknYNo06NOn6noHEp///AcGDfLJgxkz
fP2D8eN9n2QREUkt51x/59xOzrn6zrmmzrmRzrmXnXO7Oue2ds7t6JzrXsHvDXbO3RlEzCLZJlk1
sOrVg7vugjvuAHgdOD/h2JIlHSca69SBW26BRx7xXbqGDVObYAmX0CYRcsWsWXDqqb6P+fr1fgnZ
c8/5PVmSHF9/7dsY/fnPPlkzZQo88wy0bh10ZCIiIiLJE41GKSoqIhqNVv+XKyi41bs3bL/9CcD5
bLXVC6xenXCICav0RGMKOj4cc4w/8fTcc75j1w8/JO2mRQKlJEIW2rjRV4E9/HCf3Wzb1rcQvPNO
33lBkmPpUjjvPNhnH/83nzsXHnvMt8YUERERkTIqqZ313XdTufbaV+nXrxft28PHH6c3rLIikQiD
Bw8mUlGiIEUdH3bbDSZPhqZN/Zx9zpyk3rxIIJREyCJr1sADD8Cee8Ktt8KFF/oPupddBg0bBh1d
eMyd6wviHHQQ5OXBp5/6JXm77BJ0ZCIiIiKJ2eIHaSC/ui284lC37noefxyuuMKfBHvyyaTfRVxK
YgmCkooSBaVbOFLQeadePbj3Xj9/P/pov81B2xskmymJkAW++gquvtqvEnvnHV/pdto0X/lW9Q6S
54MP4PjjfYHE1q396o6bboLGjYOOTERERCQ5tvhBmtR24xowACZN8rsGzj8ffv01ZXdVfdGo78tY
k60ccerb12+LvfdeOOMMf4JQJBspiZDB5syB007zfcl//RWmT4fnn4eOHdUFIFmc8xV0Cwr86oNj
jvHJgyuuUDcLERERkWTbf39f0+u77+CQQ/y8K5e0bOnn9LVq+VWvCxcGHZFI9SmJkGE2bYJx4/yH
2p494YAD/Ivr3Xf7rgCSHJs2wYsvwoEH+u0gf/kLLF4Mf/0rbLVV0NGJiIiIhFfDhr7Y4BlnQIcO
vtZXLmnQAEaNgksu8V2+nnoq6IhEqkeL4TPEmjV+m8Ldd8N228Hll0OvXlC3btCRhcv69TBmDAwd
6lca3HCD38JQS+k0ERERkbQxg4svhvbt/TL/99/3bRFzZe5r5k9itW3rW7JPmeKLpNevH3RkwYpE
IpSUlDB8+PCadQmRtNBHp4CtWAHXXOPrHbz1Fowc6Zc49e2bOy+i6bB2Ldx/P+y+OzzxhC9QOW0a
nHCCEggiIiIiQTn4YL+Fd+5c6NzZt9bOJa1b++0dX38Nhx4KlXWgzBVV1eyQzBDKj09VVZ3NBB9+
CKefDvvuC7/84j/QvvCC3xumegfJ8+OPMGSIb3351lt+6dykSf5NSn9nERERyTV5se4DeSnoQlCZ
qjo+NG4M48dD167+zPxbbyV2f6NGjUrsBtJsu+38Ntt+/XydhFdfDToikS0LZRIhUzNYmzbBK6/A
EUdAjx6+YOJnn8E990CLFkFHl30vuFuyciVce63/u378sX8zeuklv2ROREREJFdFo1GKiorSulQ8
no4PtWr5baZPPOELi998s58718SyLDydb+brdL34oq/Rde21sGFD0FGlUIg+d+SiUCYRUq6aD/o1
a+Chh2DPPX3LwHPP/b0DwHbbpSbEmsjGF9zyvvgC/vY3/7f+4QeYOdO/Ge29d9CRiYiIiEhVjjzS
L+9/4w049ljfxSGXHHKI394xa5b/W3zzTdARpUgIPnfkMiURaiLOB/3XX8N11/l6BxMnwogRMGOG
X6qkegfJtXCh7z3cpg1ss41fffDgg34bg4iIiEjQwrTiM9V23hneeQf22cdvb5g2LeiI0qtJE3j9
dd+trW1bKC4OOiKRzSmJkAIffQRnnulf+H7+2b/wvfiib+GiffjJNXs29O4Nhx3mty4sWQK33QYZ
XA5DREREclAYVnymU926cMcdfttvjx5w773gXNBRpU/t2jBokF8AfcopvsZXTbd3iCSbkghJsmmT
L4LSubNvGbj33rB0qX/By4R6B2HiHLz7Lhx9NPTs6ZMzn38O118PjRoFHZ2IiIhI/CKRCGaW0QXB
g9SzJ3zwgf8w3bcv/PRTCu+sigKQQeja1W/PfeUVn0z5/vugIxJREiFhv/wCw4dDq1Y+W3jOOb7e
wZVXZt8H2mHDhmX0G5hzPlFzyCH+79y3r0/UXHwxNGgQdHQiIiIi1ZepBcEzSYsWMHWqn1sfeCDM
Y5/U3FEcBSCDsOuu/gTaHnv47Q0zZwYdkeQ6JRFq6Jtv/Jnv/Hx480147DH/hM7megdr1qzJyDew
DRvgqadg//191d5LLoFPPoGzzoJ69YKOTkRERCS7VNVyMRNttRU8/LCff3fmbUZxZtAhpVXdunDn
nTBsGBxzDDzwQG5t75DMEsokQir73/7731B4y+7svfMqfvzRZ0Vfekn1DlJh3Tp49FHfaeGhh3yt
gzlz4OST/T4xEREREam+eFouZqrTT4diChjK1ZzNY6xdG3RE6XXSSf7zxyOPQP/+vv6aSLqFMomQ
7P63mzbBa69Bly6+1UyrDfNY6ppz332w++5JuYu45UJl39Wrfaa1eXOfoBk5Et57D7p3V6JGRERE
MlcuzNMywd58zEwO5Be24eCDYfHioCNKrz//2Rdub9DAb+9YsCDoiCTXhDKJkCy//OKXTe21F9x4
o18+/9lncBW304gfUnfHlbwBDRo0iAEDBjBo0KDU3XeAvv8eBg/2yYPp0339g/Hj/SoPERERkUyn
Dgzp80dWM4b+nHMOdOzoO6Hlkq239tupr77at4J84omgI5JcUifoADJRNOr3GT38MBx8sP962GFp
PAteyRtQafIgbEmEr7/2Kw9GjoQTT4QpU3zhGBERERGRyhhw4YX+bPzJJ8PkyX77ay4pLPTFFnv3
9nPoe+7x9SNEUkkrEcqYOxcGDPArD1atgvffh7Fj4fDDtYw+FZYuhfPOg3328cUTP/rIZ1SVQBAR
EZG4aQtBzmvf3tfNWrzYn5X/8cdtgw4prfbd1xd4X7XKr8pYujToiCTscj6JsGmTXzJ/5JF+z33L
lrBkCdx/v99vJMk3b54vBHPQQbDDDrBoEdx9t29fIyIiIlIt2kIgwJ/+BOPGQY8e8Oij5/Lmm0FH
lEIVJM623RaeecavTDj4YHj55bRHJTkkZ5MIa9f6qqZ77+1bxRQWwuef+31Ff/pT0NEFo0GDBinp
aFHqgw/8C3vXrnDAAb6+xN//Dk2apOwuRURERCRH1Krl5/K9ez/PgAEwaBBs3Bh0VClQSeLMDC66
yCdTLr4YrrgC1q9Pb2iSG3IuiRCN+iKJ+fm+cN9DD8Hs2XDaaVCvXpw30qABpPDDdlAGDhyYtI4W
pZyDCRPgiCP86oPu3X3y4MorfcZUREREJOwikQiDBw8mEokEHUo4lM7DK5mP5+cvY/ZsKC6Gbt3g
22/TF1om6NDBb++YPx86d4YVK4KOKH6lJzRTeWJTEpczSYR583x3hVat4LvvfOGVceP8vqlq1zsY
ONBnIyqRre198vPzk3Zbmzb5KrkHHgiXXgpnnw2ffgp//auvJisiIiISr2ydW5UqKSnZ7KskKBqF
oqItzsd33BEmTfJz0TZtfK2zXPqAuv32vkV9t27Qrp3/W2SDaDRKUVFR0k9sSnJldRKhqjeUTZvg
9df98vlu3XyNgyVL4MEHU1u8L1vb+xQWFiZ8G+vXw+jRfpvIbbfBDTf4BM5pp0HduonHKCIiIrmn
xnOrLE8+SGLq1IFbb/Urj3v1giuuiPL44yNz5gNqrVpw3XXw5JNw+ul+G/GmTem7/0o/qw0a5Pu6
h6zjXC7J6haPlb2hrF0Ls2e3YZ99oH59uOwy6Nu3GtsVpNrWroURI+COO3yy5v77/fIpdbUQERGR
wKTgxM6oUaOScuJF0ue442D6dOjTB3bdtZATT4Tttgs6qvTp0sVv3z7lFL8i48knoXHj1N9vpcm/
0uSBkghZK6tXIpRXUuJXNuXnw6eftuSBB/x+oNNPz7AEQoiy4j/+CEOHQrNmfpnUs8/6r126KIEg
IiIi4ZOtK05zXX4+TJnitzm0a+dbi+eSnXaCt9+G/feHtm1h2rSgI6pcMrdYS2pkbRIhEokwbNgw
wBcNOftsX+/g22/hvfegX7+nOOKIDP0gm8CbT6Y8qVau9MujWrSABQt84uDll33bRhERkWQzsxFm
VmJmc8sc621m881so5m1KXP8SDObZWb/NrOZZnZEMFFLLlHxxMxXvz488IBf1n/UUfDYY74IeK6o
U8dvN77vPt8x7Z57Ujf+RJ4PWumT+bI2iVBSUsKaNYdw9NG+5kGLFrB4sa930LJl0NElIBKBWHKk
IkE/qZYv961j9twTVq2CmTPhiSdgn30CDUtERMJvJHB0uWPzgBOBd8sd/xY4zjm3P1AIPJHy6CTn
qXhiZojnw2u/fv6k4113+Tbva9akL76ERSK+nkACyaoePfxKhH/+02/x+OmnJMYXo+dDuGVdEuHX
X/3ee5gP3Mapp8Lnn8O11/oqpKUy5Yz9/6jqiV9SkpGvZAsXwoAB0Lq1766wYIFP2DRrFnRkIiKS
C5xzU4BV5Y4tcs4tBqzc8X8756Kx7xcAW5mZyvtmqS1+KEzCByoJl3g/vLZqBTNm+EKDBx0Eixal
I7okKB1Xgh/Omzf39REaN/bbO+bOrfp3REplTRJh5UpfeyM/H156CeBvQGvOOMMvTSov6DP2lUrS
Ez9dZs+G3r3hsMP8i82SJX4Z1I47Bh2ZiIhI1cysNzDHObc+6FikZrb4oTDL5lUVyaW2g+lQnb9n
gwb+bPxFF8Ghh8Izz6Q6usyy1VYwfDjceKOvZzZyZNARSbbI+CTCggXwl7/4LQrRKBQXw6uvArwT
cGQpkpfnX9EC5By8+y4cfTT07OlfVD//3LdrbNQo0NBERETiZmZ7A0OAc4OORaQy0WiUoqKinGk7
mGrV/Xuawbnnwptv+pXNf/sbrFuX4iBTqNK2iltw2ml+7n/77b7O3Nq1yY9LwiUjWzw6BxMnwp13
+qU1F1zg6x2koxVJyuXl+Wx5ZdnRaDSwdifOwWuvwZAhfuXH1Vf7F5WKVnqIiIhkMjPbBXgRON05
t2xL1x1U5n23oKCAgoKCVIYmOSgvL4+SkhKtNshgbdr4FbiFhX4F7rPPwm67BR1V9dW0e8hee/la
Z+eeCx06wPPP+7btkluKi4spLi6u8noZlUT49VcYM8YnD2rXhssug7Fjs+tDbCQSoaSkhOHDh1ec
AS1NEmRQX9QNG+C553yrRjOfhT3pJP9/ICIikkGMcvUPyl3mvzFrCLwKXOWcq7KR2aAMek+WcNIq
g+yw3XZ+2/Q//gHt2/vl/cccE3RU6fOHP8C//uW3OHTsCA895Lc1S+4on0gfPHhwhdfLiCTCypX+
QfrQQ75v6T33QOfOGdqeEXxhhkpkUyXSdev8PrDSGgdDh0K3bhn8dxcRkZxlZmOAAmB7M1sOFOEL
Ld4HNAZeNbOPnHPdgf8DWgA3mlkR4ICuzrnvAgleRNIqkQLrZjBwoC+22K8fnHkmDKY2ddiYvAAz
mBn89a9w4IG+c8OUKX6bQ716QUcmmSTQmggffwznnOPrHXz9Nbzzjl9O36WLfwDXZE9PWmRq0cY4
rV7tV3s0b+6zrSNHwuTJ0L27EggiIpKZnHP9nXM7OefqO+eaOudGOudeds7t6pzb2jm3YyyBgHPu
FufcH51zbZxzrWNflUCQhMXTPlCCl4wC6506+e0N06ZBVyYQJbe2orRrB3PmwNKlcPjh8OWXQUck
mSTQJEKXLtC0KXz6KTz8sG+1UlZN9/QEKZMr7H7/ve+C1KwZTJ/uC1SOH+9fJEVERERky7Jpxakk
Li8PJkyAQ5lCW2bzHrk1aW7UyG8t79nTr0x4442gI5JMEWgS4aabnuCGG6BJk/+9LFszvZlYYfeb
b+CKK2D33WH5cr8s6ZlnoHXroCMTEREREclctWvDTRQxgrM5mWe57TbYtCnoqNKnVi246ir/2eHs
s307yI1B7uzI1JXqOSbQJMKKFUsrvUyZ3sR99hmcfz7svTesXw///jeMGOG3j4iIiIhI9aRqxWki
e/glPbrxJjM5kJdfhhNOgFWrgo4ovQ4/3G/vmDzZt4FfuTKgQLJwpXoYBZpESEReXh4NGjQIOoyM
NG8enHqqryrbpAksWgR33w277hp0ZCIiIiLZK1UrTpOxhz/nBJB42ZWvePddaNHCt4ScNSvtIQQq
EoGJE33RybZt/epmyU2BJhG2tF2hqkxvNBpl4MCBKYstG02bBj16QNeusP/+fiXC3/9e8XYRERER
kVCLRHwxqCzbGitxCijxUq+ePzl3++2+KPlDD4FzgYQSiDp14JZbfBvIk07y7TBrNH6tvslqga9E
qGy7QjyZXi398k/aiRPhiCN8G5pu3Xzy4MorYdttg45OREREJCClc0xtjZUU6NMH3n/ff5g+7TTf
/SyXHHsszJjhayX06gU//FDNG9Dqm6xWZRLBzEaYWYmZzS1zrJGZTTCzRWb2ppk1LHPZNWa22Mw+
MbOuqQocMnfpVzqSG5s2wYsv+kqpl1wCZ53lu1xccAFsvXXK715EREQks5WuZs3AjlkSDnvsAR98
APXr+23EH38cdETptdtuvkbCLrv47Q1z5gQdkaRLPCsRRgJHlzt2NTDJOdcSeBu4BsDM9gJOBloB
3YEHzcySF252qDK5kUCSYf16GD0a9tkHhg6F66/3NRBOPx3q1q3xzYqIiIiESzQKRUX+q0iKbLMN
PP44DBzoiw/+619BR5Re9evDfffBrbf6gouPPJJb2ztyVZ2qruCcm2Jmu5U7fAJweOz70UAxPrHQ
A3jaObcBWGZmi4H2wPSkRRwGNVhBsXat76wwbJgv5nLffdC5M+ReikZEREQk8+Tl5VFSUpL0zg2S
Hc46y5+N793bFxy86y7Yaqugo0qfvn3hgAN8nQRfcHEb4JeAo5JUqWlNhB2ccyUAzrkosEPs+M7A
l2WutyJ2TKqjzEqFH3/0Kw6aNYNJk/y+o7fegi5dlEAQERERyRSp6twg2WP//X3Hhm+/hUMOgc8/
Dzqi9GrZEqb/dup4OqC+8mGVrMKKWrSSTIWFrFwJ113nVx0sWOATCC+/7FuqiIiIiIhI5mnYEJ57
Ds44w8/bx40LOqL0atDAb72Ge4DJQN9gA5KUqHI7QyVKzCzPOVdiZhFgZez4CmDXMtfbJXZsiwYN
GkRBQQEFBQU1DCc8li/3WxaefNIvC5oxA5o3DzoqERFJpeLiYoqLi4MOQ0QSpM5hAn618MUX+2KL
ffv6Lg633OLbI+YCv1r6MWAW8Dz/93++FWT9+gnecCTiu60MH65aJwGLdyWCxf6VGgcUxr4/Exhb
5vgpZlbPzJoBuwMzqrrx0iRCLlu0yO+lat3a759asMD3nVUCQUQk/AoKChg0aNBv/0QkO2Vq5zAJ
xsEH+44FH33ka5l9/XX8vztq1KiUxZU+HwFtWbECOnWCZcsSvDm1bc0Y8bR4HANMBfYws+VmNgAY
ChxlZouALrGfcc59DDwLfAyMBy5wTvU5t2TOHN9ntlMnX/dgyRK4/XbYccegIxMRERERkUQ0bgzj
x8ORR0K7dvD22/H93rKEP3EHq7TAaF7eVrz4Ipxyit/e8dprAQcmSVFlEsE51985t5Nzrr5zrqlz
bqRzbpVz7kjnXEvnXFfn3A9lrj/EObe7c66Vc25CasPPTs7Be+9Bt27Qo8fvhVduuAEaNQo6OhER
EZEsUdoJIY0dEbRlQaqrdm248Ub45z/h1FP91oZNm4KOKrXKFho1g8sugxdegPPPh2uvhQ0bgo5Q
EpGswooSB+d89u3QQ+Hss/0KhKVL4ZJLfBESEREREamGaBSKitK6P1pbFqSmjjzSd294/XU47jj4
z3/SHEDAWyQOPRRmz4aZM/3fQmUNsldGJxHCkunduBGeftr3Tr3uOrjoIli40CcSEi4wIiIiIiIi
WWHnneGdd2CvvaBNy9VlWiKmQQZskdhhB3jjDTj8cGjbFt59N+iIpCYyOomQ7Znedevg0Ud9z9T7
74chQ+DDD32V1tq1g45ORERERETSrW5d343t7i6vcvzxcN99fsVyrqhdGwYPhpEj/eeioUPDv70j
bDI6iZCtVq+GO++EFi3gxRf9E2TKFDjmmNKWJyIiIiJSVjiq0YvE78RWC/ngg98/TP/0U2K3F4lE
GDx4MJFIJDkBxiGR523Xrn5rw7hxcMIJ8P33yYtLUktJhCT6/nufVWveHKZNg1de8XueOnUKOjIR
ERGRzJbt1ehFaqJFC5g61RdXP/BAmDev5rdVEmt9WFJRC8RIxH9QSXKCIdHn7a67QnEx7L67394w
c2ZSwpIUUxIhCb75Bq64wj/4ly+HyZPh2WehdeugIxMREREJuZDU0JIcU+ZD/VZbwcMP+9ppnTvD
6NEpuL/SxEJFCYaA1asHd93lt3gccww8+GBube/IRkoiJOCzz3ybkr33hv/+Fz76CEaM8DUQRERE
RCQ+CS3DzvIaWpIFUtFKtIIP9Wec4YsuDhkC48b1YO3a5N1dNjjpJL8q4+GHoX9/v0U8HbSVqvqU
RKiBefN8j9f27aFxY1i0CO65B5o2DToyERERkeyzxWXYIkFLYyvRffaB779vwYcffsq2285nyZL4
fzcvluTIS2ayI83+/Ge/LbxBA7+9Y8GC1N+ntlJVn5II1TBtmi/60bUr7LefX4lw883QpEnQkYmI
iEgq6AyViKTbt99+BvRjw4aH6NjRF2qPRzQapaioiGgakh2ptPXW8NhjcOWVUFAATz4ZuyAVK0Kk
RpREqIJzMHGi3590yilw9NE+eXDVVbDttkFHJyIiIqmkM1TBC8PZVZGaeZBXX4XLLvP/1q8npz5I
DxgAb70FN90E550Hvy5L34oQwNetMEt6McowUBKhEps2wUsv+S0LF1/sH8SLF8MFF/jsmIiIb90p
BgAAIABJREFUiIikXljOrorURPv2MHu23z5dUABfzUrzB+ktSEdLyf32g1mzfBe8jh3hs1WNUnZf
/yODi1EGTUmEctavh3/+0+9HGjLEV0mdPx9OPx3q1g06OhERERERySXbb+9bxx93HLRrBxOWtgg6
JCB9tUy23dZ3visshA6P/YWxY1N6dxIHJRFi1q6FBx7wxTxGj4Z774Xp06FnT6ilv5KIiIhIwlRj
QqRmatWCa66Bp56Cwpd7MmgQbNwYdFTpYwYXXQTj+j3FRRf5egnr1wcdVe7K+Y/HP/4IQ4dCs2a+
9sEzz/i9N0ce6R+sIiIi1aUPSslnZiPMrMTM5pY51tvM5pvZRjNrU+7615jZYjP7xMy6piQo/T9X
W9prTOTnp/f+RFLsiCNg9rkPU1wM3bvDt99ufnl+yB/zHXb5itmzYe5cX7NuxYqgI8pNOZtEWLnS
b1Vo0cJvV5g0CV5+GQ46KOjIREQk26kYX0qMBI4ud2wecCLwbtmDZtYKOBloBXQHHjRL8qmBSMQX
TFLBrcxWWBh0BCJJt+MfVzNpErRtC23awPvv/35ZYQ485hs3hvHjfcH7du38CWBJr5xLIixf7pfC
7LmnL9AxY4ZvG7LPPkFHJiIiIpVxzk0BVpU7tsg5txgonyA4AXjaObfBObcMWAy0T2pAKrglIgGq
U8fXb3voIejVC+6803eVyxW1asH11/vPcaedBjff7AvjS3rkTBJh0SI46yw44ADYaitYsMA/6Zo3
DzoyERERSbKdgS/L/LwidkyyVNiXaIvU1HHHwbRpvlbCSSf5rdq5pEsX373izTfh2GPhu++q9/vp
6DARRqFPIsyZA336QKdOflvckiVw++2w445BRyYiIiKhpN7iSZcLS7RFaqpZM5gyxX++adsWPvoo
6IjSa6ed4O23Yd99/finTYv/d9PVYSJs6gQdQCo4B5Mnw623+noHl18OI0fCH/4QdGQiIiKSBiuA
Xcv8vEvsWIUGDRr02/cFBQUUFBQkdu/a6iAiaVa/vu8099RTcNRRfqvD2WfnTqH4unX9ieJDDoEe
PXztu4suyp3xJ0txcTHFxcVVXi9USQTnfJGNIUP8+/ZVV8HYsf5JJSIiIlnP+N/6B2UvKzUO+JeZ
3YXfxrA7MKOyGy2bRCgrEolQUlLC8OHDiUajNQpYRCSd+vXz27d79/arEx58ELbZJuio0ueEE/yK
hNLxjxgB224bdFTZo3wiffDgwRVeLxTbGTZuhKefhtat4dpr4W9/g4UL4S9/UQJBREQkDMxsDDAV
2MPMlpvZADPraWZfAh2AV83sdQDn3MfAs8DHwHjgAueqX3JMy1yTS3uPJatlUV2OVq188fgNG3zn
uUWLgo4ovZo3h6lTYfvtffeGuXOr/h2pnqxeibBuHTzxBNx2G+Tl+e0L3btr2YqIiEjYOOf6V3LR
y5VcfwgwJHURSXUpKSNZLcvqcjRo4D8nPfIIHHooPEAfTua5oMNKm622guHDffeGLl3gjjsq/i/M
y8ujpKSEvLy8tMeYzbJyJcLq1XDXXdCiBbzwAjz+uF+ucswxSiCIiIhI9ZiZzo6LSOiYwXnn+c4F
1zCEi7iH/1I36LDS6rTToLjYn3Q++2xYu3bzy6PRKEVFRdqyVk1ZlUT4/nu46Sa/ROWDD2DcOHj9
dd95QURERKSmdHZcRMKqTRuYRTu+YDc6MZkvvkjO7Zaevc/0s/h77w0zZ8Ivv8DBB8PixUFHlP2y
IonwzTdwxRWw++6wbJnvvPDss/4JISIiklVGjQo6AolTtkyQRUSq0ogfeJme9OZ52rf3J2ITlU1n
8f/wBxgzBs49Fzp29KvZpeYyOonw2Wdw/vk+e/Tf//qep48/Di1bBh2ZiIhIxSKRCMOGDav8CsuW
pS0WSUw2TZBFRLYoLw8Drsh7guefh3POgeuv9wXqc4UZXHCBT6AMHAiXXuo/Y0r1ZWQSYd48OPVU
aN8eGjf2FUXvuQeaNg06MhERkS0rKSlhzZo1QYchqVa6OkGrFEQkG0SjUFQE0SidOsHs2X57eNeu
kGu7udq18+NfsgQKCuDHH9UDsroCTyKUXSI4bZrv7XnUUbDffrB0Kdx8MzRpEmCAIiIiIuWVmZCL
iGSbvDyYMAEOOQTatoX33gs6ovT6059g7Fjo0QMeffRc3nwz6IiyS6BJhKKiIr75JsqkSdC5M5xy
is+Gff45XHUVNGwYZHQiIiIpMGwYqBOAiIgErHZtX7T+0Ufh5JPh9tth06ago0qfWrXg6quhd+/n
OOssnxfOpe0diQg0ifDJJ3vSvj1cdJHv27l4MVx4IWy9dZBRiYiIpNCaNbm3dlSyTiQSUetLkRzR
vTvMmAEvvgg9e8KqVUFHlF75+V8we7ZfjdGtG6xcGXREmS/QJMKMGUdy7bUwfz6ccQbUza22pSIi
IiIZqbTlpVpfiqRfEJ1hmjb1H6KbNfPbG2bPTttdZ4RIBCZO9DX52raF998POqLMFmgS4bPPGnPi
iX4piYiIiIiISK4LqjNMvXq+mP1tt/kz8sOHg3NpDSFQderALbf4cffqBf/gMnJo+NUS6Md3syDv
XURERETSJYizqyJSfX36+DPxDz4Ip50Gq1cHHVF6HXssTJ8Oz9CXk3iBH1ChvvK0BkBEREREUi6o
s6siEpOfH/dV99jDd86rV88v8f/448puMv7bzCb5+TCZTuzE17RjFh9+GHREmUVJBBERERERkbAr
LKzW1bfZBkaOhIED4fDDYcyYim6y8tvM9gRDff7L/fyNW7iOrl19F4tc2t6xJUoiiIiIiEigtNVB
JHOddRZMmuRbIF5wAaxbF9/vbSnBkEmqSnb05VkmT/b1IgoLfZOlXKckgoiIiIgESlsdRDLb/vvD
rFm+/eEhh8DnnwcdUfLEk+zYc09fJ8E5OOggWLgw9XFlMiURRERERERE0ql01U0lq28ycStAw4bw
3HO+2GKHDvDKKwEEEeDfpUEDGD0aLr4YOnWCsWMDCyVwSiKIiIiIiIikUzTq9wdUsvomU7cCmMEl
l8BLL8GFF8JVV8GGDWkMIOC/ixmccw5MmACzZweRRckMSiKIiIiIiIhI3Dp2hNmz4aOPoEsX+Oab
oCNKr+7dI/z97z2IRCJBhxIIJRFEREREJHCZuHxbRCrXpAmMH++TCG3bwjvvBB1R+pSUlGz2Ndco
iSAiIiJSCX2wTa4t/T0zdfm2SMqE4PWldm248UZfK6B/f7jlFti0KeiokqSKuhW5TEkEERERkUro
g21y6e8pUkaIng9HHQUzZ/qVCccdB//5T9ARJUEVdStymZIIIiIiIrlq1KigIxCRkNhlFyguhr32
8tsbpk8POiJJFSURRERERHLVsmVBRyAiIVK3LgwbBnfdBccfD/ffD84FHZUkm5IIIiIiIjURgv3M
IiKpcOKJ8MEHMGIEnHIK/Pxz0BFJMimJICIiIlITIdrPXF5erJBYngqKiUgNtWgBU6dCw4bQrh3M
mxd0RJIsSiKIiIiIyGai0ShFRUVEVVBMRBKw9dbwyCNw3XXQubPv4iDZT0kEERERkWRSWzARkc2c
cQa8/TYMGQLnnANr1wYdkSRCSQQREZEkysvLo0GDBkGHIUFSWzARkf+x776+DeTPP0PHjrB0adAR
SU0piSAiIpJE0WiUgQMHBh2GiIhIxvnjH+Gpp+Avf4GDD4aXXgo6IqkJJRFEREQk45nZCDMrMbO5
ZY41MrMJZrbIzN40s4ax43XMbJSZzTWzBWZ2dXCRi4hIWWZw4YXw6qtw6aVw+eWwfn3QUUl1KIkg
IiIi2WAkcHS5Y1cDk5xzLYG3gWtix/sA9Zxz+wHtgPPMrGnaIhURkSq1bw+zZ8PChVBQAF99FXRE
Ei8lEURERCTjOeemAKvKHT4BKK31PRroWXp1oIGZ1Qa2AdYBP6UjThERid/228Mrr8Bxx8GBB8LE
iUFHVE5+ftARZCQlEURERJIsX5OOdNnBOVcC4JyLAqXtEJ4HfgG+AZYBw5xzPwQSYbJEIn4NcCQS
dCQiIklVqxZccw2MGQNnngmDB8PGjUFHFVNYGHQEGalO0AGIiIiETaEmHUHZFPt6ELABiADbA5PN
bJJzbtmWfnnQoEEUFBRQUFCQ0iBrpKRk868iIiFzxBF+e8Mpp8DUqfDkk9CkSdBR5Zbi4mKKi4ur
vJ6SCCIiIpKtSswszzlXYmYRYGXseD/gDefcJuBbM3sfXxth2ZZubNCgQamMVUREqrDjjvDWW3D9
9dC2LTz9tG8HKelRPpE+ePDgCq+n7QwiIiKSLSz2r9Q4oDD2fSEwNvb9cqAzgJk1ADoAC9MSYals
2NISifh1w5VskdC2HBEJQp06MHQoPPAAnHgi3HUXOBd0VJvLy8vb7GuuSSiJYGYXm9m82L+LYseK
zOwrM5sT+9ctOaGKiIhIrjKzMcBUYA8zW25mA4ChwFFmtgifNBgau/oDwB/NbD4wHRjhnJuf1oCz
YUtLFVsktC1HRIJ0/PEwbRr861/Quzf8+GPQEf0uGo1SVFRENBoNOpRA1Hg7g5ntDZyNXx64AXjd
zF6LXXync+7OJMQnIiIignOufyUXHVnBddcAJ1fn9nP1bJKISCZr1gzefx8uuwzatYPnnoMDDgg6
KklkJUIrYLpzbp1zbiPwHtArdplV/msiIiIimSOXzyaJiGS6+vX91obBg+Goo2DEiMzb3pBrEkki
zAc6mVkjM9sGOAbYBd+b+f/M7CMze8zMGiYjUBEREREREclN/fvDe+/BnXfCgAHwyy9BR5S7apxE
cM4tBG4DJgLjgQ+BjcBDQHPn3AFAFNC2BhEREREREUlIq1YwYwZs2AAdOsCnnwYdUW5KqMWjc24k
MBLAzG4BvnTOfVvmKo8Cr1T2+2VbKWVsX2YREZEUi7cvs6SGuhCIiGSPBg3giSfgkUfgkEPgwQeh
T5+go8otCSURzKyJc+5bM2sKnAh0MLOIc650Y2Ev/LaHCqkfs4iISPx9mSU11IVARCS7mMF55/li
i336wJQpcMcdUK9e0JHlhoRaPAIvxNonjQUucM79BNxuZnPN7CPgcODSRIMUEREJjQYNQJ0AJE0i
kQhmRiQSCToUEZGka9sWZs+GZcvgsMNg+fKgI8oNCSURnHOHOef2cc61ds4Vx46d4Zzbzzl3gHOu
p3Ou4ubDIiIiuWjgQFAnAEmTkpKSzb6KiIRNo0bw8stw0klw4IHw+utBRxR+ia5EEBERkWQaNSro
CCQLjdLjRkRymBlccQU8/zyccw7ccANs3Bh0VOGlJIKIiEgmWbYs6AgkCy2ryeOmdFuNtteISEh0
6uS3N0ydCl27ghZhpYaSCCIiIiK5KBqFoiJtrxGRUMnLgwkToGNHXzNh8uSgIwofJRFEREREREQk
NGrXhr//HR591HdvuP12cC7oqMJDSQQREREREREJne7dYcYMePFF6NkTVq0KOqJwUBJBRERERERE
QqlpU3jvPcjP/70lpCRGSQQREZF0ys8POgIREZGcUq8e3HMP3HYbdOsGDz+s7Q2JUBJBREQknQoL
g45AREQkJ/XpA1OmwP33w+mnw+rVQUeUnZREEBERERERkZzQsiVMnw5160L79vDJJ0FHlH3qBB2A
iIiIxEQiamotIiKSYttsAyNHwuOPw2GH+a0O/fsHHVX20EoEERGRTKEEgoiISNqcdRZMnAhFRXDB
BbBuXdARZQclEURERERERCQnHXAAzJrl8/iHHgqffx50RJlPSQQRERERERHJWQ0bwvPP+y0NHTrA
K68EHVFmUxJBREQkU+TlBR2BhExe7DGVp8eWiMgWmcGll8JLL8GFF8LVV8OGDUFHlZmURBAREckU
0ajfmCmSJNFolKKiIqLRaNChiIhkhY4dYfZs+PBD6NIFvvkm6Igyj5IIIiIiIiIiIjFNmsD48dC5
M7RtC++8E3REmUVJBBERERERkWyRnx90BDmhdm2/OHD0aF8r4dZbYdOmoKPKDEoiiIiIiIiIZIvC
wqAjyClHHQUzZ8Jrr8Hxx8N//hN0RMFTEkFERERERESkErvsAsXF0KqV394wY0bQEQWrTtABiIiI
iIiIiGSyunVh2DBfePG446BTp32DDikwWokgIiIiIiIiEodevWDqVGjbNnc/SufuyEVERCRrmNkI
Mysxs7lljjUyswlmtsjM3jSzhmUu28/MpprZfDP7t5nVCyZyEREJm913h2uvPTHoMAKjJIKIiIhk
g5HA0eWOXQ1Mcs61BN4GrgEws9rAE8C5zrl9gAJgffpCFRERCS8lEURERCTjOeemAKvKHT4BGB37
fjTQM/Z9V+Dfzrn5sd9d5ZxzaQlUREQk5JREEBERkWy1g3OuBMA5FwV2iB3fA8DM3jCzWWZ2RVAB
ioiIhI26M4iIiEhYlK42qAMcArQDfgXeMrNZzrl3AotMREQkJJREEBERkWxVYmZ5zrkSM4sAK2PH
vwLec86tAjCz8UAboMIkwqBBg377vqCggIKCglTGLCIikpGKi4spLi6u8npKIoiIiEi2sNi/UuOA
QuA24ExgbOz4m8AVZrYVsAE4HLizshstm0TIRpFIhJKSEoYPH040Gg06HBERyVLlE+mDBw+u8HpK
IoiIiEjGM7Mx+C4L25vZcqAIGAo8Z2ZnAV8AJwM4534wszuBWcAm4DXn3OuBBJ4GJSUlm30VERFJ
JSURREREMkl+ftARZCTnXP9KLjqykuuPAcakLiIREZHcpO4MIiIimaSwMOgIJJcoaSUiItWkJIKI
iIhIpsvL2/xrsihpJSIi1aQkgoiIiEimi0ahqMh/FRERCZCSCCIiIiIiIiISFyURRERERERERCQu
SiKIiIiIhFi+iieKiEgSKYkgIiIiEmKFKp4oIiJJpCSCiIiIiIiIiMRFSQQRERERERERiYuSCCIi
IiIiIiISFyURRERERERERCQuSiKIiIiIiIiISFyURBARERERERGRuCiJICIiIiIiIiJxURJBRERE
REREROKiJIKIiIiIiIiIxEVJBBERERERERGJi5IIIiIiIiIiIhIXJRFEREREslheXt5mX0VERFJJ
SQQRERGRbJCfX+HhaDRKUVER0Wg0vfGIiEhOUhJBREREJBsUFgYdgYiIiJIIIiIiIiIiIhIfJRFE
REREREREJC5KIoiIiIiIiIhIXJREEBEREREREZG4KIkgIiIikuXyK+ncICIikmxKIoiIiIhkuUJ1
bhARkTRREkFERERERERE4pJQEsHMLjazebF/F8WONTKzCWa2yMzeNLOGyQlVREREcpWZjTCzEjOb
W+bYFuccZtbUzH42s8vSH7GIiEg41TiJYGZ7A2cD7YADgOPMrAVwNTDJOdcSeBu4JhmBZpLi4uKg
Q0gJjSu7aFzZRePKLmEdV5YbCRxd7lhVc45/AOPTEFtahOFxqTFkBo0hM2gMmUFjqL5EViK0AqY7
59Y55zYC7wG9gB7A6Nh1RgM9Ewsx84ThgVYRjSu7aFzZRePKLmEdVzZzzk0BVpU7fAKVzDnM7ATg
M2BBWgJMgzA8LjWGzKAxZAaNITNoDNWXSBJhPtAptpRwG+AYYFcgzzlXAuCciwI7VHYDVQ02kctT
edvLli1L2W1XdXm2jiuVcVd1ucZV/cs1ruRfrnFV/3KNS+KwQ7k5Rx6Amf0BuBIYDFhVN1LT/690
X7alx2UmxakxZP5lGkNmXKYxZMZlGkP1L6txEsE5txC4DZiIXyr4IbCxoqvWJLBEL0/lbSuJUP3L
Uxl3VZdrXNW/XONK/uUaV/Uv17ikBjbFvhYBdznnfon9vMVEQiZNBDNpkqgxVExjyIzLNIbMuExj
yIzL0j0Gc67Sz/jVYma3AF8CFwMFzrkSM4sA7zjnWlVw/eTcsYiISAg556o8g55rzGw34BXn3H6x
nz+hgjmHmb0H7BL7tUb4kxw3OucerOA2NR8RERGpREXzkTqJ3KCZNXHOfWtmTYETgQ5AM6AQv0rh
TGBsvMGIiIiIbIGx+aqCcVQw53DOHfbbL5gVAT9XlECIXVfzERERkWpIKIkAvGBmfwLWAxc4534y
s9uAZ83sLOAL4OREgxQREZHcZmZjgAJgezNbjt+yMBR4TnMOERGR9EnadgYRERERERERCbdEujNk
LTPbZGb/LPNzbTP71szGJXi73cxsoZl9amZXlTn+tJnNif373MzmJHI/W7j/VI1rhJmVmNncSi6/
PHbff0rkfrZw/0kfl5ntYmZvm9kCM5tnZheVuay3mc03s41m1ibR+LcQQ7rHtb+ZfWBmH5rZDDNr
l+gYqoilZ2yMeyThthqZ2QQzW2Rmb5pZw3KXNzWzn83sskTvK45YkjmuCh9rZvan2P/jz2Z2b6L3
E2cs6RhXHTMbZWZzY4/RqxO9rzhiSea4bjezT8zsIzN7wcy2jR3fzcx+KfM6X+GyeZEwzD/CMNcI
w7wiLHOIMMwVwjAvCMMcIJvf71P1ulrm9q4xs8WxMXWNHdvazF6NHZtnZrdW5zZzMokArAH2MbP6
sZ+PwheFjJuZ1S73cy3gfuBoYG+gn5ntCeCcO8U518Y51wZ4AXgxwfgrk/RxxYzEj6ui6+8Su58v
qnM/1ZSKcW0ALnPO7Q0cDFxY+v8FzMPX+Hi35iHHJd3juh0ocs61xi8DvqPGkcfnFGAy0K+6vxh7
PpV1NTDJOdcSeBu4ptzl/8B3iUmHZI6rssfar8D1wOU1CbCG0jGuPkC9WFG8dsB55mvqpFIyxzUB
2Ns5dwCwmM0fh0tKX+edcxfUOFoJuzDMP8Iw1wjDvCIsc4gwzBXCMC8Iwxwgm9/vE34+V8bMWuG3
+rUCugMPmllpLaA7Yg0QWgOHmlmFr8EVydUkAvgXkWNj3/cDniq9wMwONLOpZjbbzKaY2Z9jx880
s7Fm9hYwqdzttQcWO+e+cM6tB54GTqjgfk8ue18pkOxx4ZybAqyq5P7uAq5I6ggqltRxOeeizrmP
Yt+vBj4Bdo79vMg5t5g4eosnQdrGhW99VpqV3w5YkapBmVkD4BDgbMq8mJvZ4Wb2bizzubBsBjeW
XR9mZh/ii7SWdQIwOvb9aKBnmd87AfgMWJCa0fwu2eOq7LHmnPvFOTcVWJfK8ZSJMS3jwrf8bRCb
uG6DH99PqRlVSsY1yTlX2kJwGr9X/4f0vF5IOIRh/hGGuUYY5hVZPYcIw1whDPOCMMwBQvJ+X5Pn
87tmtl+Z6002s33L3e4JwNPOuQ3OuWX4pEh759xa59y7AM65DcAcNh/nFuVqEsHh32T7mc/47AdM
L3P5J8Chzrm2+GzrkDKXtQZ6OeeOKHebO7N5xugrfn/hBcDMOgFR59zSpIzif6ViXJUysx7Al865
eQlHvmUpHZeZ5QMHlLvNdEj3uC4FhpkvSHY7/5uhT6YTgDecc0uA78ysdZnLDgQuxGdEdzezXrHj
DYAPnHOtY2+UZe3gnCsBP8kB8gDM7A/AlcBg0vMhLtnjyhTpGtfzwC/AN8AyYJhz7odkDKASqRzX
WcDrZX7ON7+08R0zOzSJY5BwCcP8IwxzjTDMK8IwhwjDXCEM84IwzAGy/f2+ps/nx4ABALHEQv0K
XivLv0es4H/fI7YDjgfeijfgXE0i4JybD+TjMz2vsfmLynbA82Y2D5/93qvMZROdcz/W8G43yyql
QrrGZWZbA9fiH8i/Ha5h2FVK1bhibyzPAxfHsu5pleZx/TX2c1P8ZODxZI2jAv3wL4YAzwD9y1w2
I3bGzOGfD6UvwBuJf6ltaXa4CLjLOfdL7OdUJxJSPa6gpGtc7fHLZSNAc2BgbKKaKikZl5ldB6x3
zo2JHfoaaOr8kvHLgTGx56DI/wjD/CMMc40wzCtCMIcIw1whDPOCMMwBsv79vobP5+eBY2OrO84C
RlX3fmO/Owa4O7ZSIS6JtnjMduPwe7oKgMZljv8deNs518vMdgPeKXPZmkpuawVQdl/PLpRZ6hX7
D+oFpKxQXxnJHFdlWuAf6P82M8OPd7aZtXfOraxp4FVI6rjMrA7+yfeEc25s8sONW7rGdaZz7mIA
59zzZjYiSfGXv/9GQGf83i4H1MZnWEuXopZvCVP689rYC3xFSswszzlXYmYRoPQxdhBwkpndDjQC
NprZWldJP/hEpGhcgUvzuPrjzxRsAr41s/fx+yKX1ST2LUnVuMysEDgmdtv+F/0S8lWx7+eY2VJg
D/zSQJGKhGH+EYa5RhjmFVk5hwjDXCEM84IwzAFC9n5freezc26tmU3Eb93pA7St4DZXALuW+Xmz
9wjgEWCRc+6+6gSaqysRSjM7jwODnXPl90c15Pc/7oA4b3MmfonMbmZWD1/co2xFzaOAT5xzX9cw
5nikYlxlb/u3jJhzbr5zLuKca+6ca4ZfPtk6RQmEVI3rceBj59w9cdx3KqR7XCvM7HAAM+sCfFrN
eOPVB/inc65Z7PGxG/B5mSVf7WPPk1pAX3wRHNjy33ocUBj7/kxgLIBz7rDYfTQH7gZuTUUCISYV
4yqrsuulenVFOse1nNibsfn9ix2AhQmPoGJJH5eZdcNPSno459aVOd44djuYWXNgd/zeW5HywjD/
CMNcIwzzimyfQ4RhrhCGeUEY5gBheL9P5Pk8ArgXv+KiohVG44BTzKyemTWLxTwDwMxuBrZ1zl1a
3YBzNYngAJxzK5xz91dw+e3AUDObTZx/I+fcRuD/8NU8F+ALWHxS5ip9SfFWBlIwLgAzGwNMBfYw
s+VmVtGbkSN1H3aSPi4zOwQ4Fehsvl3RnNgLRmmLmC/xL26vmtnrW7qtBKR1XMC5wD/MF5C5OfZz
KvQFXip37AV+L3QzC19JfAGw1Dn3cuz4ljLatwFHmdkioAswNHnhxi3p49rSY83MPsdXkj4z9rzb
s7LbSVA6x/UA8Eczm4/f6zcitnwvFVLxOLwP+AMw0TZv7XQYMNd8+7xngfNcams9SPZi6Hg6AAAA
30lEQVQKw/wjDHONMMwrsn0OEYa5QhjmBWGYA4Th/b7Gz2fn3Bx8gcqRFd6wcx/HYv0YX7zxAuec
M7Od8dvF9irzfD8r3oAtQ1bTiEgOiJ3FuNw51yPoWJJJ48ouYR2XiEgYhOE1WmPIDGEYQ1XMbCf8
VodUnWyqUK6uRBARERERERHJSmZ2OvABfkVBeu9bKxFEREREREREJB5aiSAiIiIiIiIicVESQURE
RERERETioiSCiIiIiIiIiMRFSQQRERERERERiYuSCCIiIiIiIiISFyURRERERERERCQu/w/8oEbX
cAw4PwAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>As we can see above, the market broke a prevailing trend on Apple in order to go down, and ultimately predict the earnings release. For Facebook, the opposite happened. While the trend was down, the earnings were fantastic and the market corrected itself much higher.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Formulating-the-Question">Formulating the Question<a class="anchor-link" href="#Formulating-the-Question">&#182;</a></h1><p>While these are two specific examples, there are plenty of other examples you could cite one way or another. Even if the preponderance of evidence shows that the market correctly predicts earnings releases, we need not accuse people of collusion; for a company like Apple with many suppliers we can generally forecast how Apple has done based on those same suppliers.</p>
<p>The question then, is this: <strong>how well does the market predict the earnings releases?</strong> It's an incredibly broad question that I want to disect in a couple of different ways:</p>
<ol>
<li>Given a stock that has been trending down over the past N days before an earnings release, how likely does it continue downward after the release?</li>
<li>Given a stock trending up, how likely does it continue up?</li>
<li>Is there a difference in accuracy between large- and small-cap stocks?</li>
<li>How often, and for how long, do markets trend before an earnings release?</li>
</ol>
<p><strong>I want to especially thank Alejandro Saltiel for helping me retrieve the data.</strong> He's great. And now for all of the interesting bits.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Event-Studies">Event Studies<a class="anchor-link" href="#Event-Studies">&#182;</a></h1><p>Before we go too much further, I want to introduce the actual event study. Each chart intends to capture a lot of information and present an easy-to-understand pattern:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">pandas.tseries.holiday</span> <span class="k">import</span> <span class="n">USFederalHolidayCalendar</span>
<span class="kn">from</span> <span class="nn">pandas.tseries.offsets</span> <span class="k">import</span> <span class="n">CustomBusinessDay</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="k">import</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">timedelta</span>
<span class="c1"># If you remove rules, it removes them from *all* calendars</span>
<span class="c1"># To ensure we don&#39;t pop rules we don&#39;t want to, first make</span>
<span class="c1"># sure to fully copy the object</span>
<span class="n">trade_calendar</span> <span class="o">=</span> <span class="n">USFederalHolidayCalendar</span><span class="p">()</span>
<span class="n">trade_calendar</span><span class="o">.</span><span class="n">rules</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">6</span><span class="p">)</span> <span class="c1"># Remove Columbus day</span>
<span class="n">trade_calendar</span><span class="o">.</span><span class="n">rules</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">7</span><span class="p">)</span> <span class="c1"># Remove Veteran&#39;s day</span>
<span class="n">TradeDay</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">days</span><span class="p">:</span> <span class="n">CustomBusinessDay</span><span class="p">(</span><span class="n">days</span><span class="p">,</span> <span class="n">calendar</span><span class="o">=</span><span class="n">trade_calendar</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">plot_study</span><span class="p">(</span><span class="n">array</span><span class="p">):</span>
<span class="c1"># Given a 2-d array, we assume the event happens at index `lookback`,</span>
<span class="c1"># and create all of our summary statistics from there.</span>
<span class="n">lookback</span> <span class="o">=</span> <span class="nb">int</span><span class="p">((</span><span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">norm_factor</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">array</span><span class="p">[:,</span><span class="n">lookback</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">centered_data</span> <span class="o">=</span> <span class="n">array</span> <span class="o">/</span> <span class="n">norm_factor</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">lookforward</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">lookback</span>
<span class="n">means</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">lookforward_data</span> <span class="o">=</span> <span class="n">centered_data</span><span class="p">[:,</span><span class="n">lookforward</span><span class="p">:]</span>
<span class="n">std_dev</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)])</span>
<span class="n">maxes</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">mins</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">f</span><span class="p">,</span> <span class="n">axarr</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">range_begin</span> <span class="o">=</span> <span class="o">-</span><span class="n">lookback</span>
<span class="n">range_end</span> <span class="o">=</span> <span class="n">lookforward</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">range_begin</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span> <span class="n">means</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">range_begin</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span> <span class="n">means</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">+</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">-</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=.</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;$\pm$ 1 s.d.&quot;</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">+</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">-</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=.</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;$\pm$ 1 s.d.&quot;</span><span class="p">)</span>
<span class="n">max_err</span> <span class="o">=</span> <span class="n">maxes</span> <span class="o">-</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">min_err</span> <span class="o">=</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span> <span class="o">-</span> <span class="n">mins</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:],</span>
<span class="n">yerr</span><span class="o">=</span><span class="p">[</span><span class="n">min_err</span><span class="p">,</span> <span class="n">max_err</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Max &amp; Min&#39;</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">((</span><span class="o">-</span><span class="n">lookback</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">lookback</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">((</span><span class="o">-</span><span class="n">lookback</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">lookback</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">plot_study_small</span><span class="p">(</span><span class="n">array</span><span class="p">):</span>
<span class="c1"># Given a 2-d array, we assume the event happens at index `lookback`,</span>
<span class="c1"># and create all of our summary statistics from there.</span>
<span class="n">lookback</span> <span class="o">=</span> <span class="nb">int</span><span class="p">((</span><span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">norm_factor</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">array</span><span class="p">[:,</span><span class="n">lookback</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">centered_data</span> <span class="o">=</span> <span class="n">array</span> <span class="o">/</span> <span class="n">norm_factor</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">lookforward</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">lookback</span>
<span class="n">means</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">lookforward_data</span> <span class="o">=</span> <span class="n">centered_data</span><span class="p">[:,</span><span class="n">lookforward</span><span class="p">:]</span>
<span class="n">std_dev</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)])</span>
<span class="n">maxes</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">mins</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">range_begin</span> <span class="o">=</span> <span class="o">-</span><span class="n">lookback</span>
<span class="n">range_end</span> <span class="o">=</span> <span class="n">lookforward</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">range_begin</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span> <span class="n">means</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">+</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">-</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=.</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;$\pm$ 1 s.d.&quot;</span><span class="p">)</span>
<span class="n">max_err</span> <span class="o">=</span> <span class="n">maxes</span> <span class="o">-</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">min_err</span> <span class="o">=</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span> <span class="o">-</span> <span class="n">mins</span>
<span class="n">plt</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:],</span>
<span class="n">yerr</span><span class="o">=</span><span class="p">[</span><span class="n">min_err</span><span class="p">,</span> <span class="n">max_err</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Max &amp; Min&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">((</span><span class="o">-</span><span class="n">lookback</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">lookback</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">fetch_event_data</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">events</span><span class="p">,</span> <span class="n">horizon</span><span class="o">=</span><span class="mi">5</span><span class="p">):</span>
<span class="c1"># Use horizon+1 to account for including the day of the event,</span>
<span class="c1"># and half-open interval - that is, for a horizon of 5,</span>
<span class="c1"># we should be including 11 events. Additionally, using the</span>
<span class="c1"># CustomBusinessDay means we automatically handle issues if</span>
<span class="c1"># for example a company reports Friday afternoon - the date</span>
<span class="c1"># calculator will turn this into a &quot;Saturday&quot; release, but</span>
<span class="c1"># we effectively shift that to Monday with the logic below.</span>
<span class="n">td_back</span> <span class="o">=</span> <span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<span class="n">td_forward</span> <span class="o">=</span> <span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<span class="n">start_date</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">events</span><span class="p">)</span> <span class="o">-</span> <span class="n">td_back</span>
<span class="n">end_date</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">events</span><span class="p">)</span> <span class="o">+</span> <span class="n">td_forward</span>
<span class="n">total_data</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">start_date</span><span class="p">,</span> <span class="n">end_date</span><span class="p">)</span>
<span class="n">event_data</span> <span class="o">=</span> <span class="p">[</span><span class="n">total_data</span><span class="o">.</span><span class="n">ix</span><span class="p">[</span><span class="n">event</span><span class="o">-</span><span class="n">td_back</span><span class="p">:</span><span class="n">event</span><span class="o">+</span><span class="n">td_forward</span><span class="p">]</span>\
<span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">horizon</span><span class="o">*</span><span class="mi">2</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span>\
<span class="p">[</span><span class="s1">&#39;Adjusted Close&#39;</span><span class="p">]</span>
<span class="k">for</span> <span class="n">event</span> <span class="ow">in</span> <span class="n">events</span><span class="p">]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">event_data</span><span class="p">)</span>
<span class="c1"># Generate a couple of random events</span>
<span class="n">event_dates</span> <span class="o">=</span> <span class="p">[</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">27</span><span class="p">)</span> <span class="o">-</span> <span class="n">timedelta</span><span class="p">(</span><span class="n">days</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="o">-</span> <span class="n">TradeDay</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="mi">20</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">40</span><span class="p">)]</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">fetch_event_data</span><span class="p">(</span><span class="s1">&#39;CELG&#39;</span><span class="p">,</span> <span class="n">event_dates</span><span class="p">)</span>
<span class="n">plot_study_small</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">gcf</span><span class="p">()</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span> <span class="mi">6</span><span class="p">);</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;Mean price for days leading up to each event&#39;</span><span class="p">,</span>
<span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span> <span class="o">-.</span><span class="mi">01</span><span class="p">),</span> <span class="p">(</span><span class="o">-</span><span class="mf">4.5</span><span class="p">,</span> <span class="o">.</span><span class="mi">025</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="nb">dict</span><span class="p">(</span><span class="n">facecolor</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">shrink</span><span class="o">=</span><span class="mf">0.05</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;&#39;</span><span class="p">,</span> <span class="p">(</span><span class="o">-.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">005</span><span class="p">),</span> <span class="p">(</span><span class="o">-.</span><span class="mi">5</span><span class="p">,</span> <span class="o">.</span><span class="mi">02</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;facecolor&#39;</span><span class="p">:</span> <span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="s1">&#39;shrink&#39;</span><span class="p">:</span> <span class="o">.</span><span class="mi">05</span><span class="p">})</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;$\pm$ 1 std. dev. each day&#39;</span><span class="p">,</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="o">.</span><span class="mi">055</span><span class="p">),</span> <span class="p">(</span><span class="mf">2.5</span><span class="p">,</span> <span class="o">.</span><span class="mi">085</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;facecolor&#39;</span><span class="p">:</span> <span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="s1">&#39;shrink&#39;</span><span class="p">:</span> <span class="o">.</span><span class="mi">05</span><span class="p">})</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;Min/Max each day&#39;</span><span class="p">,</span> <span class="p">(</span><span class="o">.</span><span class="mi">9</span><span class="p">,</span> <span class="o">-.</span><span class="mi">07</span><span class="p">),</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-.</span><span class="mi">1</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;facecolor&#39;</span><span class="p">:</span> <span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="s1">&#39;shrink&#39;</span><span class="p">:</span> <span class="o">.</span><span class="mi">05</span><span class="p">});</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXdyaTSTLZSICwb+pFRAIJsi8GUNyxqIj7
Ulu1anvb/qoUr1VwudfeVlzaWltrrVqvooiIRSkoxn1BURaFgGjCGkhCyL7MZL6/PyYZs5OYwGR5
Px+P85g53/mecz4zo+Gdb77nHGOtRUREREREWs4R6gJERERERDobhWgRERERkVZSiBYRERERaSWF
aBERERGRVlKIFhERERFpJYVoEREREZFWapcQbYw50xizzRiz3RizoJHXhxtjPjDGlBtjflnvtUxj
zEZjzOfGmE/aox4RERERkaMprK07MMY4gD8Cs4B9wHpjzCvW2m21uuUBPwV+0Mgu/ECatTa/rbWI
iIiIiBwL7TESPR7YYa3NstZ6geeB82t3sNbmWms/A3yNbG/aqQ4RERERkWOiPcJrf2B3rfU91W0t
ZYG1xpj1xpgft0M9IiIiIiJHVZunc7SDKdba/caYXgTC9FZr7XuhLkpEREREpCntEaL3AoNqrQ+o
bmsRa+3+6sccY8zLBKaHNAjRxhjbxjpFRERERFrEWmuae709pnOsB443xgw2xoQDlwArm+kfLMgY
E2WMia5+7gFmA1ua2tBaq6WTLnfddVfIa9Ci7647Lvr+Ou+i765zL/r+OvfSEm0eibbWVhljbgHW
EAjlT1hrtxpjbgi8bP9qjEkCPgViAL8x5j+Bk4BewMvVo8xhwLPW2jVtrUlERERE5GhqlznR1trV
wPB6bX+p9fwAMLCRTYuBMe1Rg4iIiIjIsaJLy8kxkZaWFuoS5HvSd9e56fvrvPTddW76/ro+09J5
H6FmjLGdpVYRERER6byMMdhjcGKhiIiIiEi3ohAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIi
IiIiraQQLSIiIiLSSgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQ
LSIiIiLSSgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLS
SgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIi
IiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIiIiKtpBAt
IiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIiIiKtpBAtIiIiItJK
CtEiIiIiIq2kEC0iIiIi0kphoS5ARERERDq+9Mx00jPTg8/ThqQBkDYkLfi8OzHW2lDX0CLGGNtZ
ahURERHpysxig72r6+YyYwzWWtNcH03nEBERERFpJYVoEREREZFWUogWEREREWmldgnRxpgzjTHb
jDHbjTELGnl9uDHmA2NMuTHml63ZVkRERESko2lziDbGOIA/AmcAI4FLjTEn1uuWB/wU+N332FZE
REREpENpj5Ho8cAOa22WtdYLPA+cX7uDtTbXWvsZ4GvttiIiIiIiHU17hOj+wO5a63uq2472tiIi
IiIiIaGbrYiIiIi0A92MpHtpjxC9FxhUa31AdVu7b7to0aLg87S0NNLS0lpao4iIiMhRVTssm8WG
9GvSQ1qPtFx6ejrp6emt2qbNdyw0xjiBDGAWsB/4BLjUWru1kb53AcXW2ge+x7a6Y6GIiIh0Cl3+
jn5d/f214I6FbR6JttZWGWNuAdYQmGP9hLV2qzHmhsDL9q/GmCTgUyAG8Btj/hM4yVpb3Ni2ba1J
RERERORoapc50dba1cDwem1/qfX8ADCwpduKiIiIiHRkOrFQRESkg9CJaSKdh0K0iIhIB9HVT0zT
LwnSlShEi4iIyDHR1X9JkO6lPW62IiIiIiLSrShEi4iIiIi0kkK0iIiItNp1111HUlISycnJrdqu
oKCAP//5z02+vnjxYpYsWdKqfX6fbY6FrKwsRo0a1ertOur7kboUokVERKSBPXv2UFxc3OTr1157
Lf/+979bvd/8/HweffTRtpTWqRjT7P06pBNTiBYREZEGdu7cyaFDh5p8ferUqfTo0aPZfZSWlnLu
ueeSkpJCcnIyL774IgsXLmTnzp3wGCxYsACA++67j+HDhzN9+nQyMjJaVF9T2zz77LNMmDCB1NRU
fvKTn+D3+1m4cGGd4N7Skd76+6q5c/LcuXMZN24co0aN4m9/+1uw/9NPP83o0aNJSUmBlwNtPp+P
66+/npNPPpkzzzyTioqKVr2fxo5111138fDDDwf73HHHHfzhD39owacm7cpa2ymWQKkiIiLdA4tC
++9eenq6zczMbLZPZmamHTVqVJOvv/TSS/b6668PrhcWFga3qXl/n332mU1OTrbl5eW2sLDQHn/8
8faBBx5o9rhNbbN161Z73nnnWZ/PZ6219qabbrLPPPOM/fzzz+2pp54a3P6kk06ye/bsafYYTe3L
Wmvz8/OttdaWlZXZk08+2R46dMh++eWXdvjw4fbQoUPWWmtZgM3MzLRhYWF206ZN1lprL774Yvvs
s8+2+P00dazMzEybmppqrbXW7/fb4447LnjcYyXU/30ebdW5s9lsqkvciYiICAC7du3irbfeAmDb
tm306tWLxMREjDHMmTOH+Pj4Vu1v1KhR/OpXv2LhwoWcc845TJ06tcHo9rvvvsvcuXNxu9243W7m
zJlzxP02tc2bb77JZ599xrhx47DWUl5eTp8+fbjiiivIyckhOzubgwcPkpCQQP/+/Zs9xptvvsmG
DRvq7CspKQmAhx56iBUrVgCBaS87duzgk08+Yd68ed+NzkcGHoYNGxacFz127FgyMzNb/H6aOtb4
8ePp2bMnGzduJDs7m9TU1CP+VUDan0K0iIiIADBo0CCuvvpqAN555x2GDBnCoEGDvvf+TjjhBDZs
2MBrr73GHXfcwWmnncaVV14ZnBZxNFxzzTXcd999DdrnzZvHiy++SHZ2NvPnzz/ifqy1XH311Q32
9fbbb7Nu3To+/vhj3G43M2bMoLy8PLhNfW63O/jc6XQG+7ZEc8f60Y9+xJNPPkl2djY//OEPW7xP
aT+aEy0iIiIN2O+mU37vPvv37ycyMpLLLruMW2+9lQ0bNhATE0NRUVGwz/Tp01mxYgUVFRUUFRXx
6quvHrG2praZOXMmy5YtIycnBwicxLhr1y4ALr74Yp5//nleeukl5s2bd8RjzJo1q9F9FRQU0KNH
D9xuN9u2beOjjz6qc+zgSHvZd5/R930/TR0L4Ac/+AGrV6/m008/5YwzzjjiMaT9aSRaREREgMAl
2d544w0Atm/fTs+ePUlISMAYw9y5c+tMGbjssstIT08nLy+PQYMGsXjxYq699to6+9u8eTO33nor
DoeD8PBwHnvsMRISEpgyZQpZj2axoHQBv/3tb7n44otJTk4mKSmJ8ePHB7c/55xzeOKJJ+jTp0+d
/aakpDB//vwG24wYMYJ7772X2bNn4/f7CQ8P509/+hODBg3ipJNOoqioiAEDBgSnZTR3jKb2deaZ
Z/LYY48xcuRIhg8fzqRJkwA46aST+K//+i9OPfVUwsKq49VPWnZ1jqbez1lnndXosQBcLhczZsyg
R48eugJIiJij+SeV9mSMsZ2lVhERkbYyiw32rq77757eX9v4/X7Gjh3LsmXLOO64447acZrS5b8/
Y7DWNvvbiaZziIiIiHQiW7du5YQTTuD0008PSYCWAE3nEBEREelERowYEbjWtoSURqJFRERERFpJ
IVpEREREpJUUokVERES6sK1bt+L3+0NdRpejEC0iIiLSBVlrufvuuxk5ciS//OUvQ11Ol6MQLSIi
ItLFVFZWcskll/Db3/4Way2PP/44f/3rX0NdVpeiEC0iIiLSxZx99tmsXLmS0tJSAEpLS/n5z3/O
W2+9FeLKug6FaBEREZEuZtq0aTgcdWNeWVkZ559/Ptu3bw9RVV2LQrSIiIhIF3PnnXdyzjnnEBkZ
Wae9uLiYGTNmkJeXF6LKug6FaBEREZEuxhjDM888w4gRI3C5XMF2ay05OTmcccYZVFRUhLDCzk8h
WkRERKQLcrvd/Pvf/6Znz54YY4LtXq+Xr776iquuugprbQgr7NwUokVERES6qJ49e7Ju3To8Hk+d
9rKyMv71r39xzz33hKiyzk8hWkRERKQLO/HEE3n55ZcbzI8uLS3l/vvv54UXXghRZZ2bQrSIiIhI
F3faaaexZMkSoqKi6rSXlZVx7bXXsn79+hBV1nkpRIuIiIh0AzfeeCPXXXddgyBdWlrK7Nmz2bVr
V4gq65zCQl2AiIhIa6RnppOemR58njYkDYC0IWnB5yLSuAcffJBt27bxzjvv1Lk6R2FhITNnzuTz
zz8nJiYmhBV2HgrRIiLSqdQOy2axIf2a9JDWI9KZOJ1OXn75ZVJTU9m5cydVVVUA+P1+9uzZw5w5
c3jjjTdwOp1Ya7n//vv517/+xfvvvx/iyjseTecQERER6UY8Hg/r1q0jLi6uTntFRQWffPIJN998
M16vl6uuuop7772XTz/9lNzc3BBV23EpRIuIiIh0M/3792ft2rWNzo9+5plnGD58OC+99BKlpaVE
RETw3nvvhajSjkshWkRERKQbSk1N5Z///Gejl7779ttvKSsrA6CoqIg1a9aEosQOTSFaREREpJua
O3cud9xxR4MR6dqstQrRjVCIFhEREenGFi5cSEpKCmFhTV9vYvfu3RQUFBzDqjo+hWgRERGRbsrv
93Pbbbfx+eef4/P5muynedENKUSLiIiIdEPl5eXMmTOHRx99lNLS0mb7FhcX8+abbx6jyjoHhWgR
ERGRbmjnzp2kp6e3qK/f7+f1118/ugV1MgrRIiIiIt3QyJEjOXjwIEuWLGHIkCF4PJ5m++/cuZPi
4uJjVF3HpxAtIiIi0k1FRUVxww038M0337Bq1SrOOOMMIiIiCA8Pb9A3MjKSDz/8MARVdkwK0SIi
IiLdnDGGU089ldWrV5ORkcEtt9xCdHR0ndHpkpISzYuuRSFaRERERIIGDRrEAw88wMGDB3n44Yc5
7rjj8Hg8VFVV8dprr4W6vA5DIVpEREREGoiMjOS6665jx44drF69mrPPPpvc3NxQl9VhNH1VbRER
ERHp9owxTJ06lVWrVmGtDXU5HYZGokVERESkRYwxoS6hw2iXEG2MOdMYs80Ys90Ys6CJPo8YY3YY
Y74wxqTUas80xmw0xnxujPmkPeoRERERETma2jydwxjjAP4IzAL2AeuNMa9Ya7fV6nMWcJy19gRj
zATgz8DE6pf9QJq1Nr+ttYiIiIiIHAvtMRI9Hthhrc2y1nqB54Hz6/U5H3gawFr7MRBnjEmqfs20
Ux0iIiIiIsdEe4TX/sDuWut7qtua67O3Vh8LrDXGrDfG/Lgd6hERERGRo0QnFwZ0hKtzTLHW7jfG
9CIQprdaa98LdVEiIiIi3ZHf76ewsJCCggIOHz7M4cMF7N9/mP37D3PwYAG5uQUwINRVhl57hOi9
wKBa6wOq2+r3GdhYH2vt/urHHGPMywSmhzQaohctWhR8npaWRlpaWtsqFxEREelmvF4vBQUFwZB8
6FAB+/Yd5sCBAg4cOEx+fjHWejAmDojH748jPLwfbvcIIiLiiYjIB34T6rfRrtLT00lPT2/VNu0R
otcDxxtjBgP7gUuAS+v1WQncDCw1xkwEDltrDxhjogCHtbbYGOMBZgOLmzpQ7RAtIiIiIg2Vl5dz
+PDhYEjOzQ2MJGdnF5CTc5jCwgqMiQXisDYea+OIiBiG2x1HREQ8AwbE4nA4m9y/11ty7N7MMVJ/
cHbx4ibjaFCbQ7S1tsoYcwuwhsAc6yestVuNMTcEXrZ/tda+Zow52xjzNVACXFu9eRLwsjHGVtfy
rLV2TVtrEhEREemKrLWUlJQEQ3J+fmCKRc1Ui4MHD1NWZnE6A+HY2niMiSMioh9udxxRUfHEx0fr
es/toF3mRFtrVwPD67X9pd76LY1s9y0wpj1qEBEREensmpqPnJ0dmGqRm1uAzxeOw/FdSHY6E4Ij
yQkJ8YSFRSgkHwMd4cRCERERkW6hpfORa0Ky3x9PeHg/IiJOwu2Oo0+fOJzO8FC/DUEhWkRERKTd
VFVVkZ8fuH/cxx9/TG7udyH54MHDFBUF5iMbEzhhD+Jxu4cRERGP2x13xPnI0nEoRIuIiIi0grWW
oqIi8vLyyMvLY//+XLKy8ti9O4+cnEIgFgbDY4/lYkw8ERH9iIiIx+OJo0cPzUfuKhSiRURERBpR
Xl4eDMoHD+aRlZXLnj157Nt3iMrKcByOnlibiDGJREYOJSoqkQEDelSPJP8ngwefE+q3IEeRQrSI
iIh0Wz6fj/z8fPLy8sjNzWP37lx27cpj3748Cgq8OByJQCAsR0ScSFRUIr16JRIW5g516RJiCtEi
IiLSpVlrKSwsrDX9Io/MzFz27s0jJ6cIiMOYnlRVJRIePoCoqNFERSXqUnDSLIVoERER6RLKysrq
TL/YtSuPXbty2b//ED5fBJCItT1xOBKJihpGZGQiAwbE60Q++V4UokVERKTT8Pl8HDp0qNb0i8Cy
Z08uxcVVOByJWBsIy5GRI4iMTKR37wRNv5B2pxAtIiIiHYq1loKCguCo8r59gVHl3btzycsrxph4
IBG/vyfh4QOJjBxDTEwiCQkeTb+QY0YhWkREREKitLS03tUv8tizJ696+kUkxiTi9yfidPYkMvJ4
oqISGTgwHmMcoS5dRCFaRERE2p/f76eoqKjW3fkKyMkpIDu7kIMHC8DAzTc/Umv6RSKRkSOJikok
KSlBd+WTDk8hWkRERFrFWktZWVkwIBcUFHDoUCH79xdw4EABubkF5OeXAB6MicPawOJ09iQi4jjc
7jiI/QmDBi3Q9AvptBSiRUREpI7KykoKCwtrjSIXkp1dUH3r6gLy8grxesNwOOIwJo6qqliMicPt
7kNERBxudxwDB8YccdqFArR0ZgrRIiIi3Uj9aRYFBYHpFTUBOSengOJiL05nICD7/bFYG0d4+EDc
7pOJiIgjKSlW0y2k21OIFhER6SLqT7MI3GCkIDiKnJNTe5pFLBBHVVUcYWGJREQMw+2OJTY2jsTE
KI0SixyBQrSIiEgn4fV66wTk/PxAOM7O/m6ahc8XFgzIfn9ccJqF2x1LREQcAwbE6OYiIu1AIbob
czgcXHHFFTz99NMAVFVV0adPHyZNmsTKlStDXB189tlnPPPMMzz00ENt2k9GRgaXXHIJDoeDZcuW
MXTo0Dbt7+233+b3v/89r776apv205SYmBiKioravJ+nnnqKzz77jEceeYS//OUveDwerrjiinao
8PsrKCjg//7v//jJT35yzI/91FNP8emnn/KHP/zhmB+7to0bN7Jv3z7OOuuskNYhHUfN6HFpaWmd
BeDll18LBuTc3EKKiysxJrbOyXou1wAiIkbidsfRu3esbioicowoRHdjHo+HLVu2UFFRgdvtZu3a
tQwcODDUZQGBQD927FjGjh3b5n2tWLGCefPmcfvtt7d4G2tts3/KPJp/5jwa+77hhhvafZ/fR35+
Po8++mhIQjR0jJOYvvjiCz799FOF6C7KWktlZWWDQFxaWkpRUSmHD5eSn1/C4cOlFBYGlpKScqx1
43BEAYHF2igYDKtWJeB2DyUiIo6YmDgSEjTNQqSj0NXKu7mzzz6bVatWAfDcc89x6aWXBl8rLS3l
uuuuY+LEiYwdOzY48pqVlcX06dM55ZRTOOWUU/joo4+AwAjtjBkzmDdvHiNGjODKK69s9JgzZszg
5z//OSkpKSQnJ/Ppp58CsHjxYq666iqmTp3KVVddxdtvv815550HQElJCT/84Q9JTk5mzJgxvPzy
ywCsXbuWyZMnc8oppzB//vzg6E2N119/nYceeog///nPzJo1C4AlS5YwatQokpOTefjhh4Pv6cQT
T+Tqq69m1KhR7Nmzp85+Vq9ezYgRIzjllFNYvnx5sH39+vVMnjyZsWPHMnXqVHbs2AHAqaeeyqZN
m4L9pk2bxubNm3nnnXdISUkhNTWVsWPHUlJS0uz38/vf/57x48czZswYFi9eHGyfO3cu48aNY9So
Ufztb38Ltj/55JMMHz6ciRMn8v777wfbFy9ezJIlS4Kf/69//WsmTJjAiSeeGOxXVlbG/PnzOfnk
k7nggguYOHEiGzZsaFDT0KFDOXToEBD4a8GMGTPqfH+TJ09m+PDhdeqqsXDhQr755htSU1NZsGAB
ALfeeiujRo1i9OjRvPDCC41+Ds8++ywTJkwgNTWVn/zkJ1hrAbjpppsYP348o0aNqvP5rF+/nilT
pjBmzBgmTpwY/Jz37t3LWWedxfDhw4PHr2/Dhg2kpaUxbtw4zjrrLA4cOEBGRgYTJkwI9snKyiI5
OTn4GdTv39Tn7PV6ufPOO3nhhRdITU3lxRdfbLQG6Th8Ph+FhYVkZ2fzzTffsGXLFj755BPeeiud
5ctf4+9/X8aDDz7NokWP8YtfPMCPf3wvN974AP/v/z3FnXeu4v77P+bhh3fy178W8NxzLt54oy+b
NiWzf/8sKivnExNzMwMH3sHgwQsYOPCnDBx4HQMHXsqgQecDMGDARHr1GkFMTD/Cw3U3PpGORCPR
3ZgxhksuuYTFixdzzjnnsGnTJq677jreffddAO677z5mzZrFE088QUFBAePHj+e0004jKSmJN954
g/DwcL7++msuvfRS1q9fDwRG2b766iv69OnDlClT+OCDD5g8eXKDY5eVlfH555/z7rvvcu2117J5
82YAtm7dyvvvv094eDhvv/128B+Me+65h/j4+GAwrbkd7L333subb75JZGQk//u//8sDDzzAb37z
m+BxzjrrLG688UZiYmL45S9/yYYNG3jqqadYv349VVVVTJgwgbS0NOLj4/n666955plnGDduXJ1a
KyoquP7660lPT2fYsGHMnz8/+NqIESN47733cDgcvPnmmyxcuJBly5bxox/9iCeffJIHH3yQ7du3
U1FRwahRo5gzZw6PPvookyZNorS0lIiIiCa/n7Vr17Jjxw4++eQTrLXMmTOH9957j6lTp/Lkk08S
Hx9PeXk548aN48ILL6SiooJFixbx+eefExsbS1paGqmpqY3uu6qqio8//pjXX3+dRYsWsXbtWh59
9FESEhLYsmULX375JSkpKU3+d9PU+ubNm/n4448pKioiJSWFc889lz59+gRfv//++/nyyy+D4Xz5
8uVs2rSJzZs3c/DgQcaNG8epp55KUlJScJtt27axdOlSPvjgA5xOJzfffDPPPvssV1xxBf/93/9N
fHw8fr+fWbNmceGFFzJ8+HAuueQSXnzxRVJTUykuLg5+zhs3buSLL77A5XIxfPhwfvazn9G/f//g
sXw+Hz/96U9ZuXIliYmJvPDCC9x+++088cQTeL1esrKyGDx4MEuXLuWSSy7B5/Pxs5/9rNH+TX3O
d999d3CajRxbfr+f8vLy4MhwSUlJ9WNgRDg/PzBSXFAQWC8qKqWszIvDEYUxHmpGif3+wEhxWFgi
LtdAXK4oXK4o3O4ooqOjcDpdoX6rInIMKER3cyeffDKZmZk899xznHPOOcERPoA1a9bw6quv8rvf
/Q4IXDd0165d9O3bl1tuuYUvvvgCp9MZHH0FGD9+PH379gVgzJgxZGZmNhqia0a8p02bRlFREYWF
hQDMmTOH8PCGl0164403WLp0aXA9Li6OVatW8dVXXzFlyhSstXi9XiZNmtTs+33vvfeYO3duMFRd
cMEFvPvuu5x33nkMHjy4QYCGQIgbNmwYw4YNA+CKK67g8ccfB+Dw4cNcddVV7NixA2MMPp8PgIsu
uoh77rmH3//+9zz55JNcc801AEyZMoVf/OIXXH755VxwwQV1Alx9a9asYe3ataSmpmKtpaSkhB07
djB16lQeeughVqxYAcCePXvYsWMH+/fvZ8aMGSQkJAAwf/78Ot9NbRdccAEAY8eOJSsrK/jZ/Pzn
Pwdg5MiRwZHW+mr/N1Lf+eefT3h4OImJicycOZNPPvmEOXPmNNn/vffeC/630Lt3b9LS0li/fj3n
nntusM+bb77Jhg0bGDduHNZaysvLgyH7+eef5/HHH8fn85Gdnc1XX30FQL9+/YK/QERHRwf3NWvW
rOD6SSedRFZWVp3vICMjgy1btnD66adjrcXv99OvXz8A5s2bx9KlS7nttttYunQpL7zwQrP9m/qc
pf34/X4g8BeG+tMmDh0qCQbigoJAW3FxOVB72oQHawOh2OmMweVKCgZilyuKxMQonE63Rn9FpFEK
0cKcOXO49dZbSU9PJzc3N9hureWll17ihBNOqNN/8eLF9OnTh02bNlFVVUVkZGTwNbf7uxNanE5n
MFTW19RopsfjaXHd1lpmz57Ns88+2+JtmtPcsZsKjr/5zW+YOXMmy5cvJysrKzi1ITIyktNPP50V
K1bw4osv8tlnnwGwYMECzj33XFatWsWUKVNYs2YN//Ef/9HkMRcuXMiPf/zjOu1vv/0269at4+OP
P8btdjNjxgzKy8ubrbO+mu+pue+oqX2FhYUFw0vNcWvU/l6PNK+8pce01nL11Vdz33331WnPzMzk
gQce4LPPPiM2NpZrr732iJ/Dkf77tNZy8skn15kKU2P+/PnMmzePuXPn4nA4OO6449iyZUuT/Wsf
r7nPWVrPWsvWrdt47rk3IAzuvHMVNfOIrQ2EY5crvk4gjomJIiEh8og3/xARaSn9NOnGaoLGD3/4
Q+666y5GjhxZ5/Uzzjijzp+cv/jiCyAwlaJmtPnpp5+mqqqq1ceuGVV+7733iIuLIyYmptn+p59+
On/605+C64cPHw7O+925cycQmMPd1MhrjWnTprFixQrKy8spKSnh5ZdfZtq0aUDTwevEE08kKyuL
b7/9FgihQlUwAAAgAElEQVTMHa9RUFAQHMl88skn62x33XXX8bOf/Yzx48cTFxcHwDfffMPIkSO5
7bbbGDduHNu2bWtwvJo6zjjjDP7+978H5/Pu27ePnJwcCgoK6NGjB263m23btgXnpE+YMIF33nmH
/Px8vF5vq+fbTpkyJfi9fPXVV2zZsqXRfkOHDg3+UvDSSy/Vee2VV16hsrKSvLw83n777QYj+/Wv
PDJt2jSWLl2K3+8nJyeHd999l/Hjx9fZZtasWSxbtoycnBwgcHLirl27KCwsJDo6mpiYGA4cOMDr
r78OwPDhw8nOzg7WWFxc3OL/RocPH05OTk7wM/X5fMHR7WHDhuF0OrnnnnuCU3qa619fzfcaExMT
/MuLtN6uXbt44IG/c//96RQUBE7OHDjwegYOvIJBgy5g8OAzGTx4Gv36jaVXrxHExw/G4+lVPZ9Y
/+SJSPvRT5RurGaUsH///txyyy0NXv/Nb36D1+slOTmZUaNGceeddwKBk7n+8Y9/kJKSwvbt25sc
wW1uFDIiIoLU1FRuuukm/v73vx+x1jvuuINDhw4xatQoUlJSSE9Pp2fPnvzjH//g0ksvZfTo0Uye
PJmMjIxm95OSksI111zDuHHjmDRpEtdffz2jR49utl63281f//pXzj77bE455ZQ683Vvu+02fv3r
XzN27Njg6GyN1NRUYmNjg1M5AB566CFGjRrFmDFjCA8Pb/QKDTV1nH766Vx22WVMmjSJ5ORk5s2b
R3FxMWeeeSZer5eRI0dy++23B6ew9OnTh0WLFjFx4kSmTZvGSSed1Oj7aep93nTTTeTm5nLyySdz
5513MnLkyGD4r+3OO+8M/nIQFlb3j1nJycmkpaUxefJk7rzzzjrzoQESEhKYMmUKycnJLFiwgLlz
5wZPKjzttNP43e9+R+/evetsM2LECO69915mz57N6NGjmT17NtnZ2cGTTEeMGMEVV1zB1KlTAXC5
XCxdupRbbrmFMWPGMHv2bCoqKlr0ObhcLpYtW8aCBQsYM2YMKSkpfPjhh8HX58+fz7PPPsvFF198
xP5N/bVlxowZfPXVVzqxsJVyc3N54oml3HnnS3z99SkMHXoDCQnHh7osEenGTEv//BtqxhjbWWqV
5s2YMYMHHnigyZPeuop9+/Yxc+bMRkebOyK/34/X68XtdvPNN99w+umnk5GR0SAoN2Xx4sXBEzhF
2ktxcTFr1rzNqlVfYswU+vYdX+fEvcXGcFcX/behK7830PvrzA4fzuThHkOxd3XN9weBgQ9rbbNz
EjUnWo657nCSzjPPPMMdd9zBgw8+GOpSWqy0tJQZM2bg9XoB+POf/9ziAC3S3iorK3n33Q958cWP
qKgYQ79+t+ByRYW6LBGRIP0LKcfcunXrQl3CUXfllVc2eZ3sjio6Ojp4qcLv46677mrHaqS78vv9
fPrpBp5//m0OHRpCUtL1REb2CHVZIiINKESLiBxjNTfwqLkcoQROvNy2LYPnnnuDzMwYevW6lCFD
+h15QxGRENGJhV1YVVUVF154IUuWLGnxpc9E5Oi79tprGTBgQPDOm93dnj17ePDBJ/mf/1lHfv4Z
DB16FTExCtAi0rFpJLoLu+uuu1i9ejX//ve/Wbt2Lc899xzx8fGhLkukW3vmmWdYvnw5ZWVlXH75
5Vx11VU88sgjjd5kqKvLy8vjlVfe5J139uB2z2Do0NG6DJ2IdBr6adVFrVu3jiVLlgRvbfvWW28x
YsSITnOlCJGuKCMjgxtvvJHS0lIAysrKePrpp0lJSQleh7w7KCkpYfny11iw4Anef78vAwf+lL59
UxSgRaRT0U+sLig7O5sLL7yQsrKyYFtFRQX5+fkcPHgwhJWJdG+LFy+msrKyTltZWRnbtm0jOTm5
y0/vqKysZN26d/jVr/7Iq68aeve+mYEDp9W5ZJ2ISGehEN3FVFVVcf7551NcXFynPSoqip///OdM
nz49RJWJyB//+EfS0tKIiqp7qTa/309xcTGXX345N954Y4OgDbB58+Y6N37pTGquuLFw4R946qkD
xMb+mMGDzyI8vPEbNYmIdAYK0V3MHXfcwZYtW/D5fMG2sLAwRo4cyX333RfCykQkISGBNWvWsGjR
IiIjIxu83tT0jtzcXNLS0rjgggvq/L/d0Vlr2b59O3ff/WceeWQj1l7C0KHziIzUVUlEpPNTiO5C
1qxZw8MPPxycb1kjOjqaV155BafTGaLKRKSGMYZbb72Vt956i969ezc4obD+9A6/389FF11EUVER
RUVF/POf/wxR5a2zd+9eHn74Ke67by15eaczdOg1xMb2D3VZIiLtRiG6i9i3bx8XX3xxnXnQAJGR
kSxbtoy+ffuGqDIRacyECRPYunUr06dPb3Z6x8SJE1m/fj1er5eSkhIWLlzYoUejDx06xFNPLeO/
/ut5tm5NZsiQn5CY+B/d4k6lItK9KER3AT6fj/PPP5+SkpI67VFRUfziF79g1qxZIapMRJrTkukd
GzZsqPPXpY46Gl1aWsorr6zmttv+xrvv9q6+4kaqrrghIl2Wfrp1AQsXLuSrr75qMA969OjR3H33
3SGsTESO5EjTO6qqquqsd7TRaK/XS3r6u9x66x9ZscJP7943M2DAdJzO7nfdaxHpXhSiO7nVq1fz
pz/9qcE86JiYGF5++WXNgxbpJJqb3lFfRxiN9vv9bNjwOQsX/oEnn9yPx3MdgwefrStuiEi3oRDd
ie3du5f58+c3Og96+fLlJCUlhagyEfk+aqZ3TJ8+HZer6Wsnh3I02lrLjh07uPfex3jooc+pqprH
0KEXExWVeMxrEREJJd32u5Py+XzMmTOn0XnQv/rVr0hLSwtNYSLSJh988AFvv/02Xq+32X41o9HX
XHPNsSmMwAnMy5at5bPPioiJOY2hQ4frhEER6bYUojup2267jW3bttWZL+lyuUhJSeGuu+4KYWUi
8n3l5uZy/vnnN/jrUmNqRqOvuOIKwsKO7o/y/Px8Xn11HW+9lYnLdSpDhuiEQRERhehOaNWqVTz2
2GMN/qGNjo5m+fLlOBz6x02kM3rggQcoKCjA4/E0+CtTY472aHRpaSlvvvkur7zyBdZOYMCA83TC
oIhINYXoTmb37t1cdtlljc6DXrFiBb179w5RZSLSVosWLeKCCy5g48aNrF+/no8//pjt27cDgb80
lZaW1pkHfbRGo71eLx988Akvvvg+JSUj6dv3ZsLDo9tt/yIiXYFCdCfi9Xo577zzGoxQeTwebrvt
NqZPnx6iykSkPbjdbsaNG8e4ceP40Y9+BARO5Nu9ezcbN27kiy++4IMPPmDTpk0cPHiQqKgoDhw4
wPPPP88VV1zR5uP7/X42bdrM//3fOg4c6EdS0g/p2bNnm/crItIVKUR3Ir/61a/YsWNHg3nQqamp
3HHHHSGsTESOFmMMgwYNYtCgQZx33nnB9tLSUrZs2cLGjRsZPXp0m4+zc+dOnntuLdu3u0hMvJCh
Qwe1eZ8iIl2ZQnQn8eqrr/L44483mMYRGxuredAi3VBUVBTjx49n/PjxbdrP/v37Wb78DT755DDR
0acxdOiJuuKGyDHitxa/9QO23nN/g3VbvW6x+Pluvc7rNN7fEtifrbUe3N40sT2N9K9+vbQsF9xx
IfzkOoZ2CdHGmDOBhwhcd/oJa+1vG+nzCHAWUAJcY639oqXbdifWWoYPH84tt9zCT3/6U4wx7Nq1
i8svv7zRedCvvPKK/twqIq12+PBhVq16izfe2InLdSqDB6ficHStmzMFQkgVlVVefP7A4g0++oJt
PvvdY5WtXrdeqqwvuF5Vs1C9WC9+fFThxV/d5q9ZTGDdmkAfv6l+Xr3YOosP66h+7vAGn+Pwgkni
Ht/xOHzROKo8OKuicVZ5CPNHE2Y9uGw04Xhw4cFtonEbDxGOaNwOD5HOaCKdHqLCookM8+BxRRPl
iiKsi33H7aWyyktJZTGlvhJKfYHHsqpiyqqKqfCXUGGLKbfFVNoSKinGSzE+RwleU0yVs4QqRzFV
zmL8YSX4w4qxrmJweliMB0wgqGICAfS7dQsGsCaw4ABjwDoIvFBv3Tiq+373umni9cAvwnW3N82t
m+p16m3Pd+21X7cRFkp1DlabQ7QJXOfoj8AsYB+w3hjzirV2W60+ZwHHWWtPMMZMAB4DJrZk2+4m
KyuL3bt3c/vtt7NmzRr+8Y9/cO655za4I2FUVBS33347U6ZMCVGlItIZlZWVVV9x43P8/vH07/9T
wsLcx7wOvx+8XqiogMrK75ba6/Wf1+9/4AepED6Qux2DoDqA4vCCwwdOb2DxO8DhAusCE1hMzaMj
DIML43dhHNWPuDC2+tGE4cCFg8C6AxcO6wq2BZZAHycuXEThxIXTunCaQF8nLpyE4cRFWHW/2o9h
uHD6XYQ5wgjzV7c5XLisi79xCpf5X6fMllBmiymzJZTbYioooYLAYyXFlHCAw+zEZ0rwmWKqTAlV
pgS/KcZvSrCOYqwpAUcJ+NzgjcZ4PY2Hc38gnLtqwjmBUO42jYRzp4col4fo8GjCj9FVWxqG3WLK
qkpaFHZ9zmL8jpKGYddVAo4qcERjTDTGeHCYaJzGg9NEE2YCv7SEEY2LwC8uHnrhttW/uNhoIqyH
SBtNlI0m0nqI8nv4k2MI/4+DODA4CARch3HgwHz3vOavPqZ66SQOH87k4R5DQ11GyLXHSPR4YIe1
NgvAGPM8cD5QOwifDzwNYK392BgTZ4xJAoa2YNtuZePGjYSHh1NYWMgbb7zBgAEDcDgcDeZBjx8/
noULF4awUhHpTHw+Hx9++AlLl75HcfEI+va9Cbc7psXbV1W1PPA2tl6/zecDlwvCwwOL2133ucv1
XZvHAwkJ371e06fY8RzP29lcY98hzO/CVR1KXcZFmD+McOPCYRzgJLB0NuYAx9kT2m13fmspt2UU
22JKbQmltphyW1InnJdTTGUwpBdQbPbio6ReQK8Vzh0lYIrBTzCcG180Dl/DcF4zel4TzjHTecb+
TzuE3UDgbUnYjawOvDVh1+OPxmOjCScch9tAe/4+aUqItp523KF0NO0RovsDu2ut7yEQrI/Up38L
t+1WPv/88+DVNyoqKhrtExcXx7JlyzQPWkQaZS2UlkJxMRQWWjZs2MHKlV9w4EBvIiNvxOGIJTu7
+VHe+iHY2oZht7H18HCIj2+6T81zlyvwl+S2GQ5mF4Ps4Pb42Lo8hzFEuaKIckW1+74rqyop9hdT
6g+E8tLqkfMyW0yFrQ7l1Y9eSigweQBUUBj6sCvyPYXqxMLv9aNz0aJFwedpaWld8tbW77//fp1R
5/oiIyNZuXIliYmJx7AqETlaqqqgpCQQeI+0FBW1rF9pKUREQFSUxe8vxO9PIDJyDh5PRIPAGxEB
sbFHDshH+aaI0smFO8NJiEwgITKhxdssNoYf2bePYlUiLZeenk56enqrtmmPH4t7gdrXQhpQ3Va/
z8BG+oS3YNug2iG6q9q8eXOzr0dERBAV1f6jCCJyZJWVLQuxrVkqKgLTFaKj6y4xMQ3bYmOhX7+G
7fWXqChwOsHnq+K11z7k9dc3UlZ2PImJk4mJ6Rvqj1FEpMOpPzi7ePHiI27THiF6PXC8MWYwsB+4
BLi0Xp+VwM3AUmPMROCwtfaAMSa3Bdt2G0VFRRw6dKjZPvn5+UyaNIklS5Zwww036FJUItW8Xigv
h7KyusuR2mqmPbRkxNfvrxtuGwu6NUvPnjBkyJEDb2Rke0xraFxYWBhz5pzJ7NlprF+/gVdeeY5v
v00gNnYyCQkn6OeHiEgbtDlEW2urjDG3AGv47jJ1W40xNwRetn+11r5mjDnbGPM1gUvcXdvctm2t
qbPavHkzkZGReL3eZvuVlZVx0003UVBQwIIFC45RdSIt5/U2HWBbEmy/T19rA4G0/hIR0Xybx9Oy
0d3o6MC0hs6YOyMiIpg2bTKTJ0/gyy+/4l//eovt29cQHj6RpKTROJ2uUJcoItLptMssN2vtamB4
vba/1Fu/paXbdlcbN248YoAOCwsjLCyMuXPnctlllx2jyqSrKy+H3NzAkpNT9/Hw4dYHW2h9mK1Z
evQIhNrWbutSDjwip9NJcvIoRo06maysLNas+ZAPP3wLY06hT59xhIdHh7pEEZFOQ6eKdCAfffRR
gxuq1KgJzxdeeCH33HMPQ4fq+ozSOL8/EHxrQnBjwbj+Y2VlYPpBr16Bx9rPjz++9UFYJ6F1bMYY
hgwZwvXXD+GCC3JJT/+INWv+SGXlSfTqNQmPp1eoSxQR6fD0T10Hsn79+gZtNeH5oosu4p577mHI
kCHHvjAJqfLypsNvY22HDn03J7cmCNc89u0Lo0Y1bI+J6ZzTFKTtevbsyUUXnctZZ83g448/ZeXK
p8jM7Etc3CTi44dq3rSISBMUojsIv9/PN998E1x3uVw4nU7mzZvH3XffrfDcRfj9kJ/fstHhmude
b+OBuFevxgNxYqKmNkjreTweZs48lenTp7Bx4yZWrnydrCwnERGT6N375C53S3ARkbZSiO4gdu7c
CXwXni+++GLuvvtuBg/WTQQ6qpobWuTltXzaxKFDgVHfxgJxv34wenTD6RQaJZZjKSwsjLFjU0lN
TeHrr7/m9dc/ZMOGN3A6x9Onzym4XJGhLlFEpENQiO4gvv76a3w+H1deeSWLFy9m0KBBR95I2kVV
FRQUBAJuzZKf3/x6TZvTGTgRrlevhvOJk5M1SiydlzGGE044gRNOOIHs7GzefPND3nrrEXy+USQl
TSSyFTfVEBHpihSiO4jTTjuNAwcO6E6EbVBefuTw21gYLioKjPYmJAQCcULCd0uPHjBgQCAQ126r
eYzUoJx0A3369OHyy+cyZ04R77//CatW/Y3s7MEkJEwiNnag5k2LSLekEN1BuFwuBWgCUySKihof
9T1SGPb5Ggbg2usnnVR3vaZPfHxgRFlEmhcTE8OZZ85i5sxpbNjwBStXriAzMwqPZxK9eo3AGEeo
SxQROWYUojuApUth9+7AvNeaxeGou94eS3vvs6X7s/a76RItGSmOimp8RDghITAtYvjwhq8nJAS2
04CYyNEXHh7OxInjGT/+FDIyMli16kO2bFlLWNhE+vRJISzMHeoSRUSOOoXoDiAvD/bvD4TN2ovf
37CtrUso9mkMxMXVDcTHHQfjxjUcMe7RQ3OGRToLh8PBiBEjGDFiBHv27GHt2g959923sTaFpKQJ
RETEhbpEEZGjRiG6A7jpplBXICLSNgMGDODaa+cxd+5h3nnnI15//TGys48nMXEyMTF9Q12eiEi7
U4gWEZF2Ex8fz5w5ZzJ7dhrr12/glVee49tvE4iJmURi4n/oJEQR6TIUokVEpN1FREQwbdpkJk+e
wJdffsW//pVORsYa3O5JJCWNxunUvC0R6dwUokVE5KhxOp0kJ49i1KiTycrKYs2aD/noo7eAU+jT
Zxzh4dGhLlFE5HtRiBYRkaPOGMOQIUO4/vohXHBBLunpH7FmzR+prDyJXr0m4vH0DnWJIiKtoot6
iojIMdWzZ08uuuhcHnzwp1x1VRxe79N8++0/yc//BmttqMsTEWkRjUSLiEhIeDweZs48lenTp7Bx
4yZWrnydzEwHkZGT6N17FA6H7oIkIh2XQrSIiIRUWFgYY8emkpqawtdff83rr3/Ihg1v4nSOp0+f
U3C5IkNdoohIAwrRIiLSIRhjOOGEEzjhhBPIzs5m3bqPWLfuYXy+ZJKSJhIZmRDqEkVEghSiRUSk
w+nTpw+XXfYDzjuviPff/4RVq/5GdvZgEhImERs7UNebFpGQU4gWEZEOKyYmhjPPnMXMmdPYsOEL
Vq5cQWZmJB7PZHr1GgHK0iISIgrRIiLS4YWHhzNx4njGjz+FjIwMVq36kC1b1sJQyMxcC4TjdLpw
OFy1Hptv02i2iLSFQrSIiHQaDoeDESNGMGLECPbu3ctTf/sFP/pRJBUVXsrKiigr81JeHljKyiop
L/dSUfHdUlpaSUWFF6/Xh7VOHI5wwIUxLsBV/Twca11YG1i3Nhy/v3UB3el0YYxTQV2kC1OIFhGR
Tql///4ATJ06tdXbWmvx+Xx4vV4qKyvxer11lvptFRWVVFRUUFZWHAzpNYG8dlAvLw+0VVZ68fks
xnwX0APPw4PhPBDQXUAgpEPdME5fKCrah8eTpMv9iXRACtEiItLtGGNwuVy4XC6ioqKOyjGqqqrw
+XwNAnlTob2y0ktZWQnl5YcpK/Pyl53g8axgz558oDfW9iM8vB+xsf2JiuqJMbpfmkgoKUSLiIgc
BU6nE6fTidvt/l7bX7kY7r77JiorK8nOzmbPnr1s3/4NGRnvsWtXEcb0we/vR2RkP2Ji+hMZmaDp
IyLHkEK0iIhIBxYeHs6gQYMYNGgQkycH2srLy9m3bx979+4jI2MbGRnr2LWrHGP64vf3w+PpT0xM
P9zuOAVrkaNEIVpERKSTiYiIYNiwYQwbNoxp0wJtJSUl7Nu3j92795GRsZGMjNc4cMCPMf2wtj8e
T7/qYB0T2uJFugiFaBERkS7A4/EE7/g4c2agrbCwMBist25dz/bte8nODsOY/lgbCNUxMf1wuY7O
vHCRrkwhWkREpIuKjY0lNjaWE088kdNPD1yV5PDhw+zbt4+srH1s3foeX3+9n/LySIzpD9QE676E
hUWEunyRDk0hWkREpJswxtCjRw969OjByJEjOfvsQLDOy8tj3759ZGbu46uv1vHNNwfw+WKBfjgc
gWAdHd03cOk9EQEUokVERLo1Yww9e/akZ8+eJCcnM2cO+P1+cnJy2LdvHzt37mXbtk1kZubg9ydg
bT/CwgKX2vN4euNwKEpI96T/8kVERKQOh8NBUlISSUlJpKSkAODz+Th48CB79+5l5859bN36KXv2
HMLaXsFrWMfE9Mfj6aVrWEu3oBAtIiIiRxQWFka/fv3o168f48YF2rxeL/v372fv3n3s2JFJRsYH
7N5dCCRVX8M6cKm9yMhEXWpPuhyFaBEREfleXC5X8BrWkyYF2srLy4PBOiMjg+3b32LXrlKM6Yu1
/atvDtMPdEEQ6eQUokVERKTdREREMHToUIYOHcrUqYG20tJS9u3bx549+8jI2ExGxmoAdu/+E+AG
IgA31kbg97sxJgKn001YWET1Enj+XZtbU0Yk5BSiRURE5KiKiori+OOP5/jjjyctLdD24OJf8T//
M4+KigrKy8uDj+Xl5ZSWVlBcXERRUQXFxeWUlFRQUhJoz88vp6ysAnBhTCBw1w/i1gae1w/eCuLS
nhSiRUREJCR69+79vbaz1lJZWVkneNcP46WlFRQVFVFc3LIgbkwE1gbCuLVu/P4IjFEQl6YpRIuI
iEinYozB7XbjdruJjY39XvuoCeKNBfCmgnhxcaCtpKScoqKKYBB3OBqOhjMYsrLewe2OrbM4neHt
+ElIKClEi4iISLdTO4h/X80F8SeXw6WXejl48FsOHiwkJ6eQgwcL8XqdGBOLMbH4/YGlYdB262om
nYBCtIiIiMj30GwQXw6zZ8+q02Stpby8nMLCwuCSn1/IwYO7OXiwkNzcQnJzC6ioAIcjFojF2kDQ
Dg+vG7TDwiIVtENMIVpERETkGDDGEBkZSWRkJElJSU32q6ioqBO0Dx8uJCdnPwcOZFQH7UJKSrw4
HIER7Zqg7XLVDdoul0dB+yhSiBYRERHpQNxuN7169aJXr15N9qmsrKSoqCgYtAsKCsnJyeHAgZ3k
5BSSl1dIUVE5xsTUCdphYXWDdnh4tE6O/J4UokVEREQ6mfDwcBITE0lMTGyyj8/naxC0c3PzOXAg
i4MHC8jLK+TAgTLAgzGB6SNVVbE4nfWDdgwOh/OYvbfOQiFaREREpAsKCwujR48e9OjRo8k+VVVV
dYJ2YWFhdbjew8GDgec5OSVYGxkM2iUlFpreZbehEC0iIiLSTTmdTuLj44mPj2+yj9/vp7i4uE7Q
XvrvY1hkB6UQLSIiIiJNcjgcxMbG1r0mt0I0bZpJbozpYYxZY4zJMMb82xgT10S/M40x24wx240x
C2q132WM2WOM2VC9nNmWekREREREjoW2no75a+ANa+1wYB2wsH4HEzjl84/AGcBI4FJjzIm1uiyx
1qZWL6vbWI+IiIiIyFHX1hB9PvBU9fOngB800mc8sMNam2Wt9QLPV29XQxcwFBEREZFOpa0hure1
9gCAtTYb6N1In/7A7lrre6rbatxijPnCGPO3pqaDiIiIiIh0JEcM0caYtcaYTbWWzdWPcxrpblt5
/EeBYdbaMUA2sKSV24uIiIiIHHNHvDqHtfb0pl4zxhwwxiRZaw8YY/oABxvpthcYVGt9QHUb1tqc
Wu2PA682V8uiRYuCz9PS0khLSztS+SIiIiIizUpPTyc9Pb1V27T1EncrgWuA3wJXA6800mc9cLwx
ZjCwH7gEuBTAGNOnehoIwAXAluYOVjtEi4iIiIi0h/qDs4sXLz7iNm0N0b8FXjDG/BDIAi4GMMb0
BR631p5rra0yxtwCrCEwfeQJa+3W6u3/1xgzBvADmcANbaxHREREROSoa1OIttYeAk5rpH0/cG6t
9dXA8Eb6XdWW44uIiIiIhEJbr84hIiIiItLtKESLiIiIiLSSQrSIiIiISCspRIuIiIiItJJCtIiI
iIhIKylEi4iIiIi0kkK0iIiIiEgrKUSLiIiIiLSSQrSIiIiISCspRIuIiPz/9u48uqry3v/4+5uQ
QJhSSUUhkgTaVRuGi0QGGRNRVFAQqmi4TIZSW6vipbdllCEu6BLXT/EWsC61wchiKjblJ2JEEA5L
cVEGGUQKUiChlxgsRZlKEpI894+EU0ISyEnIOTnh81qLxdn7efbe38MOnC/P+e7nERHxkZJoERER
EREfKYkWEREREfGRkmgRERERER81CHQAIiIivvBkefBkeQBIjE1ktmc2AElxSSTFJQUsLhG5sSiJ
FmQcQwgAABdESURBVBGRoKJkWUTqApVziIiIiIj4SEm0iIiIiIiPlESLiIiIiPhISbSIiIiIiI+U
RIuISJ3knOOdd97h9ddfD3QoIiLlKIkWEZE658iRI/Tp04eUlBQ++OCDQIcjIlKOkmgREakzLl68
yNy5c+nYsSNbt26luLiY1q1bBzosEZFyNE+0iIjUCdu3b2fEiBF8/fXXXLhwAQAzIzo6OsCRiYiU
p5FoEREJqLNnz/Lzn/+cxMREDh8+zL/+9S9vW6NGjbj55psDGJ2ISMU0Ei0iIgHz3nvvMW7cOM6f
P09eXl659rCwMCXRIlInKYkWERG/+/rrrxk/fjwej6fMyPOVzIzvf//7foxMRKRqlESLiIhfrV69
mlGjRpGfn09hYeFV+xYXFyuJFpE6STXRIiLiV82bNyc8PJwGDa49jnPx4kWVc4hInaQkWkRE/Kp/
//5kZ2fzs5/9jIiICMys0r75+flERUX5MToRkapREi0iIn7XrFkzfve73/HQQw8RHh5eab/GjRsT
Ghrqx8hERKpGSbSIiATEjh07eP/998nPz6+0T2RkpB8jEhGpOiXRIiLid0VFRYwZM8a7qMolDRs2
JCIiwrvdokULf4cmIlIlmp1DRET87s033+TYsWNl9jVp0oSZM2dy//33M2bMGPbv30/Lli0DFGFg
eLI8eLI8ACTGJjLbMxuApLgkkuKSAhaXiJSnJFpERPzq5MmTTJo0ifPnz5fZ37JlSyZOnEhYWBi7
du0iPT2dRo0aBSjKwFCyLBI8lESLiIhfPffcc+XqoBs3bkx6ejphYWEAhISEkJKSEojwRESqRDXR
IiLiN1u3buXPf/4zBQUF3n1hYWEMHDiQvn37BjAyERHfKIkWERG/qOxhwvDwcBYtWhSgqEREqkdJ
tIiI+MXChQvJyckps69x48bMnTuXW265JUBRiYhUj5JoERGpdSdOnGD69OnlHiaMjo7m6aefDlBU
IiLVpyRaRERq3TfffENoaCgNGzb07ouIiCA9PZ0GDfSMu4gEHyXRIiJS6zp16sSRI0d47LHHiIiI
oEGDBgwbNoyePXsGOjQRkWpREi0iIn4RFRXFO++8g8fjYfDgwbz66quBDklEpNr0HZqIiPhV9+7d
ycjICHQYIiI1opFoEREREREfKYkWkRteSEgIY8aM8W4XFRVx8803M2TIEADWrFnDSy+9VKVzDRo0
iJycHJKSkoiLiyvTNnToUJo1a3bd4q6p9PR0nn32WZ+O2bx5M4MHD66liEREgoeSaBG54TVp0oR9
+/Z5l6Jev349bdq08bYPHjyYSZMmXfM8eXl5nDp1itatW2NmfO973+Ozzz4D4PTp0+Tm5mJmtfMm
qqk68dS19yAiEghKokVEKBlBXrt2LQDLly9nxIgR3rbLR2xTUlJ47rnn6N27Nz/84Q/L1PZ6PB6S
kpK828nJySxfvhyAjIwMfvKTn3jbzp8/z7333kvXrl3p3Lkza9asAWDHjh107tyZgoICzp8/T8eO
Hdm/f3+5eJcuXUqPHj1ISEjgqaeewjkHwC9/+Uu6d+9Op06dSE1N9fbfvn07vXv35o477uCuu+7y
ztd8/PhxBg4cyO23387kyZMr/LP58MMPiY+Pp2vXrmXe7/bt2+nVqxd33nknffr04dChQwAkJiay
d+9eb7++ffvyxRdfVPpnLyISjGqURJvZTWb2kZkdNLN1ZhZZSb8/mNkJM9tbneNFRGqTmXkT3vz8
fPbu3UuPHj3K9bkkNzeXLVu2sGbNmjKJZ2ZmJg888IB3u3///nzyyScUFxezYsUKkpOTvW2NGjVi
9erV7Nixg40bN/KrX/0KgK5du/Lwww8zffp0Jk+ezOjRo2nfvn2ZWA4cOMDKlSv57LPP+PzzzwkJ
CWHp0qUA/Pa3v2Xbtm3s2bMHj8fDvn37uHjxIsnJySxYsIDdu3ezYcMGGjVqBMCePXtYtWoVe/fu
ZeXKlRw/frzMtfLz83nyySdZu3YtO3bsIDc319sWHx/Pp59+ys6dO0lNTWXq1KkAjB8/nsWLFwNw
6NAh8vPz6dSpk493RUSkbqvpSPQUYINz7nZgIzC1kn6LgftrcLyISK3q2LEjWVlZLF++nAcffNA7
sluRoUOHAiVJ5DfffOPdv2XLFvr06ePdbtCgAX369GHFihXk5eURExPjPa9zjqlTp9K5c2fuvfde
cnJyvOeaMWMG69evZ+fOnRWWkXz88cd8/vnndOvWjS5durBx40aOHDkCwIoVK7jzzjvp0qUL+/fv
Z//+/Rw8eJDWrVuTkJAAQNOmTQkNDQXgnnvuoWnTpjRs2JD27duTnZ1d5loHDhygXbt2tGvXDoBR
o0Z527777jseffRROnXqxMSJE70j5o8++ihr166lqKiItLQ0nnjiiSrcARGR4FLTKe4eBhJLX6cD
HkoS4zKcc5+aWWx1jxcR8YchQ4bwm9/8Bo/Hw8mTJyvtd/mqe5eS4qNHjxITE1Nu9b3HH3+cYcOG
8cILLwD/HtFeunQpJ0+eZNeuXYSEhNC2bVvy8vIAOHnyJOfOnaOwsJC8vDwiIiLKnNM5x9ixY5k7
d26Z/VlZWbz88svs3LmT5s2bk5KS4j1nZf8puPy9hIaGUlhYWK5PZcfOmDGD/v37k5GRQXZ2Nnff
fTdQshLhgAEDWL16NatWrWLnzp0VHi8iEsxqOhLd0jl3AsA5lwu09PPxIiI1dilJHDduHLNmzaJD
hw4+H3tlKcclffv2Zdq0ad5Sjkv9T58+TcuWLQkJCWHTpk1lRoB/8YtfMGfOHEaOHFnhSPQ999zD
u+++yz/+8Q8Avv32W44dO8aZM2do2rQpzZo148SJE2RmZgJw++23k5ub601mz507R1FRUZXe349/
/GOys7M5evQogLfG+9J7iI6OBvCWb1zy05/+lAkTJtC9e3ciI1WpJyL1zzVHos1sPXDL5bsABzxf
QffKv/+smpoeLyLis0ujw9HR0TzzzDNV6nvl9ocffsjChQsr7Hep3vny/SNHjmTw4MF07tyZrl27
Eh8fD8CSJUsIDw8nOTmZ4uJievfuXe6Bxfj4eObMmcN9991HcXEx4eHhLFq0iO7du3PHHXcQHx9P
mzZtvKUlYWFhrFy5kmeeeYYLFy7QuHFjNmzYcM33BiUj1W+88QaDBg2iSZMm9O3bl3PnzgEwadIk
xo4dy5w5c3jwwQfLHJeQkOAdDRcRqY/sanV/1zzY7K9AknPuhJndCmxyzsVX0jcWWOOc+49qHu9m
zZrl3U5KSirzoSIiEigFBQX06dOHbdu2BTqUOiMnJ4f+/ftz4MCBQIcidZSlGm5W/R070/sLLh6P
B4/H491OTU3FOXfV+TxrmkTPA0455+aZ2WTgJudchTXNZhZHSRLdqZrHu5rEKiIi/rFkyRKef/55
5s+fX2ZaP5HL1bck7Ep6f8HNzK6ZRNe0JnoeMMDMDgL3AC+WXriVmb1/WSDLgM+AH5nZMTNLudrx
IiISvEaPHk12drYSaBGp12o0O4dz7hRwbwX7vwYeumz7P305XkREROofT5YHT5YHgMTYRGZ7ZgOQ
FJdEUlxSwOISqY6aTnEnIiIiUiVKlqU+0bLfIiIiIiI+0ki0iIiIyHWgcpUbS41m5/CnymbniIuL
K7dMrdQ9sbGxZGVlBToMERERuQ40O0c9GInOzs6udElaqTsqWsRBREREJFipJlpERERExEdKokVE
REREfKQkWkRERETER0qiRURERER8pCT6BpWSksLMmTMDHYaIiIhIUFISXQctWrSIbt260ahRI8aN
GxfocERERETkCkE/xV1FZs58lWPHvqu188fEfI8XXvgvn4+bN28ekydPvma/6OhoZsyYwbp167hw
4UJ1QhQRERGRWlQvk+hjx74jLm52rZ0/K6t6587Pz69Sv6FDhwKwfft2jh8/ftW+8+bNY8GCBZw5
c4bo6Ghee+017r777nL9du3axfjx4/nb3/7GwIEDNW+ziIiISA2onMOPrveiMF999RWLFi1i586d
nDlzhnXr1hEXF1eu38WLFxk2bBhjx47l1KlTDB8+nD/96U/XNRYRERGRG0m9HImuKw4fPsy77757
aelItmzZwksvvYRzDjOjR48eJCYmVvv8oaGhFBQUsG/fPqKiooiJiamw39atWyksLGTChAkAPPLI
I3Tr1q3a1xURERG50SmJrkU/+MEPytRA5+fnM2nSpOt6/ldffZXZs2ezf/9+7r//fl5++WVatWpV
pl9OTg7R0dFl9sXGxl63OERERERuNCrnCHLJycl88sknZGdnAzBlypRyfVq1alWutvrYsWN+iU9E
RESkPlIS7UdVrYkuKioiLy+PoqIiCgsLyc/Pp6ioqFy/r776ik2bNlFQUEB4eDgRERGEhJS/pT17
9qRBgwYsWLCAwsJCMjIy2LZtW43fj4iIiMiNSuUctejgwYOsWLHCWxO9efNmXnjhBW9NdM+ePRkw
YEC54+bMmUNqaqp3Bo2lS5cya9ascouj5OfnM2XKFA4cOEBYWBi9evXijTfeAGDQoEH069ePKVOm
EBYWRkZGBuPHj+f5559n0KBBPPLII2XOdXl/EREREbk6u94zRtQWM3MVxXopQb1cXZ0n+kZW0X0S
ERGR4GSphptVfz/XS/OWq84HXC+TaKl7dJ9ERETqDyXRqokWEREREfGZkmgRERERER+pnEP8QvdJ
REQkuHmyPHiyPN7XSXFJACTFJXlf1xeqiZY6Q/dJREREgoVqokVEREREaoGSaBERERERHymJFhER
ERHxUb1csfB6FL7fSMXzVfXUU09x2223MX369ECHIiIiIhJQ9f7BwusxGXh1zxEXF0dubi45OTm0
aNHCu79Lly7s2bOHrKwsYmJiahTblQoKChg/fjzvv/8+4eHhjBgxgvnz5wc8Tj1YKCIiIsFCDxYG
mJnRtm1bli9f7t23b98+Lly4gNlV70u1vf322+zevZusrCyOHj3K0KFD62ScIiIiIsFMSXQtGz16
NOnp6d7t9PR0xo4dW6bPBx98QEJCApGRkcTGxpKamupt++Mf/0i7du04d+4cAJmZmbRq1Yp//vOf
FV4vLCyMyMhImjdvTkREBImJidctzpSUFGbOnAnA5s2badOmDa+88gq33HIL0dHRvP3221W6loiI
iEiwUxJdy+666y7Onj3LwYMHKS4uZuXKlYwaNapMaUPTpk1ZsmQJp0+fZu3atbz++uu89957ADz2
2GP07t2bCRMmcOrUKcaPH09aWhpRUVEVXi8hIYGtW7cye/bs6x7nlXJzczl79iw5OTm89dZbPP30
05w+fdqn64qIiIgEIyXRfnBplHf9+vXEx8fTunXrMu39+vWjQ4cOAHTs2JHk5GQ2b97sbV+4cCEf
f/wxSUlJPPzwwwwcOLDC63z77bcMGTKEtWvXsm7dujIj2m3atOHLL7+sUZxXCg8PZ8aMGYSGhjJw
4ECaNm3KwYMHr3qMiIiISH1QL2fnuJKlBraud9SoUfTr14+jR48yZsyYcu1/+ctfmDp1Kvv27aOg
oICCggKGDx/ubY+MjGT48OHMnz+fjIyMSq+zatUq2rdvz3333UfXrl3p168fZsbYsWMpKiryJurV
jfNKUVFRhIT8+/9hjRs39padiIiIiNRnN0QSfT1m56iJmJgY2rZtS2ZmJmlpaeXaR44cyYQJE1i3
bh1hYWFMnDixTM3z7t27SUtLY8SIETz77LNkZmZWeJ3CwkIuXrwIQIsWLdiwYQO9evVi2bJl/PrX
v65xnCIiIiJSQuUcfpKWlsbGjRuJiIgo13bu3DluuukmwsLC2LZtG8uWLfO25eXlMXr0aF588UXS
0tLIycnh97//fYXXGDRoENu3b+fNN9+ksLCQ0NBQevXqxaFDh2jcuHGN4xQRERGREkqia9Hl08O1
bduWhISECttee+01ZsyYQWRkJHPmzOHxxx/3tk2bNo3Y2FiefPJJwsPDWbJkCTNmzODw4cPlrhcX
F0dmZibp6elERUXRpUsXbr31VjZt2sTkyZP56KOPahSnL+9XREREpD7TYitVufZ1OMeNToutiIiI
SLDQYisiIiIiIrWgXo5Ee7I8eLI83tdJcUkAJMUleV9fy/U4h/ybRqJFREQkWFRlJLpeJtFS9+g+
iYiISLBQOYeIiIiISC1QEi0iIiIi4iMl0SIiIiIiPlISLSIiIiLio6Bf9js2NlaLfASB2NjYQIcg
IiIict3UaHYOM7sJWAnEAlnAY8650xX0+wPwEHDCOfcfl+2fBfwM+KZ01zTn3IeVXKvC2TlERERE
RK4nf8zOMQXY4Jy7HdgITK2k32Lg/kraXnHOJZT+qjCBluDn8XgCHYJUk+5dcNP9C166d8FN96/+
q2kS/TCQXvo6HRhaUSfn3KfAt5WcQ7UYNwD9YxK8dO+Cm+5f8NK9C266f/VfTZPols65EwDOuVyg
ZTXO8YyZ7Tazt8wssobxiIiIiIjUumsm0Wa23sz2Xvbri9Lfh1TQ3dei5deAds65O4Bc4BUfjxcR
ERER8buaPlj4VyDJOXfCzG4FNjnn4ivpGwusufzBQh/b9VShiIiIiPjFtR4srOkUd+8BTwDzgLHA
/79KX+OK+mczu7W0DATgJ8C+yg6+1hsREREREfGXmo5EtwD+CLQBsimZ4u47M2sFvOmce6i03zIg
CYgCTgCznHOLzewd4A6gmJIp8n5+qcZaRERERKSuqlESLSIiIiJyIwq6Zb/N7Fkz+2vpA44vBjoe
8Y2Z/beZFZd+iyFBwsxeKv17t9vM/mRmzQMdk1ydmT1gZgfM7CszmxzoeKTqzOw2M9toZl+WftZN
CHRM4hszCzGzz83svUDHIr4xs0gzW1X6mfelmfWorG9QJdFmlgQMBjo55zoB/y+wEYkvzOw2YAAl
pT8SXD4COpTOpHOIyhdWkjrAzEKAhZQsctUBGGFmPw5sVOKDQuBXzrkOQE/gad2/oPMcsD/QQUi1
/A/wQelEGZ2Bv1bWMaiSaOAp4EXnXCGAc+5kgOMR38wHfhPoIMR3zrkNzrni0s2twG2BjEeuqTtw
yDmX7Zy7CKygZHEsCQLOuVzn3O7S1+co+RCPDmxUUlWlA0aDgLcCHYv4pvRb1r7OucUAzrlC59yZ
yvoHWxL9I6CfmW01s01m1jXQAUnVlM4r/nfn3BeBjkVqbByQGegg5Kqigb9ftv2/KAkLSmYWR8kD
+H8JbCTig0sDRnroLPi0BU6a2eLScpw3zCyiss41neLuujOz9cAtl++i5AfxeUrivck5d5eZdaNk
ZpB2/o9SKnKNezeNklKOy9ukDrnK/ZvunFtT2mc6cNE5tywAIYrcUMysKfAu8FzpiLTUcWb2IHDC
Obe7tARVn3XBpQGQADztnNthZq8CU4BZlXWuU5xzAyprM7NfABml/baXPqAW5Zz7p98ClEpVdu/M
rCMQB+wxM6OkFGCnmXV3zn3jxxDlKq72dw/AzJ6g5CvK/n4JSGriOBBz2fZtpfskSJhZA0oS6CXO
uautwSB1S29giJkNAiKAZmb2jnNuTIDjkqr5X0q+Nd9Ruv0uUOmD2cFWzrGa0g9wM/sREKYEuu5z
zu1zzt3qnGvnnGtLyQ9pFyXQwcPMHqDk68khzrn8QMcj17Qd+KGZxZpZOJBMyeJYEjzSgP3Ouf8J
dCBSdc65ac65GOdcO0r+3m1UAh08Stcq+XtpjglwD1d5QLTOjURfw2Igzcy+APIB/WAGJ4e+4go2
C4BwYH3Jlwlsdc79MrAhSWWcc0Vm9gwls6qEAH9wzlX6hLnULWbWGxgJfGFmuyj5N3Oac+7DwEYm
ckOYACw1szDgCJBSWUcttiIiIiIi4qNgK+cQEREREQk4JdEiIiIiIj5SEi0iIiIi4iMl0SIiIiIi
PlISLSIiIiLiIyXRIiIiIiI+UhItIiIiIuIjJdEiIiIiIj76P+bhd3LjvwIqAAAAAElFTkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>And as a quick textual explanation as well:</p>
<ul>
<li><p>The blue line represents the mean price for each day, represented as a percentage of the price on the '0-day'. For example, if we defined an 'event' as whenever the stock price dropped for three days, we would see a decreasing blue line to the left of the 0-day.</p>
</li>
<li><p>The blue shaded area represents one standard deviation above and below the mean price for each day following an event. This is intended to give us an idea of what the stock price does in general following an event.</p>
</li>
<li><p>The green bars are the minimum and maximum price for each day following an event. This instructs us as to how much it's possible for the stock to move.</p>
</li>
</ul>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Event-Type-1:-Trending-down-over-the-past-N-days">Event Type 1: Trending down over the past N days<a class="anchor-link" href="#Event-Type-1:-Trending-down-over-the-past-N-days">&#182;</a></h1><p>The first type of event I want to study is how stocks perform when they've been trending down over the past couple of days prior to a release. However, we need to clarify what exactly is meant by "trending down." To do so, we'll use the following metric: <strong>the midpoint between each day's opening and closing price goes down over a period of N days</strong>.</p>
<p>It's probably helpful to have an example:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="n">f</span><span class="p">,</span> <span class="n">axarr</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">18</span><span class="p">,</span> <span class="mi">6</span><span class="p">)</span>
<span class="n">FB_plot</span> <span class="o">=</span> <span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">FB</span><span class="p">[</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">18</span><span class="p">):],</span> <span class="n">FB_plot</span><span class="p">)</span>
<span class="n">FB_truncated</span> <span class="o">=</span> <span class="n">FB</span><span class="p">[</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">18</span><span class="p">):</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">)]</span>
<span class="n">midpoint</span> <span class="o">=</span> <span class="n">FB_truncated</span><span class="p">[</span><span class="s1">&#39;Open&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span> <span class="o">+</span> <span class="n">FB_truncated</span><span class="p">[</span><span class="s1">&#39;Close&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span>
<span class="n">FB_plot</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">FB_truncated</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="n">midpoint</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Midpoint&#39;</span><span class="p">)</span>
<span class="n">FB_plot</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax_fb</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">FB_plot</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">FB_plot</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">&#39;FB Midpoint Plot&#39;</span><span class="p">)</span>
<span class="n">AAPL_plot</span> <span class="o">=</span> <span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">AAPL</span><span class="p">[</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">10</span><span class="p">):],</span> <span class="n">AAPL_plot</span><span class="p">)</span>
<span class="n">AAPL_truncated</span> <span class="o">=</span> <span class="n">AAPL</span><span class="p">[</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">10</span><span class="p">):</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">)]</span>
<span class="n">midpoint</span> <span class="o">=</span> <span class="n">AAPL_truncated</span><span class="p">[</span><span class="s1">&#39;Open&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span> <span class="o">+</span> <span class="n">AAPL_truncated</span><span class="p">[</span><span class="s1">&#39;Close&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span>
<span class="n">AAPL_plot</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">AAPL_truncated</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="n">midpoint</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Midpoint&#39;</span><span class="p">)</span>
<span class="n">AAPL_plot</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax_aapl</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">AAPL_plot</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">AAPL_plot</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">&#39;AAPL Midpoint Plot&#39;</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4VNX5wPHvi6AVZbcQEARcUNSKWBdcG6RV625VqtQF
rLbaxa3uVUlatS7UWrX0pxbEui+1WjfUWrEiWre6o4IaUTDRsghK6wLn98cdYggJCTDJZPl+nmee
zJx75p53htG5895z3xMpJSRJkiRJkurSptABSJIkSZKk5sEkgiRJkiRJqheTCJIkSZIkqV5MIkiS
JEmSpHoxiSBJkiRJkurFJIIkSZIkSaoXkwhSMxYR90fE4bVs6xsRiyNilf87j4hXImKXVd1PPcbJ
W8ySJKnwIuLMiLh6OdvfiYhd8zDOHyPil6u6n3qOlZeYpebKA3UpTyKiLCIWRsT8iFiQ+1tU5Yfx
/Nztg4j4Q0Sstpx9LY6I8qo/piOibUR8GBGLlrSllPZMKV2/nLBSPl5bSmnzlNI/69O3ri/WiPhW
RCzKvRcfR8TUiBhZdbh6jjM6Iv5cn76SJLU0ETEpIuZERLtatpfkjie2qdZ+ZER8mfsenhcRz0fE
Xrlt34qI91Zg/MUR8Y1q7X/Nte8CkFL6TUrpRyv3KusvpXRcSun8+vSNiGsj4ld19Flc5XjuvYj4
bUTEisS0Iu+n1JyYRJDyJwF7pZQ6ppQ65P6WV9nWKaXUEfgGsD3w0zr2Nxf4bpXH3wXm5DvoApmZ
e386AWcA10TEJoUOSpKk5iAi+gI7AYuBfWvpdjgwGziihm1Tct/DnYHxwG0R0Sm3rb4nIBLwRtX9
R0RXYAjwYT330ZQlYIvcsdswYARwzAruI8jTCR2pKTGJIOXX8jLUAZBS+g/wMLBpHfu6HjiyyuMj
gOuW2mHEoxFxVO5+m4gYExEfRcR0YK8a+l4QEf/KzQD4a0R0rrJ939xlC3Mi4h9Vf9RXnV2QmwFw
a0Rcl8vOvxwRW+W2/RlYD7gnt+2UOl4jKaW7yRImy7wfEdEzIu6OiNkR8WZEHJ1r3x04C/h+7izB
v+saR5KkFuQI4ElgAjCy+sbcLIAi4Hjg0Ihou5x9jQfWBDZYiThuJPsuXnL8cyhwJ/B5lVhGR8T1
VR4fnpu9+VFEnFUt7tERcXtE3JI7jng2Iraosn2T3PHM3Nzxxz5VtlXOLlgyAyAiTo6IioiYuWTW
Y0QcA/wAOC03xt21vLbgq2O3N4HHgc2X6RSxekRclhvj/Yj4XUS0i4j2wP1AryozGorq+b5KTZpJ
BKnxBEBE9AJ2J/vyr00C7gJ2iYiOuR/7OwG1fdEB/AjYExgEbA0cVEOfw8kONoqARcAVuZgGADeR
HWx8HXiALBFQ20HHPrn+nYB7gD8ApJSOAGYAe+fOcIxZTrxE5oDcfl6qocutuf0VAQcDF0REcUrp
QeAC4NbcrI/ByxtHkqQW5gjgBrLv4t0j4us1bL8HuD33eB9qkPuePwZYAExbiThmAa8Bu1UZ988s
e1Il5cbbFBhL9iO+F9ANWLda333Jvv+7ADcDd0XEarlY7wEmkh2rHA/cGBEb1RJbEdAhN87RwB8i
olNK6Rqy5MfFuWOV/ep6kbm4dwaer2Hz2cC2wBZkx2DbAmenlBaSzSKdVcMMValZM4kg5ddduTP5
cyLizirtAXwUEXOB94BPgL/Usa//AX8DDgG+n7v/2XL6HwxcllKalVKaB/ymhj7Xp5SmppT+C5wD
HJw7ezAcuDel9I+U0iJgDNlZiR1qGWtySunBlFIimzGxRbXtdV0zuG5EzAE+ysVxWEpp+lI7iOhD
dtnH6SmlL1JKLwJ/ouZpmZIktQoRsRPZrL/bUkrPA9PJptov2b4m2THBjSmlL4E7WPa7c/vc9/As
smOM/VNKC1YypD8DR0bExmSXbv5rOX0PBO5JKT2RUvqC7Big+nT/51JKf80dj1wKrEF2icQQYK2U
0kUppS9TSo8C95LNfqjJ58CvU0qLUkoPkB17bbyCr+35iJhNdhLn6pTShBr6jABKU0qzU0qzgVKy
kzZSi7W8qU2SVtx+uS+16hLQLaWUImIN4NfAQ9T+I33Jj/Dr+SoZcHodY/ciS1As8W4Nfapvbwes
k3tuZf9cnO+x7NmBJapm0hcCX4uINimlxXXEuMTMlNJ6dfTpCczJZfKrxvzNeo4hSVJLdATwUEpp
bu7xzWSXP/4+9/h7wBdkswohm63wcER0y/3IBXgypZSvVZf+SvZjfzbZccvyLHWsklJamPuRXlXV
7SkiZuaeFyx9HAPZcUFtxyqzqx2XLATWriO+6ganlN6po08vslmTVWPqtYLjSM2KSQQpv+qqiZBS
Sp9FxATglIjomlKqtVhiSunxiOgJLEopPRERy7te8QOgT5XHfWvoU337F8B/yM5EVL/Orw/w/nLG
q02+CgjNArpGxFoppU9zbesBM/M8jiRJzUJEfI1s9mCbiPgg17w60DkivpFSepksybA2MCM32zDI
jvlHkLuMMZ9SSv+NiAeAY4H16+j+AVC15lJ7sksaqupTZXsAvcmOCYLsOKCq9ciKO65w2PXsV5/V
GGaRHVNNzT3um2tbkXGkZsXLGaTGUVmcJzcT4Qjgg+UlEKrYG6h6vV5tX2i3AcdHxLoR0YWaZy4c
litK1J5sut3tuUsSbgP2ioihkS0leQrZ5RTLq9tQVdWYyqn7IKLOfaWU3gemAL+JiDVyhZV+yFdn
OSqAflWKOUmS1NIdAHwJDCS7/n5Q7v7jwBG5ukvDyIorb5nbvgVwMUsXa16eyH3vVt7q8ZwzgW+l
lOpazvAOYO+I2CGypSl/xbLHNd+MiP0jWwr7JLLjkaeAfwGfRsRpuWOVYrJjpJvr+bqqqmDVjlWq
uhk4OyLWiYh1yC7RqHqs0i0iOuZpLKlJMIkg5c/yss0JmBsR88my8NtR+5JMS+0rV8Ngak3bqt2/
BngQeBF4lpprLlxPtsLDLLIzFyfkxngTOAy4kqxOwV7APrlrKet6bdW3Xwick6sLcXIdz6trX4cC
/XPx/gU4p8rlIreTHXjMjohnV2IcSZKamyOA8SmlmSmlD5fcyAoc/4CsePK/U0qPVNt+OfCNXIHA
uvQim/q/EPgvsDAiavrBXfVYpTylNKWmbUs9IaXXyJa4vpnsu302y856vJusTsPc3Gs6IFfX4Auy
ApF7ks2ivBI4PKVU34KQVWMaB2xWQw2r2vovb9t5ZMddL/HVMdj5ACmlN8he69u5sVydQS1CZCch
l9MhYhxZlq8ipbRFru1isv+IPwPeAkallOZHxLfJfkC0Iytmclot14dLamQR8ShZYcXxhY5FklZU
LccjBwElZGdit8kVmSMilkwtfj339KdSSj9p9KAlrZCIGA1skFvtSVITVZ+ZCNeSLUdX1UPAZiml
LcmWgzkz1/4R2dJug8gyoXUVV5EkSaqPmo5HXiab3v1YDf2np5S2yt1MIEiSlCd1JhFSSpPJphNV
bft7lWqnT5EVPCGl9OKS9U9TSq+SVWxvl9+QJa0ki/tIarZqOR55IzeVuabaKNZLkSSpAeRjdYaj
gFuqN+amGD6fu35JUoGllHYtdAyS1Ij6RcTzwMdk9VQmFzogScuXUiotdAyS6rZKSYSI+CXwRUrp
pmrtm5Gtbf+dVdm/JEnSSpgFrJdSmhsRWwF3RcSmKaVPCh2YJEnN3UonESJiJFl11F2rtfcG7iSr
llq2nOc7tVqSpFqklJyOv5JysyDn5u4/HxFvAQOA56v39XhEkqTa1XQ8Ut8lHivXuAeIiD2AU4F9
U0qfVWnvBNwLnJ5SeqoeAZFS4lvf+lbl/Ya+jR49ukWN42tqHuOk1Hif86b+70QJjTJOU3//WuJr
SsnPeb7GUa2WOh6pYVt2J1uvvU3u/vrAhsDbte20MT+/jfF5cozWN4af3aY3jmPU/9ZUP78resza
Uv496nM8UmcSISJuAqYAAyJiRkSMAq4A1gYejojnI2JsrvvPgA2AcyPi37lt69Q1Rr9+/erqkjfF
xcUtapzGHMvXtGoa63Puv1PzGKslvibwc94cxmmuajoeiYj9I+I9YAhwb0Q8kOu+C/BSribCbcCP
U0rz6hqjMT6/jfHv7Bitbww/u01vHMeoPz+/zW+MWF6GoSFFRFoydklJCSUlJQWJQ2osfs4zURqk
0Z5pban8nOdHRJC8nKFReDyilsDPrpqzpvr59Zi19uOR+l7O0KA8+6LWwM+5WgM/52rO/PyqufKz
q+bMz2/z0yRmIkhqPczqSnVzJkLj8XhEklQTj1lrPx5ZpSUeG0K/fv149913Cx2GWoi+fftSVlZW
6DAkSZIkqUVockmEd999d7mVIKUVEeGJPEmSJEnKlyZRE0GSJEmSJDV9JhEkSZIkSVK9mESQJEmS
JEn1YhKhARx33HGcf/75tW5v06YNb7/99iqPs+eee3L99dev8n4kSZIkSaqPJldYsanr168f5eXl
zJo1i65du1a2Dx48mBdffJGysjL++Mc/Lncf+Sr2d//999e779ChQzn88MM56qij8jK2JEmSJKn1
cSbCCooI+vfvz80331zZ9sorr/Df//633skBV5+QJEmSJDVHJhFWwuGHH851111X+fi6667jyCOP
rHw8atQozj333MrHl1xyCb169aJ3795ce+21SyUbRo0axXHHHcduu+1Gx44dGTp0KDNmzKjcPmXK
FLbddlu6dOnCdtttx5NPPlm5bejQoYwfP74yhp133plTTz2Vrl27ssEGG/Dggw8CcPbZZ/P444/z
s5/9jI4dO3L88cfn/02RJEmSJLV4JhFWwpAhQ1iwYAFvvPEGixcv5tZbb+Wwww6rse/EiRO59NJL
eeSRR5g2bRp///vfl+lz0003MXr0aGbPns2gQYP4wQ9+AMDcuXPZe++9OfHEE5k9ezYnnXQSe+21
F3Pnzq1xrKeffpqBAwcye/ZsTj311MpLF8477zx23nlnrrzySubPn8/ll1+ep3dCkiRJktSamERY
SUtmIzz88MMMHDiQXr161XiZwu23386oUaMYOHAga665JiUlJcv02Wuvvdhxxx1p164d559/Pk89
9RQzZ87kvvvuY8CAAYwYMYI2bdpwyCGHsMkmm3DPPffUGFPfvn056qijiAiOPPJIPvjgAz788MN8
v3RJkiRJUivVLAsr5qkuIatSmuCwww5jl1124Z133uGII47IxbVsYLNmzWLrrbeufNy3b99lkg19
+vSpvL/WWmvRpUsXZs2axaxZs+jbt+9Sffv27cvMmTNrjKmoqKjy/pprrgnAJ598Qvfu3Vfw1UmS
JEmStKxmORMhpfzcVsV6661H//79eeCBB/je975Xa7+ePXvy3nvvVT5+9913l0k2VN3+ySefMHfu
XHr16kWvXr0oKytbqu+MGTNYd911VzjefK0IIUmSJElqvZplEqGpGD9+PP/4xz8qz/rXdDnD8OHD
mTBhAlOnTmXhwoX86le/WqbP/fffz5QpU/j8888555xzGDJkCOuuuy577rkn06ZN45ZbbmHRokXc
euutTJ06lX322WeFY+3Rowdvv/32ir9ISZIkSZJyTCKsoKpn9Pv3789WW21V47Yl9thjD0488UR2
3XVXBgwYwLBhw5bpM2LECEpKSujWrRv//ve/ueGGGwDo2rUr9957L2PGjGGdddZhzJgx3HfffXTp
0qXW8WqL9YQTTuD222+nW7dunHjiiSv2oiVJkiRJAqKms+eNMnBEqmnsiKjxjH5LNWrUKPr06VPj
DAWtutb2eWoOojRIo/03kZYn9/8ur0NrBLUdj0iSWjePWWs/HnEmgiRJkiRJqheTCAVmwUOpHiZM
KHQEkiRJkmimSzy2JOPHjy90CFLTV22VEkmSJEmF4UwESZIkSZJULyYRJEmSJElSvZhEkCRJkiRJ
9WISQZIkSZIk1YtJBEmSJEmSVC8mEZqwyZMnM3DgwEKHsUKGDh3qihOSJEmS1EKZRFhB/fr1o337
9nTs2JEOHTrQsWNHjj/++AYZa6eddmLq1KkNsu/aXHfddbRt25aOHTvSuXNnBg8ezH333deoMUiS
JEmSmqY6kwgRMS4iKiLipSptF0fE1Ih4ISL+EhEdq2w7MyKm5bbv1lCBF0pEcN999zF//nwWLFjA
/Pnzufzyy1d4P4sWLWqA6PJjhx12YP78+cybN4/jjjuOQw45hPnz5xc6LEmSJElSgdVnJsK1wO7V
2h4CNkspbQlMA84EiIhNgeHAQOC7wNiIiPyF2zSklGpsf/vttxk2bBjrrLMO3bt357DDDlvqx3f/
/v25+OKLGTRoEGuvvTaLFi2if//+/Pa3v2XQoEF06dKFQw89lM8//xyAxx57jD59+iz1/Nr6Alx8
8cX06tWL3r17M27cONq0acPbb78NwP33389mm21Gx44d6dOnD5deemm9Xuvhhx/Op59+yrRp0yrb
nnrqKXbccUe6dOnC4MGDeeyxx2p9/vjx49l0003p1q0b3/3ud5kxY0blthNPPJH11luPTp06sc02
2zB58uTKbc888wzbbLMNnTp1omfPnpxyyikrNb4kSZIkKX/qTCKklCYDc6u1/T2ltDj38Cmgd+7+
vsAtKaUvU0plZAmGbfMXbtOWUuKss86ivLycqVOn8v7771NSUrJUn1tuuYUHHniAefPmsdpqqwFw
++2389BDD/HOO+/w4osvMmHChMr+1XMwtfWdOHEil112Gf/4xz+YPn06kyZNWuq5Rx99NNdccw3z
58/nlVdeYdddd63z9SxatIjx48ez+uqr07dvXwBmzZrF3nvvzbnnnsvcuXMZM2YMBx54ILNnz17m
+XfffTcXXnghd911Fx999BE777wzhx56aOX2bbfdlpdeeom5c+cyYsQIDj744MqkyAknnMCJJ57I
xx9/zFtvvcXw4cNXeHxJkiRJUn7loybCUcD9ufvrAu9V2TYz19ai7L///nTt2pUuXbrQtWtXxo0b
B8AGG2zAsGHDaNu2Ld26deOkk05a5iz5CSecQK9evVhjjTWWauvRowedO3dmn3324YUXXqh17Nr6
3n777YwaNYpNNtmEr33ta5SUlCw1Y2L11Vfn1VdfZcGCBXTq1Iktt9yy1jGefPJJunbtypprrslp
p53GDTfcwDrrrAPADTfcwF577cXuu2eTU4YNG8bWW2/N/fffv8x+rrrqKs4880wGDBhAmzZtOOOM
M3jhhRd4773sIzJixAg6d+5MmzZtOOmkk/jss8944403KuOdPn06s2fPpn379my77bYrPL4kSWoY
VU94SJJal1VKIkTEL4EvUko35yme+o1bGnm5ray7776bOXPmMHfuXObMmcMPf/hDAD788EMOPfRQ
evfuTefOnTnssMP4z3/+s9Rze/fuvcz+evToUXm/ffv2fPLJJ7WOXVvfWbNmLXXpQ9X7AH/5y1+4
77776Nu3L0OHDuWpp56qdYztt9+eOXPmMG/ePPbdd1/++c9/Vm579913ue222+jatWtlIuWJJ56g
vLx8mf28++67nHDCCZV9u3XrRkQwc+ZMAMaMGcOmm25Kly5d6NKlC/Pnz698v8aNG8cbb7zBJpts
wnbbbVdZ3LG28T/44INaX48kSa1JY/zALysra/AxMFEhSU1S25V9YkSMBPYEqs6LnwlU/fXaO9dW
o6pT/YuLiykuLq7X2Gl0zTUJGkttNRHOOuss2rRpw6uvvkqnTp24++67+fnPf75Un4YqEdGzZ0/e
f//9ysczZsxYaqxvfvOb3HXXXSxatIgrrriC4cOHL1WfoCbt27dn7NixrL/++vzwhz9k0KBB9OnT
hyOOOIKrrrqqzpj69OnD2WefvdQlDEtMnjyZSy65hEcffZRNN90UgK5du1a+txtssAE33XQTkCVA
DjroIObMmbNC40tSczFp0iQmTZpU6DDUQjTKD/zG0FJehyS1MPWdiRC5W/YgYg/gVGDflNJnVfr9
DTgkIlaPiP7AhsDTte20pKSk8lbfBEJTtmDBAtZee206dOjAzJkzueSSSxpt7OHDh3Pttdfy+uuv
s3DhQs4777zKbV988QU33XQT8+fPZ7XVVqNDhw6V9Rjq0qVLF4455hhKS0sBOOyww7jnnnt46KGH
WLx4Mf/73/947LHHmDVr1jLPPfbYY7ngggt47bXXAPj444+54447gOy9ateuHd26dePzzz/nV7/6
FQsWLKh87o033lg5K6FTp05EBG3atFmh8SWpuSguLl7qO1GSJKmpqs8SjzcBU4ABETEjIkYBVwBr
Aw9HxPMRMRYgpfQacBvwGlmdhJ+k2k7bN2P77LMPHTt2rLwdeOCBAIwePZrnnnuusl7BkvYlapqF
sCIzE5bXd4899uD4449n6NChDBgwgO233x6gsvbC9ddfT//+/encuTNXX3115Vn++jjhhBN44IEH
eOWVV+jduzd33303F1xwAV//+tfp27cvY8aMYfHixcvEuP/++3PGGWdwyCGH0LlzZ7bYYgsmTpwI
wO67787uu+/OgAED6N+/P+3bt1/qEoyJEydWriZx0kknceutt7LGGmvUOb4kSWoYRUVFRAQRQWlp
KRFBUVFRQwwEEVBamv2NyNokSU1CFOo3fkTUmF+IiFovF1D9vf7663zjG9/gs88+o02bfNTPbJ78
PDU9URorfklSSUl2k1qJ3P+7WtwSyU1RbccjzU1RUREVFRVLtfXo0aPGmkUrq7aTGXl//2o7adIC
/p0kNR8rdczawtR2PNJ6f122QHfddReff/45c+fO5fTTT2ffffdt1QkESZJai+oJhNraVl0/4AfA
Tg2wb0lSc+AvzBbkqquuonv37my00Ua0a9eOsWPHFjokSZLUTC1aBC+8AFdeCYccAvA+2RWuBwDj
gSeAffCKQklqXVZ6dQY1PQ888EChQ5AkSc3UwoXw9NMweXJ2e/JJ6NULdtoJvvtduPXWXYC3c73b
AAcCJWyxBZx+epZoaNeucPFLkhqHMxEkSZJaof/8B+6+G049FbbfHr7+dTjjDJg3D449FqZPh6lT
4Zpr4Mgj4asEAsBi4Hbgm/z2tzB+PGy0UTZrYeHCgrwcSVIjsbCiWjQ/T03PChWpKSqC6tf09ugB
eSwUJjVFFlZsPC2lsGJdRQ9TgnfeyWYYPP549nfWrCx5sNNO2W3bbaF9+9rHqKt441NPwUUXwZQp
8POfw09/Cl26rNSLqbm9Bfw7SWo+LKxoYUVJzVFNRcEapFCYJLU0qwGDufxyGD4c1l03SxTcdx9s
sQXcfDPMmQMTJ8LZZ0Nx8fITCADl5eWklEgpMXr0aFJKS63+MGQI/PWv8Oij2SyGDTbIZjnMmtWg
L1SS1MhMIkiSJLUYRwATgdnA9bz6KuyzDzzxBMycCbfems0S2HJLWG21holg001hwoSsKOMXX8Dm
m8Mxx8C0aQ0zniSpcTW5wop9+/atdUqetKL69u1b6BAkSWoE7YArgB2BXwIjgDlcdVXhpuKutx5c
dlk20+GKK2CHHWDo0KzuwlZbFSwsSdIqanJJhLKyskKHIEmS1Gx8+CHA34G5wPbAJw0+Zr9+/erd
d511oLQ0u7Thmmtg331hs82yZEJxce0lECRJTZOXM0iSJDVTL7yQFUSEx4ADaIwEAsDIkSNX+Dlr
rw0nnQRvvQXf/362AsSQIXDXXbB4cf5jlCQ1DJMIkiRJzdBtt8F3vgOXXAJwLtA8qoivsQYcdRS8
9hqcfjqcf342M2HCBPj880JHJ0mqi0kESZKkZmTx4qzOwKmnwkMPwcEHFzqilbPaavC978HTT8OV
V8KNN8KGG8LvOZ5PqWOpCElSwZhEkCRJaiYWLMh+eD/2GDzzDAweXOiIVl0EDBsGDz8Md94Jj7Mz
/XmHX3M2H9Ox0OFJkqoxiSBJktQMvPUWbL899OgBjzwC3bsXOqL823pruIODeZydmc6GbMh0SjmX
eXQqdGiSpByTCJIkSU3cI49kSyT+5Cfwf/8Hq69e6Iga1sa8yXWMZAo78A792ZDplJTAvHmFjkyS
ZBJBkqSmYMKEQkegJigluPxy+MEP4NZbsyRCTUsi9ujRo15tzc1GTGcCo3iKIcyYkdVMGD0a5s4t
dGSS1HqZRJAkqSkoKyt0BGpiPvsMjj4a/vQnePJJKC6uvW95eTkppaVu5eXljRZrQ9uQtxg/Hv71
L3j/fdhoIzjnHJgzp9CRSVLrYxJBkiSpiSkvh113zc64T5kC/fsXOqKmYYMNYNy4bEWHDz7Ikgln
nw2zZxc6MklqPUwiSJIkAROayCUlzz0H224Lu+0Gd9wBa69d6IianvXXz2ZoPPssfPghDBgAv/yl
yQRJagwmESRJkoCyRrikpK5Exc03wx57wO9+l13738YjteXq3x+uvjpLvPznP1ky4cwzs/uSpIbh
V5MkKW+ayplcqSkpKioiIogIRo0aRURQVFS0VJ9Fi7Ifv2edla3EcOCBBQq2merXD666Cp5/PrsE
ZOON4Ywz4KOPCh2ZJLU8JhEkSXnTGGdy1TpFxLiIqIiIl6q0HRQRr0TEoojYqlr/MyNiWkRMjYjd
Gj/ir1RUVCy37eOPYb/9suKJzzwDW2zRmNG1LH37Zktg/vvfMH9+lkw4/XSTCZKUTyYRJElSc3At
sHu1tpeBA4DHqjZGxEBgODAQ+C4wNqKmhRELb9o0GDIk+/H78MOwzjqFjqhlWG89GDsWXnwRPvkk
SyacempWP0GStGpMIkiSVknVqdqlpaU1TtWWVlVKaTIwt1rbGymlaUD1BMF+wC0ppS9TSmXANGDb
Rgl0BTz0EOy0E5x0EvzhD9CuXaEjann69Mne25degv/+FzbZBE45BWqYHCJJqieTCJKkVVLXVG2p
ANYF3qvyeGaurQk5iSOPzFZf+NGPCh1Ly9e7N1x5ZZZM+OwzGDgQTj45W0pTkrRiTCJIkiQ1mjXI
rsw4nKeegp13LnQ8rUvv3nDFFfDKK1kxy003zWaCfPBBoSOTpOajbaEDkCRJyrOZQJ8qj3vn2mpU
UlICwKQWRYSFAAAgAElEQVRJk5g0aRLFxcUNFFZP4E5gBrATfft+2kDjqC69esHvf58VXbz4Yths
MzjiiOxxz56Fjk6SCmPJ92BdnIkgSZKai2DZ+gdVty3xN+CQiFg9IvoDGwJP17bTkpISSkpKKC4u
bqAEwjrAr4GXgHuB7wMLG2AcraheveCyy+DVVyEiSyYcfzzMrDXlJEktV3FxceV34pIEe01MIkiS
tBwTJkwodAgCIuImYAowICJmRMSoiNg/It4DhgD3RsQDACml14DbgNeA+4GfpJRSY8f8/vvZVHl4
gyyRsC1wfmOH0fz06FG/tjzq2RN+9zt47bWswOU3vgE//7nJBEmqSZ1JhBVZlzki2kbEhIh4KSJe
jYgzGipwSZIaQ1lZWaFDEJBSGpFS6pVSWiOltF5K6dqU0l0ppT4ppTVTSj1TSt+t0v83KaUNU0oD
U0oPNWas06fDMcfAFlvAaqsBbA4cB7zTmGE0X+XlkBKMHp39TanRKiAWFcFvfwtTp8Iaa2TJhJ/9
LEsISZIy9ZmJUO91mYGDgdVTSlsAWwM/joj1VjlKSZKqcnaAmqCXX4YRI2D77bNp8tOmwZgxAFbt
Wyn9+hVs6B49sn+7qVNhzTWzhNBPfgLvvVf3cyWppaszibCC6zInYK2IWA1oD3wGzM9TrJIkZZwd
oCbkX/+CffeF3XaDLbeEt96C0lLo1q3QkTVzI0cWOgJ69IBLLoHXX4cOHWDQIDjuOJgxo9CRSVLh
5Lsmwh1klYI+AMqAMSmleXkeQ5KkBlVUVEREEBGUlpYSERQVFRU6LDUhKcEjj8CwYfD978Mee8Db
b8Npp0HHjoWOTvnWvTtcdBG88QZ06gSDB8Oxx8K77xY6MklqfPle4nFb4EugCOgGPB4Rf08pldXU
uWrFx4ariCxJ0oqpqKioV1teFBUxqaKCSZCdvlaTtngx3HsvXHABzJsHZ56ZXcLQrl2hI1Nj+PrX
4cIL4ZRTstoJW20FBx2UfQ4KePWFJDWqfCcRRgATU0qLgY8i4gmy2ghlNXVe3rIRkiS1ChUVFAPF
VZpMJTQ9X34Jt9+eJQ/atYOzzoIDDlhSOFGtzTrrwG9+kyUTLr0UvvlN+N73ss9F//6Fjk6SGlZ9
L2eo77rMM4BdASJiLbIll15f6egkSZIK6LPP4JprYJNNYOzY7Pr4557Lzj7XN4HQo4blCWtqU/PT
rRucfz68+WZWP2HrreHoo7NLWySpparPEo/1XpcZ+APQISJeAf4FjEspvdJQwUtSvk2w6r8k4NNP
4bLLYIMN4M474dpr4fHHs9oHUdtplVqUl5eTUiKlxOjRo0kpUd5ISxaqcXTrBuedl63I0bMnbLMN
/PCHJhMktUz1WZ2h3usyp5Q+TSkNTyltnrtd2vAvQZLyp8yq/yvMs6yryPeqSZk3LzuzvP76MHky
3H03PPAA7LxzoSNTc9C1K/z61zB9OvTuDdtuC6NGZY8lqaXI9+oMkqRWxrOsq6i8PCv1P3p09jel
QkfUKlVUwN//PowNNsimpk+aBHfckV3rLq2oLl2yOqnTpkHfvjBkSLZipckESS2BSQRJktSqZUt4
PsYTT7zMnDn9ePDBIgYOLHRUagm6dIGSkix50L9/lkw48sgsuSBJzZVJBEmSJHYFfgq8W+hA1AJ1
7pxNNnrrLdhwQ9hhBzj8cHjjjTwNYD0fSY3IJIKkVq+oqIiIICIoLS2tvF9UVFTo0CQ1guxynEVe
jqMG16kTnHNONjNh441hp53gsMPg9ZVdy6yoKKv0OWpU9jcia5OkBmQSQVKrV1FRsULtKpAlB8sR
2cXGHjArz/r161foENRKdOoEZ5+dzUwYOBB22QV+8AOYOnUFd1TT95TfXZIamEkESVLzUNuBsQfM
ypORI0cWOgS1Mh07wi9/mSUTNt8cvvUtOPRQeO21QkcmSbUziSBJah5qWwrRJRLVjDjbQTXp0AHO
PDNLJgwaBEOHwiGHwKuvFjoySVqWSQRJUvOwZCnE6sshev26mhFnO2h5OnSAM87IkgmDB8Ouu8Lw
4fDKK4WOTJK+YhJBkiRJakLWXhtOPz1LJmyzDXz723DwwfDyy4WOTJJMIkiS1DQ4zV1SNWuvDaee
miUTttsOvvMdOOggeOmlQkcmqTUziSBJUlPgNHdJtVhrLTjllCyZsP32sPvu8L3vwQsMKnRokloh
kwiSJElSM7DWWvCLX2TJhJ13hj25nwO4k+cZXOjQJLUiJhEkSZKkZqR9ezjpJJjOhnyLx9iPu9mZ
f3Irw/mcdoUOT1ILZxJBkiRJaoba819O5Pe8Q39O5DL+j2PpRxklJTBrVqGjk9RSmUSQJDU/FiGU
pEptWcSB3Mmj7MpD7EZFBWy2GRxyCEyenK2G2xxMmDCh0CFIqgeTCJKk5scihJJUo815lT/+EcrK
YIcd4KijYPBg+NOfYOHCVdhxI/zALysra/AxJK06kwiSJElSC9OpExx/PLz+Olx8Mfztb7Deel+t
8lBvRUUQAaNGZX8jsjZJrZZJBEmtXo8ePVaoXZKk5qJNG9httyyJ8Mwz2eMhQ2DvvWHiRFi8uI4d
VFTUr01Sq2ESQVKrV15eTkqJlBKjR4+uvF9eXl7o0CRJypv+/bNZCe++C9/7Hpx5Jmy8MVx2Gcyb
V+joJDUXJhEkNV01zQRwdoAkSaukffusVsLzz2elDv71ryzBcOyx8PLLhY5OUlNnEkFS01VenpWU
Hj06+5tS1iZJklZZBOy4I9x8M7z2GvTqBbvvDsXFcMcd8MUXhY5QUlNkEkGSpGpqqodhjQxJLVnP
nnDuudmlDj/5CVx+eTY74decTTn+/0/SV0wiSJLypl+/foUOIS+q1sm49tprrZEhqWlqgMv+2rWD
4cPhn/+E++6D9+jDQKbyfW7hzxzOB7gyg9TamUSQJOXNyJEjCx1C3rXE1ySphWjgy/4GDYKr+TFv
sz7DeIS/sS+b8Srf4CV+8Qt48EFYuDBvw0lqJkwiSJIkSapVF+bxI67hDg7mQ7rzJ46mc2c477xs
4sO3v52t+vDCC/VYMlJSs2cSQZIkSVK9tGUR2/E055wDjz8OM2fC8cfDjBnZZRBFRfCDH8B118Gs
WYWOVlJDMIkgSZIkaaV07Aj77gtXXglvvglPP52t7nDvvfCNb8Dmm8PJJ8PEibVf+lBUVEREUFpa
SkQQERQVWXtBaqpMIkiSJEnKi3794Jhj4Pbb4cMPYfx46NoVLrggu/Rh2DC46CL497+/uvShoqJi
mf3U1CapaagziRAR4yKiIiJeqtJ2UES8EhGLImKrav23iIgpue0vRsTqDRG4pFakhVT8lySpNVlt
Ndh2Wzj77Gy1h1mz4MQT4f334dBDs0sfRowAOBLoVeBoJdVXfWYiXAvsXq3tZeAA4LGqjRGxGnA9
8KOU0uZAMfDFqocpqVWzOr4kSbVryGR7HpeR7NAB9tkHrrgCXn8dnnkGdt0V4LvAS8CrwP8BhwH9
SWllg65BURFELH3zkglppdSZREgpTQbmVmt7I6U0DYhq3XcDXkwpvZLrNzelvP7nL0mSJKmqhky2
N+Aykn37wtFHAxwCdAcOJ0sk7ANMZt114eCD4fe/h2efhS+/XIXBaro8wksmpJXSNs/7GwAQEROB
dYBbU0qX5HkMSZIkSS3KYuD53O0KAJ54IvHEEzB5MvzpT/Duu7DNNrDTTrDjjjBkSFbYUVLjyncS
oS2wI7A18D/gkYh4NqX0aJ7HkSRJktSC9e+f3Q47LHs8dy48+WSWVDj/fHjuOdhooyyhsCSx0KdP
YWOWWoN8JxHeB/6ZUpoLEBH3A1sBNSYRSkpKKu8XFxdTXFyc53AkSWr6Jk2axKRJkwodhiQVRI8e
PZZZjaFHDXUXunSBPffMbgCffw7PP58lFW69FX7+c2jffumkwuabZwUeJeVPfZMIwbL1D6puW+JB
4NSI+BrwJfAt4NLadlo1iSBJUmtVPZFeWlpauGAkqZGV52oslJSUrNDvg9VXzy5pGDIETjklK9cw
bVqWVHjiiayWQkVFtn0nfsmOPMG2PM1aLGygVyK1DvVZ4vEmYAowICJmRMSoiNg/It4DhgD3RsQD
ACmleWRJg2fJLmh6NqX0QMOFL0mSJEnZggsDBsBRR8G4cfDGG1lS4bjj4GM68UvOpycfcDa/5lPa
N2gsEyZMaND9S4VU50yElNKIWjbdVUv/m4CbViUoSSqUfg25TJYkSWpUX/867Lcf7MdpALxHb07l
EgYylTGcwsEpSz7kW1lZWf53KjURdc5EkKTWZGRDLpMlSZIKqg/vcwuH8meO4DzOZtgweOWVQkcl
NS8mESRJkiQtXwubqVfMYzzPVhxwAAwdCieeCPPmFToqqXkwiSBJkiRp+VrgTL22LOLnP4fXXoNP
P4WBA2H8eFi8uNCRSU2bSQRJkiRJrdbXvw7XXAP33ANXXw3bbw9PP13oqKSmyySCJEmSpIIrdHHj
rbeGKVOy1Rz22w9++EP48MOChiQ1SSYRJEmSJBVcgxY37tGjXm1t2mRXbrz+OnTqBJttBr//PXzx
RcOFJjU3JhEkSZIktWzl5ZBSdhs9OvtbXl5r906d4NJL4bHHssscBg+GRx9txHilJswkgiRJkiTV
YNNN4eGHobQURo2C4cNhxoxCRyUVlkkESZIkSapFBBx4YLaKw8CB2ayE886D//2v0JFJhWESQZIk
SZLq0L59NiPh2Wfhueeyegl/+1t2ZQRAUVEREUFEUFpaSkRQVFRU2KCbgQkTJhQ6BK0gkwiSJEmS
VE/9+8Nf/wp//COcdhrsuSe8+SZUVFQs07emNi2trKys0CFoBZlEkCRJktR65Gkpyd12g5degmHD
YIcdAC4E1s7LvqWmzCSCJEmSpNYjj0tJrr46nHIKvPwyQE9gKnA4MAAoAtaqvNxBainaFjoASZKk
ukTEOGBvoCKltEWurQtwK9AXKAOGp5Q+joi+ZEfyr+ee/lRK6SeNH7Wk1qJnT4Ajge2BXwG/BDoC
HWnbFjp0gI4da74tb1v1fm399aYmwI+hJElqDq4FrgD+XKXtDODvKaWLI+J04MxcG8D0lNJWjRyj
pFbvSeA7S7V89lliwQKYPz+7Vb1f9TZzJkyduvw+a6xRd6KhPgmJr30tW3WitZgwYQIj8zgDpbUz
iSBJkpq8lNLk3AyDqvYDvpW7fx0wia+SCK3o8FhSU9a2LXTpkt1WRUqwcGHdyYiPP4b33lt+ny++
qP/sh+VtX3ttWG21/LxPDcnijfllEkGSJDVX3VNKFQAppfKI6F5lW7+IeB74GDgnpTS5IBFKUp5E
wFprZbfs8omV9/nnXyUYaks0zJ8P7767/KTFJ5/AmmuuWkJi8WLL9DU3JhEkSVJLsaR82QfAeiml
uRGxFXBXRGyaUvqkgLFJUpOx+urQrVt2WxWLF8Onn9Y9O+I//4G33/6qz4MPPskXX3wN6Aocyq9/
fRTduz9MRcV7+Xh5amAmESRJUnNVERE9UkoVEVEEfAiQUvoc+Dx3//mIeIusVPrzNe2kpKSk8n5x
cTHFxcUNHLaklqhHjx5UVFQs09aStWmTzTDo0AHWXbf+zysqOqDKe7UzcA7/+c+vGDsWjjoqq9mg
xjdp0iQmTZpUZz+TCJIkqbkIlq518DdgJHARWVn0uwEiYh1gTkppcUSsD2wIvF3bTqsmESRpZZWX
l1feLykp8f8ty7Hse/UdnnoKzj8/u51yCvzoR9mlG2o81RPppaWlNfbzAhRJktTkRcRNwBRgQETM
iIhRwIXAdyLiDWBY7jHALsBLuZoItwE/TinNK0TckqT6GTIE7rkH7r0XnngCNtgALrwwuwRCTYsz
ESRJUpOXUhpRy6Zv19D3TuDOho1IktQQBg+GO+6AV1+FCy7Ikgk/+xkcf/yqr3Ch/HAmgiRJkiSp
SdlsM7jxRpgyJVslYsMN4cwz4aOPCh2ZTCJIkiRJUh7169ev0CG0GBttBOPHw3PPwccfw8Ybw8kn
w6xZhY6s9TKJIEmSJEl5NHLkyEKH0GzUN+HSrx+MHQsvvwwpweabw09/ms1SUOMyiSBJkiRJKogV
Tbisuy787nfw+uvZ0pJbbQU//CFMn94w8WlZJhEkSZIkSc1K9+7Z6g3TpkGfPtnqDocdBq+9VujI
Wj6TCJIkSZKkZqlrVygpgbfeyooxDh0KBx8M3boNIyKICEpLS4kIioqKCh1ui1BnEiEixkVERUS8
VKXtoIh4JSIWRcRWNTxnvYhYEBEn5ztgSZIkSZKq6tQpW73h7bdh++1hzpzrgbuBbSr7VFRUFCy+
lqQ+MxGuBXav1vYycADwWC3P+S1w/yrEJUmSJEnSCllrrWz1BlgfeBC4A/hxQWNqadrW1SGlNDki
+lZrewMgIqJ6/4jYD3gb+DRfQUqSJEmSVH+fAWOBa4A1ChxLy5LXmggRsRZwGlAKLJNgkCRJkiSp
8XwBfFLoIFqUfBdWLAF+l1JamHtsIqERTJgwodAhSJIkSZJagTovZ1hB2wEHRsTFQBdgUUT8N6U0
tqbOJSUllfeLi4spLi7OczitQ1lZWaFDkCStgkmTJjFp0qRChyFJUovRo0ePZQop9ujRo0DRtCz1
TSIEtc8qqGxPKe1S2RgxGlhQWwIBlk4iSJLUWlVPpJeWlhYuGEmSWoDy8vJCh9Bi1WeJx5uAKcCA
iJgREaMiYv+IeA8YAtwbEQ80dKCSJEmSJKmw6rM6w4haNt1Vx/M8jSJJkiRJUguS78KKkiRJkiSp
hTKJIEmSJEmS6sUkgiRJkiRJqheTCJIkSZIkqV5MIkiSJEmSpHoxiSBJkiRJkurFJEIzVVRUREQQ
EZSWlhIRFBUVFTosSZIkSVILZhKhmaqoqKhXmyRJkiRJ+WISQZIkSZIk1YtJhIYyYUKhI5AkSZIk
Ka9MIjSUsrJCRyBJkiRJUl6ZRJAkSZIkSfViEkGSJEmSJNWLSQRJkiRJklQvJhGaoZQAtgauBj4C
dihoPJIkSZKk1sEkQjMyfz783//BVlsB3Aq8DZwBTADaFzAySZIkSVJrYBKhiUsJnn4ajj4a+vaF
Rx6Biy8G2BC4EBgH/Av4TSHDlCRJkiS1Am0LHYBq9vHHcNNNcPXV2QyEY46BqVOhqGhJj1Sl98+B
l4G/NnqckiRJkqTWwyRCE7Jk1sHVV8Odd8K3v53NOhg2DNosd87IPOAYYDwLFkCHDo0TryRJkiSp
dfFyhibg449h7FgYPBhGjIABA+D11+H22+E736krgbDEROARfvGLBg5WkiRJktRqmUQokJTgX/+C
o47Kah1MmgRjxsC0aXD66dCjx8rs9WQeeggmTsxzsJIkSZIk4eUMjW7ePLjxxuyShU8/zWodvPHG
yiYNqlvAuHEwciS8/DJ07pyPfUqSJEmSlHEmQiNICZ56Kpt10L8//POfcOml8OabqzLroGbDhsG+
+8IJJ+Rvn5IkSZIkgTMRGtS8eXDDDdmsg4UL4Uc/ymYddO++6vvu0aMHFRUVy7QBXHQRbLkl/O1v
WUJBkiRJkqR8cCZCA3jxRRh193706wePPw6XXZbNOjjttPwkEADKy8tJKZFSYvTo0aSUKC8vB2Dt
teHaa+HYY2H27PyMJ0mSJElSq0siTJgwocH2/epP/sBBcQd7bPkBm7xwC29+3J1bbwt2/WdJPVdY
yJ+dd4ZDD4Wf/rRxx5UkSZIktVytLolQVlaW932++Wa2NOOuf/kp2118ENM/6cnpo9eke/owK4hQ
UpL3MevjvPOyWRG33VaQ4SVJkiRJLUyrSyLk09tvZysh7LgjbLYZTJ8Op54Ka63VuHH069evxvY1
14QJE+D446Fa+QRJkiRJklZYnUmEiBgXERUR8VKVtoMi4pWIWBQRW1Vp/3ZEPBsRL0bEMxExtKEC
XxFFRUVEBBFBaWkpEUFRUdFK72/GjKxI4jbbQN++MG0a/PKX0KFDHoNeASNHjqx123bbZatC/PjH
2aQISZIkSZJWVn1mIlwL7F6t7WXgAOCxau0fAXunlAYBI4HrVzXAfKi+ikFtbXWZNQt+9jMYPBjW
WSdLHpSWQufO+Yiy4Ywenc2auOGGQkciSZIkSWrO6kwipJQmA3Ortb2RUpoGRLX2F1NK5bn7rwJf
i4h2eYy3ID78EE4+GTbfHL72NZg6FS64ALp2LXRk9bPGGnDddfCLX8DMmYWORpIkSZLUXDVYTYSI
OAh4PqX0RUON0dBmz4YzzoCBA+HLL+HVV2HMmPwt09iYBg/OVmo4+mgva5AkSZIkrZwGSSJExGbA
b4AfNcT+G9q8eXDuubDxxtn9F16Ayy+Hnj0LHdmqOeusbFbFuHGFjkSSJEmS1By1zfcOI6I3cCdw
eEqpbHl9S6osfVhcXExxcXG+w1khCxbA73+f3fbZB555Bvr3L2hIedWuXXZZw9Ch8J3vZEUhJUmF
N2nSJCZNmlToMCRJkupU3yRCUK3+QbVt2Z2ITsC9wOkppafq2mnVJEIhffop/OEP8NvfZj+up0yB
jTYqdFQNY/PN4ZRTshUbHn4Y2rjIpyQVXPVEemlpaeGCkSRJWo76LPF4EzAFGBARMyJiVETsHxHv
AUOAeyPigVz3nwEbAOdGxL8j4vmIWKfBol9F//0v/O53sOGG8Oyz8Oij2QoGLTWBsMQpp8DChTB2
bKEjkSRJkiQ1J3XOREgpjahl01019D0fOH9Vg2p4qwNHs9FGsPXWMHEiDBpU6Jgaz2qrwYQJsOOO
sMceWRJFkiRJkqS6tLLJ7G2Bo4E3gT25+264667WlUBYYuON4eyzYeRIWLSo0NFIkiRJkpqDVpRE
6A28AgwHDgH25pvfLGxEhXb88dmshMsuq+cTJkxoyHAkSZIkSU1cK0kidAYeAP4E7AbUWfOxVWjT
Bq69Fi68EKZOrccTysoaOiRJkiRJUhPW4pMI//sfZOUbHgbGFDaYJmj99eFXv4Ijj4Qvvyx0NJIk
SZKkpqxFJxEWL4bDDwcoB37RuIP369e4462CY4+Fzp3h4osLHYkkSZIkqSlrsUmElOCkk+CjjwCO
BFLjBjByZOOOtwoiYNy4rDbCSy8VOhpJkiRJUlPVYpMIY8bAP/6Rrb4AnxU6nCavTx+46CI44gj4
/PNCRyNJ0tIiYlxEVETES1XaukTEQxHxRkQ8GBGdqmw7MyKmRcTUiNitMFFLktTytMgkwo03wpVX
wgMPZNP0VT8jR2bJhPPOK3QkkiQt41pg92ptZwB/TyltDPwDOBMgIjYlW45pIPBdYGxERCPGKklS
i9Xikgh//zucfDLcfz/07l3oaJqXCLj6arjqKnj22UJHI0nSV1JKk4G51Zr3A67L3b8O2D93f1/g
lpTSlymlMmAasG1jxClJUkvXopIIL7wAI0bAHXfAZpsVOprmqWdP+N3vstUaspUtJElqsrqnlCoA
UkrlQPdc+7rAe1X6zcy1SZKkVdRikghlZbDXXjB2LOy8c6Gjad4OPRQ22QRGjy50JJIkrZBGrqIs
SVLr07bQAeTD7Nmwxx5wxhlw0EGFjqb5i4A//hEGDYL9r9mL7efe/9XG0tLsb48eUF5emAAlScpU
RESPlFJFRBQBH+baZwJ9qvTrnWurUUlJSeX94uJiiouL8x+pJElN3KRJk5g0aVKd/SKlwiTtIyLl
Y+yFC+Hb34ZddoELL6x1rBrbC/Xam4s774QzDnyTF9iS9vx32Q6+f1oJURqk0X52pOWJCFJKFgKs
JiL6AfeklL6Re3wRMCeldFFE/H979x5nZVUvfvzzHRATFRhAZkRwQJNEj5IoqMfUQSrvlyw5iqig
nUpPCXa01DwCHjVTtE6WHStuqaSSJSqX1HTIO94VRX6aAgZBBiiYHlRYvz/2nnEGZpg9sGf2XD7v
1+t5sfd61rPXdw/PzKz57nX5PlCcUro4u7DibcCBZKYxPADsUVvHI1/9EUlS62Kfte7+SIuezvDJ
J5mh97vvDldfXXe9kpKSnMpU08knwyCe5lI288WVJKkJRMQ04HGgX0QsiYhRwDXAlyJiITA0+5yU
0qvAncCrwCzgPDMFkiTlR4sdiZASnHsu/OUvMHMmdOiQ23Xjxo2rMWxRm7cqurIPL3Mbp1PO3Jon
7Y9pC5jVlernSISm40gESVJt7LO2wpEIV10FTz0Fd92VewJBDdeV1fySbzCKyaxlh0KHI0mSJEkq
oBa5sOLkyTBpEjz+OHTqVOhoWr9jmcVdPMyXeIBjmclg5jGIp+la6MAkSZIkSU2qxSURZs+GSy6B
uXOhtLTQ0bQdN3EesziGeQzmWr7HMxzATp+FwYM/PfbbD7bbrtCRSpIkSZIaS7NIIkyZMoWRI0fW
W+/pp+Gss2DGDPjc5xo/Ln3qM6zjZP7AyfwBgA0EC+/dwLx5MG8e3HYbvPoq9OtXM7Gw117Qrl2B
g5ckSZIk5UWzSCIsWrSo3jpvvAEnnAC//jUcfHDjx6TNKyLRvz/0759J7ACsWwcvvphJKsydC9dd
B0uXZkYoVE8slJVBHbtuSpIkSZKasWaRRKjP3/8ORx0F48ZlEglqnrbd9tNEQaV334Vnn80kFn77
W7jgAvj4Yxg06NO6gwZB9+6Fi1uSJEmSlJtmn0R4/3049lgYPhy++c1CR6OG6tIFhg7NHJWWLs1M
TZk3D66/Hp55Brp1+zShMHgwDBwIHTsWLu7GkOu0HUmSJElqrpp1EuHjj2HYMNh3Xxg/vtDRKF92
2SVznHRS5vmGDfD//l8mqfD003DHHTB/PuyxR83Ewt57Q/tmfcduXi7TdiRJkiSpOWu2f5KllBl5
EAH/+7/OoS+YkhJYsaL28jwpKoI998wcZ56ZKVu3Dl56KZNYeOwx+PGPYcmSmusrDBoEfft6b0iS
JElSU2m2SYTLL898Gv3ww7DNNoWOpg1bvvzTx+PGZY4msO22mSTBoEGflr333qfrK9x5J1x4IXz4
YTayfeAAACAASURBVM1FGwcNgp12apIQm5/S0k0TPiUlNf8PJUmSJGkrFDSJENU+Qh6fna9QUlLC
uHHLuf32zCfQ229fqOjU3HTuDEcckTkqLVv26foKP/5xZn2FLl1qJhYGDmwj91FtI0ZqK5MkSZKk
LdTsRiKsWHEgV1wBjzwCPXoUOho1dz17woknZg7IrK/wxhuZpMK8eTB9Orz8Muy+e83Ewt57O8JF
kiRJkhqqmSURDgZ+zT33ZP7okxqqqAj69cscI0Zkyj76KJNImDcPnngC/ud/YPFiGDCgZmJht91c
X0GSJEmSNqeovgoRMTEiVkTES9XKvhYR8yNifUQM3Kj+JRHxekQsiIgv5x7K54DfA2dywAG5XyXV
p0MH2H9/OPdcmDwZXnklMw3iqqtg553hrrtgyBDo3h2OOiqzHsd99zkTQJIkSVJupkyZUugQmkwu
IxEmAzcCv6lW9jLwFeDm6hUjoj8wDOgP9AIejIg9Ukpp802UArOBi4E5OYYubblOnaC8PHNUWr78
0/UVbrwx87hTp0+3mBw8OJOM2GGHQkUtSZIkqTlqS9u515tESCk9GhFlG5UtBIjYZPD3icDtKaVP
gEUR8TowGHiq7hZ2JJNA+DUwtSGxS3lVWgrHH585ILPNaOX6Ck8/DZdcAi++mJn2ULkTxODBsM8+
rq8gSZIkqW3I95oIuwBPVHu+NFu2Gd/OXnJ1nkORtk4E7LFH5jj99EzZxx9/ur7C00/Dz38Ob70F
++5bM7Hw2c9mri8tLWVFtXkR48ePp6SkhOVuuyhJkiSpBWoGCyv+qNABSDnbZpvMlpEDB8K3vpUp
W7sWnnsuk1iYMQN+8ANYsyaTUFix4j+Ap4F5QCaZsMLFFiRJkiS1UPlOIiwFeld73itbthkb8hyC
1LR23BEOPzxzVFqxIjNS4f77E3AemaVFVgEVwMMsW5bZnlKSACoqKqioqCh0GJIkSfXKNYkQ2aOu
c5XuAW6LiB+TmcbwWTIfwUptSkkJHHccwNhsSQB7A+XA19hnn8xuEOXlmZ0hysszazJIapvKy8sp
r7bS6/jx4wsXjCRJ0mbUm0SIiGlk/vLpFhFLyPxVtJrMjg3dgfsi4oWU0tEppVcj4k7gVeBj4Lz6
d2aQ2oIEzM8eP+OddxIvvwwPPwy33w7nnZdJPFQmFMrLoUePggYsSZIkSZvIZXeG4XWcuruO+j8E
frg1QUmtRUlJySZrIJSUlFBUBAMGZI4xY2D9enjppUxS4ZZb4BvfgF12ySQVhgzJTJXo3r1Ab0KS
JEmSsooKHYDUmi1fvpyUEiklxo4dS0qp1p0Z2rWD/faD734X7r0XVq6EqVOhTx+YNAl23z2zA8T5
58Mf/gCrVjX9e5EkSZKkZrA7Q00lJSWFDkEquHbt4IADMseFF8Inn2R2gHj4Ybj5ZjjrLNhtt0+n
Pxx2GBQXOmhJkiRJrV5BRyJs/AltXZ/SSm1d+/YweDB8//swZ05mpMIvfpFZN+HnP4ddd4WBPMt/
MoE/c2ihw5UkSZKUb1OmFDoCwOkMUou0zTZw8MFwySVw//2ZpMKNfIdiVjOCW/lvLsMVTSVJkqTG
VVpaSkQwfvx4IoKIoLSxtl1btKhxXreBTCJIrUCHDnAIj3MZV/EUB3IPJ3Amv2EdHQodmiRJktRq
bbyIel1lrYlJBKmV2ZnlzOVwPqAjQ/kT77xT6IgkSZIktRYmEaRWqCMfMp1TOJRHOOggWLCg0BFJ
kiRJ2iKlpRAB48dn/o3IlBWISQSplSoi8UMu5bLL4PDD4cEHCx2RJEmSpAarbXpEAadMmESQWrlR
o2D6dDj99Mz2kJIkSZK0pUwiSG3A4YfDo4/C9dfDd78L69cXOiJJkiRJLZFJBKmN2GMPePJJeP55
+MpX4P33Cx2RJEmSpJamWSQR+vTpU+gQpDaha1f44x9hp53gC1+At98udESSJEmSWpJmkUQYOXJk
k7VlwkJtXYcO8Otfw/DhcPDB8MwzhY5IkiRJUkvRLJIITakpExZSdc0pgRUB3/se3HgjHH00/P73
hY5IkiRJUkvQvtABSG1Fc0xgfeUrsOuucOKJ8PrrmcRCRKGjkiRJktRctbmRCNoKzeiTdOXP/vtn
Fly8/Xb4+tfho48KHZEkSZKk5sokgnLXDD9JV3706gWPPALvvANHHgmrVuV23ZQpUxo1LkmSJEnN
i0kESQDssAP84Q8wcCAcdFBmekNtSktLiQgiglGjRlU9Li0tbdqAJUmSJDU5kwiSqrRrB9dfDxde
mNkCsqJi0zorVqyo9dq6yiVJkiS1HiYRpNaipCS3shx84xtw220wbBhMnryVcUmSJElqNUwiSK3F
8uWQEowdm/k3pUzZFvriF2HuXLjySrj4YtiwIY+xSpIkSWqRTCJIqlP//vDUU/DYY3DKKfDBB4WO
SJIkSVIhmUSQtFndu8ODD0LHjnDYYQA7FzokSZIkSQViEkFSvbbdFn7zGzjpJIAngQEFjkiSJElS
IZhEkJSTCLjsMoALgQeA4wobkCRJkqQmZxJBUgNNJ5NAuBk4tsCxSJIkSWpK7QsdgKSWaB5wEPCP
QgciSZIkqQk5EkHSFnob+LDQQUiSJEkFU1JSklNZa2ISQZIkSZKkLbB8+XJSSowdO5aUEiklli9f
XuiwGlW9SYSImBgRKyLipWplxRFxf0QsjIg/RkTnbHn7iJgSES9FxCsRcXFjBi9JkiRJkppOLiMR
JgNHblR2MfBgSulzwEPAJdnyU4AOKaV9gQOAb0bErvkKVpIkSZIkFU69SYSU0qPA6o2KTwSmZh9P
BU6qrA5sHxHtgI7AOmBNfkKVlJM+fQodgSRJkqRWakvXROiRUloBkFJaDlSuHPE74APgb8AiYEJK
6d2tDVJSA4wcWegIJEmSpDalTxv6IC9fWzxuyP57IPAJUAp0Ax6JiAdTSotqu2jcuHFVj8vLyykv
L89TOJIktRwVFRVUVFQUOgxJkrSFRrahD/IipVR/pYgy4N7sWgdExAKgPKW0IiJKgYdTSv0j4mfA
Eyml27L1JgKzU0q/q+U1Uy5tS2peIqLOczn9PBkfpLF+70ubExGklOr+ZlPe2B+RJNWmWfVZ6+p/
N/Lvr7r6I7lOZ4jsUekeYGT28UhgRvbxEuCIbIPbAwcBrzU8XEnNVV373rb2/XAlSZIk5bbF4zTg
caBfRCyJiFHANcCXImIhmaTBNdnqPwd2jIj5wFPAxJTS/MYJXVIhVO6F29b2w5XUfEXE6Ih4OXuc
ny0bGxF/jYjnssdRhY5TkqTWoN41EVJKw+s49cVa6v4TGLa1QUmSJOUiIvYGziGztfQnwOyImJk9
fUNK6YaCBSdJUiuUr4UVJUmSCqE/8FRKaR1ARPwZODl7znUlJEnKsy3d4lGSJKk5mA8cGhHFEdER
OAboBSTg2xHxQkT8OiI6FzRKSZJaCZMIkiSpxUopvQb8CHgAmAU8D6wHfgHsllL6PLAccFqDJEl5
4HQGSZLUoqWUJgOTASLiKuDtlNI71ar8Cri3ruvHjRtX9bi8vJzy8vJGiVOSpOasoqKCioqKeuuZ
RJAkSS1aROyUUnonInYFvgIcFBGlKaXKbWNOJjPtoVbVkwiSJLVVGyfSx48fX2s9kwiSJKmluysi
ugIfA+ellNZExM8i4vPABmAR8M1CBihJ0hYrKYEVKzYtKxCTCJIkqUVLKR1WS9mZhYhFkqS8W54d
WDduXOYoMBdWlCRJkiRJMGVKvVVMIkiSJEmSJFi0qN4qJhEkSZIkSVJOTCJIkiRJkqScmESQJEmS
JEk5MYkgSZIkSZJyYhJBkiRJkqTmrk+fQkcAmESQJEmSJKn5Gzmy0BEAJhEkSZIkSVKOTCJIkiRJ
ktSWlZZCBIwfn/k3os6qJhEkSZIkSWrLVqzIuapJBEmSJEmSlBOTCJIkSZIkKScmESRJkiRJastK
SnKuahJBkiRJkqS2bPlySAnGjs38m1KdVds3YViSJEktQp8+fVi8eHGhw1ArUVZWxqJFiwodhiTl
hUkESZKkjSxevJi0mU9hpIaIzWyVJkktjdMZJEmSJElSTkwiSJIkSZKknJhEkCRJkiRJOTGJIGmL
9enTp9AhSJLqcO6553LVVVfVeb6oqIg333xzq9s55phjuOWWW7b6dSRJLUO9SYSImBgRKyLipWpl
xRFxf0QsjIg/RkTnauf2jYjHI2J+RLwYER0aK3hJhTVy5MhChyBJbVKfPn34zGc+w6pVq2qU77ff
fhQVFbFkyRJ+8Ytf8IMf/KDO18jXYn+zZs3ijDPOyKnukCFDmDRpUl7alSQVRi4jESYDR25UdjHw
YErpc8BDwCUAEdEOuAX4RkrpX4By4OO8RStJkiQigr59+/Lb3/62qmz+/Pl8+OGHOScH3H1CkrQl
6k0ipJQeBVZvVHwiMDX7eCpwUvbxl4EXU0rzs9euTv6GkiRJyrszzjiDqVOnVj2fOnUqZ511VtXz
UaNGcfnll1c9v+666+jZsye9evVi8uTJNZINo0aN4txzz+XLX/4ynTp1YsiQISxZsqTq/OOPP87g
wYMpLi7mwAMP5Iknnqg6V310wdSpUzn00EO56KKL6Nq1K7vvvjt//OMfAbjssst45JFH+Pa3v02n
Tp04//zz8/9FkSQ1ui1dE6FHSmkFQEppOdAjW94PICLmRMQzEXFRHmKUJEnSRg466CDWrl3LwoUL
2bBhA3fccQcjRoyote6cOXO44YYb+NOf/sTrr7/Ogw8+uEmdadOmMXbsWFauXMmAAQM4/fTTAVi9
ejXHHXccY8aMYeXKlVxwwQUce+yxrF698WdMGfPmzaN///6sXLmSiy66iLPPPhuAK6+8kkMPPZSf
/exnrFmzhp/+9Kd5+kpIkppSvhZWrBxt0B44BDgNOBT4SkQMyVMbkiRJqqZyNMIDDzxA//796dmz
Z63TFKZPn86oUaPo378/2223HePGjdukzrHHHsshhxzCNttsw1VXXcWTTz7J0qVLmTlzJv369WP4
8OEUFRVx6qmnsueee3LvvffWGlNZWRlnn302EcFZZ53F3/72N/7+97/n+61Lkgqk/RZetyIiSlJK
KyKiFKj8zfBX4M8ppdUAETELGAg8XNuLVP8FVl5eTnl5+RaGI0lSy1VRUUFFRUWhw1AD5WNdwq2d
9DlixAgOO+ww3nrrLc4888xsXJsGtmzZMg444ICq52VlZZskG3r37l31ePvtt6e4uJhly5axbNky
ysrKatQtKytj6dKltcZUWlpa9Xi77bYD4P3336dHjx611pcktSy5JhEie1S6BxgJ/Ag4C5iRLf8j
cFFEfAb4BDgcuKGuF60tCy5JUluzcSJ9/PjxhQtGOWsOqz7tuuuu9O3bl9mzZ29214Odd96Zt99+
u+r54sWLN0k2VD///vvvs3r1anr27EnPnj256667atRdsmQJRx99dIPjzdeOEJKkwslli8dpwONA
v4hYEhGjgGuAL0XEQmBo9jkppXfJJA2eAZ4DnkkpzW6s4CVJktq6SZMm8dBDD1V96l/bdIZhw4Yx
ZcoUFixYwAcffMAVV1yxSZ1Zs2bx+OOP89FHH/Ff//VfHHTQQeyyyy4cc8wxvP7669x+++2sX7+e
O+64gwULFnD88cc3ONaSkhLefPPNhr9JSVKzkcvuDMNTSj1TStumlHZNKU3O7rrwxZTS51JKX84m
DyrrT0sp/UtKad+U0iWNG74kSVLbU/0T/b59+zJw4MBaz1U66qijGDNmDEcccQT9+vVj6NChm9QZ
Pnw448aNo1u3bjz//PPceuutAHTt2pX77ruPCRMm0L17dyZMmMDMmTMpLi6us726Yh09ejTTp0+n
W7dujBkzpmFvWpLU+Pr0qbdKFGoHxohw90epDYrxQRrr9760ORFBSslx302grv5I9v+gABEVxqhR
o+jdu3etIxS09dra/SS1BvZZ6+6P5Gt3BkmSJEmS1MqZRJAkSWrjXPBQkpSrLd3iUZIkSa3E5nZ2
kCSpOkciSJIkSZKknJhEkCRJkiRJOTGJIEmSJEmScmISQZIkSZIk5cQkgiRJkiRJyolJBEmSJNXp
0UcfpX///oUOo0GGDBnijhOS1EhMIkiSJLUwffr0oWPHjnTq1Ikdd9yRTp06cf755zdKW1/4whdY
sGBBo7x2XaZOnUr79u3p1KkTXbp0Yb/99mPmzJlNGoMkqXbtCx2AJEmSGiYimDlzJkOGDNmq11m/
fj3t2rXLU1T59a//+q/8+c9/BuCXv/wlp556KkuXLqVTp04FjkyS2jZHIkiSJLVAKaVay998802G
Dh1K9+7d6dGjByNGjGDNmjVV5/v27cu1117LgAED2GGHHVi/fj19+/bl+uuvZ8CAARQXF3Paaafx
0UcfATB37lx69+5d4/q66gJce+219OzZk169ejFx4kSKiop48803AZg1axZ77703nTp1onfv3txw
ww05vdczzjiDf/7zn7z++utVZU8++SSHHHIIxcXF7LfffsydO7fO6ydNmsRee+1Ft27dOProo1my
ZEnVuTFjxrDrrrvSuXNnBg0axKOPPlp17umnn2bQoEF07tyZnXfemQsvvHCL2pek1sQkgiRJUiuS
UuLSSy9l+fLlLFiwgL/+9a+MGzeuRp3bb7+d2bNn8+6771aNRJg+fTr3338/b731Fi+++CJTpkyp
qh8RNa6vq+6cOXP4yU9+wkMPPcQbb7xBRUVFjWu//vWv86tf/Yo1a9Ywf/58jjjiiHrfz/r165k0
aRIdOnSgrKwMgGXLlnHcccdx+eWXs3r1aiZMmMBXv/pVVq5cucn1M2bM4JprruHuu+/mnXfe4dBD
D+W0006rOj948GBeeuklVq9ezfDhwznllFOqkiKjR49mzJgxvPfee/zlL39h2LBhDW5fklobkwiS
JEkt0EknnUTXrl0pLi6ma9euTJw4EYDdd9+doUOH0r59e7p168YFF1ywyafko0ePpmfPnmy77bY1
ykpKSujSpQvHH388L7zwQp1t11V3+vTpjBo1ij333JPPfOYzjBs3rsaIiQ4dOvDKK6+wdu1aOnfu
zOc///k623jiiSfo2rUr2223Hd/73ve49dZb6d69OwC33norxx57LEceeSQAQ4cO5YADDmDWrFmb
vM7NN9/MJZdcQr9+/SgqKuLiiy/mhRde4O233wZg+PDhdOnShaKiIi644ALWrVvHwoULq+J94403
WLlyJR07dmTw4MENbl+SWhuTCJIkSVsgxsdWH1tjxowZrFq1itWrV7Nq1SrOOeccAP7+979z2mmn
0atXL7p06cKIESP4xz/+UePaXr16bfJ6JSUlVY87duzI+++/X2fbddVdtmxZjakP1R8D3HXXXcyc
OZOysjKGDBnCk08+WWcbBx98MKtWreLdd9/lhBNOqFofAWDx4sXceeeddO3atSqR8thjj7F8+fJN
Xmfx4sWMHj26qm63bt2ICJYuXQrAhAkT2GuvvSguLqa4uJg1a9ZUfb0mTpzIwoUL2XPPPTnwwAOr
Fnesq/2//e1vdb4fSWotXFhRkiRpC6Sxta9J0GTt17EmwqWXXkpRURGvvPIKnTt3ZsaMGXznO9+p
UWfj6Qn5svPOO/PXv/616vmSJUtqtLX//vtz9913s379em688UaGDRtWY32C2nTs2JGbbrqJ3Xbb
jXPOOYcBAwbQu3dvzjzzTG6++eZ6Y+rduzeXXXZZjSkMlR599FGuu+46Hn74Yfbaay8AunbtWvW1
3X333Zk2bRqQSYB87WtfY9WqVQ1qX5JaG0ciSJIktSJr165lhx12YMcdd2Tp0qVcd911Tdb2sGHD
mDx5Mq+99hoffPABV155ZdW5jz/+mGnTprFmzRratWvHjjvumPPOEMXFxfz7v/8748ePB2DEiBHc
e++93H///WzYsIH/+7//Y+7cuSxbtmyTa7/1rW9x9dVX8+qrrwLw3nvv8bvf/Q7IfK222WYbunXr
xkcffcQVV1zB2rVrq6697bbbqkYldO7cmYigqKioQe1LUmtjEkGSJKkFOv744+nUqVPV8dWvfhWA
sWPH8uyzz1atV1BZXqm2UQgNGZmwubpHHXUU559/PkOGDKFfv34cfPDBAFVrL9xyyy307duXLl26
8Mtf/rLqU/5cjB49mtmzZzN//nx69erFjBkzuPrqq9lpp50oKytjwoQJbNiwYZMYTzrpJC6++GJO
PfVUunTpwr777sucOXMAOPLIIznyyCPp168fffv2pWPHjjWmYMyZM6dqN4kLLriAO+64g2233bbe
9iWpNYu6hsI1esMRqVBtSyqcGB8FHwIsNXcRQUqpccabq4a6+iPZ/4MCRNS6vPbaa+yzzz6sW7eO
oqK2+9mV95PU8thnrbs/0nZ/mkuSJCnv7r77bj766CNWr17N97//fU444YQ2nUCQpNbGn+iSJEnK
m5tvvpkePXqwxx57sM0223DTTTcVOiRJUh65O4MkSZLyZvbs2YUOQZLUiByJIEmSJEmScmISQZIk
SZIk5cQkgiRJkiRJyolJBEmSJEmSlBMXVpQkSdpIWVkZEZtsjS1tkbKyskKHIEl5U28SISImAscB
K1JK+2bLioE7gDJgETAspfRetWt2BV4BxqaUbmiEuCVJkgCIiNHA17NPf5VS+ml9fZX6LFq0KN9h
SpLUKuQynWEycORGZRcDD6aUPgc8BFyy0fnrgVm5BlFRUZFrVanF8j5XW+B9rqYWEXsD5wAHAJ8H
jouI3am/r7IJ71+1VN67asm8f1ueepMIKaVHgdUbFZ8ITM0+ngqcVHkiIk4E3iQzEiEn3jhqC7zP
1RZ4n6sA+gNPpZTWpZTWA38GTgZOoI6+Sl28f9VSee+qJfP+bXm2dGHFHimlFQAppeVACUBE7AB8
DxgP5DyRsCmHDDbVTdqU3wy+p+bfDjTdfe7/U8toqzW+J/A+bwnttELzgUMjojgiOgLHAL2Bko36
Kj3qe6GmuH+b4v/ZNtpeG967za8d28id92/LayNfuzNsyP47FvhxSumD7POcEgkmEVpGW76nreMf
V82/naZsqzW+J/A+bwnttDYppdeAHwEPkJlK+Tywvraq9b2WHVnbaKlteO82v3ZsI3fevy2vjUip
3t+pREQZcG+1hRUXAOUppRURUQo8nFLqHxF/BnplLysm80v88pTSTbW8Zv0NS5LURqWU3BpgC0TE
VcDbwGhq6avUUt/+iCRJdaitP5LrFo9BzVEF9wAjyWT+zwJmZBs4rOqCiLHA2toSCHUFI0mS1FAR
sVNK6Z3s7lBfAQ4C+lJLX2Vj9kckSWqYXLZ4nAaUA90iYgmZKQvXANMj4mxgMTCsMYOUJEnajLsi
oivwMXBeSmlNRPwIuNO+iiRJ+ZXTdAZJkiRJkqR8LaxIRJwUERsiol8eXutrETE/ItZHxMBq5e0j
YkpEvBQRr0TExVvbltQQeb7Pr42IBRHxQkTcFRGdsuVlEfFBRDyXPWqdEiTlU/a+/k215+0i4p2I
uCdPr39JRLyevee/nC3bLiLuy5a9HBFX56MttW1N1B/pGhEPRcTaiPjp1rYjVbI/rZbKPnLbkrck
AnAq8AhwWkMvjIiN43iZzJzGuRuVnwJ0yC7weADwzez8R6mp5PM+vx/YO6X0eeB14JJq595IKQ3M
HudtcbRS7v4J/EtEbJt9/iUyi9NttYjoT2YoeX/gaOCmiKich35ddrG7/YAvRMSR+WhTbVpT9Ef+
D7gM+M8tCVDaDPvTaqnsI7cheUkiRMT2wCHAOVS7cSLi8IiYm/2k6bXq2aJs9n5CRDxPZgGkKiml
hSml19l0i8gEbB8R7YCOwDpgTT7eg1SfRrjPH0wpVW6P+iSf7mwCOW6PKuXZLODY7OPTgN9WnoiI
QRHxeEQ8GxGPRsQe2fK5EbFvtXqPRMQ+G73uicDtKaVPUkqLyHQIBqeUPkwpzQVIKX0CPEfN7wOp
QZqqP5JS+iCl9DiZfoiUF/an1VLZR2578jUS4URgTkrpDeAfEbFftXODgP8g8wnUZyPi5Gz59sAT
KaX9sr+Ic/E74APgb8AiYEJK6d18vAEpB415n58NzK72vE92mNbDEfGFPL4HqS4JuB04LTsaYV/g
qWrnFwBfSCntT2aB3R9my38NjALIJha2TSm9vNFr70LNUQ1Ls2VVIqILcDzwp7y8G7VVTdUfkRqD
/Wm1VPaR25h8JRFOI9P5BLgDGF7t3LyU0uKUWcHxt0Dlf/Z64PcNbGcw8AlQCuwGXBgRfbYwZqmh
GuU+j4gfAB+nlKZli5YBu6aUBpIZKjstInbI03uQ6pRSmg/0IXOvz6Rmtr8L8LuIeBn4MbBXtvx3
wLHZT7TOBqY0tN3stdOAn2RHKkhbqqn6I1JjsD+tlso+chtT7xaP9YmIYuAIMnNpE9COzCdaF2Wr
bLz9Q+XzD1PDt4YYTibLtQF4JyIeIzOXa9GWxC7lqrHu84gYCRyTfe3MhSl9DKzOPn4uIv4C9CMz
1FtqbPcA15HZ2rd7tfL/Bh5KKZ0cEWXAwwAppQ8j4gHgJDLzbPev5TWXAr2rPe+VLav0S2BhSunG
fL0JtT1N3B+R8sr+tFoq+8htUz5GIpwC/Cal1DeltFtKqQx4q9rwksHZlTSLgH8js+AG5D6fpXq9
JWRvpOzcm4OA17b6HUj1y/t9HhFHkfkBe0JKaV218u6VC8xExG7AZ4E38/+WpBoq79VJwPiU0isb
ne/Mp3/4j9ro3ETgp2Q+bXivlte+Bzg1IjpERF8y9/Q8gIi4EuiUUrogD+9BbVtT9kdyKZcawv60
Wir7yG1QPpII/wb8YaOyu/h0UY1ngJ8BrwB/SSndnS3fXObppIh4m8wPtfsionIezM+BHSNiPpm5
uhOzw2+lxpb3+xy4EdgBeCBqblNzGPBSRDwH3Al807mKagIJIKW0NKX0s1rOXwtcExHPstHvpMnR
hwAAANFJREFUjpTSc2QW5Zpc6wun9CqZe/lVMos3npdSShGxC3ApsFdEPJ/9Pjg7b+9IbU1T9keI
iLeA64GzImJJROyZn7ehNsr+tFoq+8htUDTmCL6IOBz4z5TSCY3WiFRg3udq6yKiJ5mpDv4RpWbJ
n9Nqybx/1VJ577Ze+VpYUZLUBkXEGcATZEYUSJIkqZVr1JEIkiRJkiSp9XAkgiRJkiRJyolJBEmS
JEmSlBOTCJIkSZIkKScmESRJkiRJUk5MIkiSJEmSpJyYRJAkSZIkSTn5/wNfq10SmMMcAAAAAElF
TkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Given these charts, we can see that FB was trending down for the four days preceding the earnings release, and AAPL was trending down for a whopping 8 days (we don't count the peak day). This will define the methodology that we will use for the study.</p>
<p>So what are the results? For a given horizon, how well does the market actually perform?</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="c1"># Read in the events for each stock;</span>
<span class="c1"># The file was created using the first code block in the Appendix</span>
<span class="kn">import</span> <span class="nn">yaml</span>
<span class="kn">from</span> <span class="nn">dateutil.parser</span> <span class="k">import</span> <span class="n">parse</span>
<span class="kn">from</span> <span class="nn">progressbar</span> <span class="k">import</span> <span class="n">ProgressBar</span>
<span class="n">data_str</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;earnings_dates.yaml&#39;</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">read</span><span class="p">()</span>
<span class="c1"># Need to remove invalid lines</span>
<span class="n">filtered</span> <span class="o">=</span> <span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="s1">&#39;{&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">x</span><span class="p">,</span> <span class="n">data_str</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">))</span>
<span class="n">earnings_data</span> <span class="o">=</span> <span class="n">yaml</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">filtered</span><span class="p">))</span>
<span class="c1"># Convert our earnings data into a list of (ticker, date) pairs</span>
<span class="c1"># to make it easy to work with.</span>
<span class="c1"># This is horribly inefficient, but should get us what we need</span>
<span class="n">ticker_dates</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ticker</span><span class="p">,</span> <span class="n">date_list</span> <span class="ow">in</span> <span class="n">earnings_data</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="k">for</span> <span class="n">iso_str</span> <span class="ow">in</span> <span class="n">date_list</span><span class="p">:</span>
<span class="n">ticker_dates</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">ticker</span><span class="p">,</span> <span class="n">parse</span><span class="p">(</span><span class="n">iso_str</span><span class="p">)))</span>
<span class="k">def</span> <span class="nf">does_trend_down</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">event</span><span class="p">,</span> <span class="n">horizon</span><span class="p">):</span>
<span class="c1"># Figure out if the `event` has a downtrend for</span>
<span class="c1"># the `horizon` days preceding it</span>
<span class="c1"># As an interpretation note: it is assumed that</span>
<span class="c1"># the closing price of day `event` is the reference</span>
<span class="c1"># point, and we want `horizon` days before that.</span>
<span class="c1"># The price_data.hdf was created in the second appendix code block</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">ticker_data</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_hdf</span><span class="p">(</span><span class="s1">&#39;price_data.hdf&#39;</span><span class="p">,</span> <span class="n">ticker</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">ticker_data</span><span class="p">[</span><span class="n">event</span><span class="o">-</span><span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="p">):</span><span class="n">event</span><span class="p">]</span>
<span class="n">midpoints</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;Open&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span> <span class="o">+</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;Close&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span>
<span class="c1"># Shift dates one forward into the future and subtract</span>
<span class="c1"># Effectively: do we trend down over all days?</span>
<span class="n">elems</span> <span class="o">=</span> <span class="n">midpoints</span> <span class="o">-</span> <span class="n">midpoints</span><span class="o">.</span><span class="n">shift</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="n">elems</span><span class="p">)</span><span class="o">-</span><span class="mi">1</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">elems</span><span class="o">.</span><span class="n">dropna</span><span class="p">()[</span><span class="n">elems</span> <span class="o">&lt;=</span> <span class="mi">0</span><span class="p">])</span>
<span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
<span class="c1"># If the stock doesn&#39;t exist, it doesn&#39;t qualify as trending down</span>
<span class="c1"># Mostly this is here to make sure the entire analysis doesn&#39;t </span>
<span class="c1"># blow up if there were issues in data retrieval</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">def</span> <span class="nf">study_trend</span><span class="p">(</span><span class="n">horizon</span><span class="p">,</span> <span class="n">trend_function</span><span class="p">):</span>
<span class="n">five_day_events</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="n">horizon</span><span class="o">*</span><span class="mi">2</span> <span class="o">+</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">invalid_events</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ticker</span><span class="p">,</span> <span class="n">event</span> <span class="ow">in</span> <span class="n">ProgressBar</span><span class="p">()(</span><span class="n">ticker_dates</span><span class="p">):</span>
<span class="k">if</span> <span class="n">trend_function</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">event</span><span class="p">,</span> <span class="n">horizon</span><span class="p">):</span>
<span class="n">ticker_data</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_hdf</span><span class="p">(</span><span class="s1">&#39;price_data.hdf&#39;</span><span class="p">,</span> <span class="n">ticker</span><span class="p">)</span>
<span class="n">event_data</span> <span class="o">=</span> <span class="n">ticker_data</span><span class="p">[</span><span class="n">event</span><span class="o">-</span><span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="p">):</span><span class="n">event</span><span class="o">+</span><span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="p">)][</span><span class="s1">&#39;Close&#39;</span><span class="p">]</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">five_day_events</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">([</span><span class="n">five_day_events</span><span class="p">,</span> <span class="n">event_data</span><span class="p">])</span>
<span class="k">except</span> <span class="ne">ValueError</span><span class="p">:</span>
<span class="c1"># Sometimes we don&#39;t get exactly the right number of values due to calendar</span>
<span class="c1"># issues. I&#39;ve fixed most everything I can, and the few issues that are left</span>
<span class="c1"># I assume don&#39;t systemically bias the results (i.e. data could be missing</span>
<span class="c1"># because it doesn&#39;t exist, etc.). After running through, ~1% of events get</span>
<span class="c1"># discarded this way</span>
<span class="n">invalid_events</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">ticker</span><span class="p">,</span> <span class="n">event</span><span class="p">))</span>
<span class="c1"># Remove our initial zero row</span>
<span class="n">five_day_events</span> <span class="o">=</span> <span class="n">five_day_events</span><span class="p">[</span><span class="mi">1</span><span class="p">:,:]</span>
<span class="n">plot_study</span><span class="p">(</span><span class="n">five_day_events</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">gcf</span><span class="p">()</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s1">&#39;Action over {} days: {} events&#39;</span>
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">horizon</span><span class="p">,</span><span class="n">five_day_events</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">gcf</span><span class="p">()</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">18</span><span class="p">,</span> <span class="mi">6</span><span class="p">)</span>
<span class="c1"># Start with a 5 day study</span>
<span class="n">study_trend</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">does_trend_down</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>100% (47578 of 47578) |###########################################################| Elapsed Time: 0:21:38 Time: 0:21:38
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYHVWd//H393Z39qTJBglJOmGXRSDsgoONiiyOgIoK
qAjjwiig4/xUcEESx1FxXFA2QUHQEZFRUBkWGZXGhC1hSSB0AiHQ2UNCEggBkt7O74+6nXSaTuiQ
m65e3q/nqedW1T236tu3s9T93HNORUoJSZIkSZKkUijkXYAkSZIkSeo5DBokSZIkSVLJGDRIkiRJ
kqSSMWiQJEmSJEklY9AgSZIkSZJKxqBBkiRJkiSVjEGDJKnHi4hTIqI5IvbsQNtPRMSoVtvXRMRb
tm+FpRMRTRHxaEQ8FhF/7ED78RHxRCfVdmpEzCrWeFCr/eURcX1EPB4RT0bEha2e+3ZELIiINW2O
9U8R8UhENETEBzqj/vZExMnd6c+HJEmdwaBBktQbnAZMAU7vQNuzgDEtGymlz6SU5mynurZJRJS1
s/uVlNJBKaWJKaVTOnioVMq6tuAJ4P3AvW32fwjok1LaHzgEOCciqorP/Rk4tJ1jzQc+AfxmO9Xa
UacA++ZcgyRJXYpBgySpR4uIgcBRwCdpEzRExAXFb9Efi4jvRMQHyT7o/nexV0C/iLin5dv3iDi9
2P7xiPheq+O8XPzmfUZE3B8RI9upY2hE3BoRM4tt9ovMcxExpFW7pyNiZESMiIjfR8RDxeVtxecv
johfRcRU4Fft/cgdeE8OLtb6GHBuq/3jI+IfEfFwcTmiuP+GiDipVbv/joj3RcQ+xdoeLR5vty2d
N6X0VEppbjs1JmBgMTgZAKwH1hRfMy2l9Hw7x1qQUprFG4QkEfHRVjVeFRGFiDgnIr7fqs0nIuKn
m2kfxf2v+x0XfycnAd8vtt8lIj5f7JUxIyJu3FJtkiT1VAYNkqSe7mTgrpTSM8ALETERICKOB94H
HJpSmgh8P6X0B2A6cEaxV8C6loNExGjge0A1cCBwaKsP3wOB+1NKB5L1nPh0O3VMBh5NKR0AfB34
dUopAX8k+5afiDgMqEsprQB+AvwopXQ4cCpwbatj7Q28M6X00XbO07cYEtwfESdv5j25Dji3+HO3
thx4d0rpELJeIJcV918LnF2scQjwNuB24F+BS1NKB5EFNIuKbW5vPfykA34PvAosBeqAH6SUXtyK
17erOKThI8CRxRqbgTOAP1B8z4s+Aty0mfYt7/HrfscppQfIelx8ufjn5TngAuDAYrt/3dafQZKk
7qg87wIkSdrOTgcuLa7/rrj9GPBu4JcppfUArT7YBu33CjgUuCeltAogIn4DHE32QbM+pXRHsd0j
xWO39XbgA8Vz3RMRwyJiEHAz8E3gBrIP978rtn83sHfLN+rAoIgYUFz/c0qpfjM/7/iU0tKI2AX4
e0Q8XvwATLHuSqAypXRfcdevgeOL6xXA1RFxINAE7FGs9x8RcUVEDCcLPf6QUmqOiAeAr0fEWODW
YphDSum9m6ltcw4DGoFRwHBgSkT8NaVUt5XHaetdwEHA9OL72A94PqX0QkTMKwY7zwB7pZTuj4hz
22m/rHisjvyOAWYCN0Y2P8YbzpEhSVJPZNAgSeqxImIo8E5gv4hIQBlZV/uvvNlDbmZ/Q6v1Jtr/
/7VtF/8ASCk9EBG7RcQIsvH+32r1/OEppYZNXpTlDq9srsCU0tLi43MRUQNMBJ7bXPs2vggsSynt
XxzG8Fqr534FfJwsDDmreI7fRsSDwD8Dd0TEZ1JKNR08V2tnkPU6aQZWRMR9ZD0k6t7EsVoL4IaU
0tfbee4mst4Lc4BbO9C+dbCzud8xwHvJAqiTyEKY/Yo/lyRJvYZDJyRJPdmHgF+llHZJKe2aUhoP
PBcRbwf+Dzg7IvrDhlACsrkBhrRzrGnA0cWeCGVkPSNqtqKWKcDHiueqBlaklNYWn7sV+BFQ26pn
xd3AF1peHBEHvNEJImKHiOhTXB8BHAnUtm6TUnoJeDEijizu+lirpyvJhi8AnEkWzLS4Afi37BDZ
5JgRsUtK6bmU0mXAn4D936jG1uW2Wl9AFgi1zKlxBFkAsLn2WzpWa38DTo3inBmRzZPRMsnkH8mG
1ZxGFjpsrv24NzjHyxT/vBR7QVSllO4FLizuH7SFuiVJ6pEMGiRJPdlH2PhtdYtbgNNTSn8BbgMe
johHgf9XfP4G4GfFyf36UeyJkFJaRvbhsYZs6MXDKaX/Lb6mI3dtmAwcHBEzge+Q3TGhxc1kcwHc
1GrfF4BDIps8chZwTgfOsXfx53mM7EPzdzdzx4x/Aa4s/tyta78SOKv4+j1p1XMipbQcmA38slX7
D0d2u8rHyO688CvY/BwNkd1mdCFZkPC/EXFn8akrgMHFn/Mh4NriRI9ExCXF1/SP7DaX3yzuP6S4
/1Sy39frbtGZUpoNfAO4u/i+3002PKNlqMxssmDg4S20H91yuHbeR8h+Z1+OiEeA3ckmEn2cbHjF
T1JKazbzOkmSeqzI5qGSJEnavOL8EDOBg1JKL+ddjyRJ6rrs0SBJkrYoIt5FNgTjp4YMkiTpjdij
QZIkSZIklYw9GiRJkiRJUskYNEiSJEmSpJIxaJAkSZIkSSVj0CBJkiRJkkrGoEGSJEmSJJWMQYMk
SZIkSSoZgwZJkiRJklQyBg2SJEmSJKlkDBokSZIkSVLJGDRIkiRJkqSSMWiQJEmSJEklY9AgSZIk
SZJKxqBBkiRJkiSVjEGDJEmSJEkqGYMGSZIkSZJUMgYNkiRJkiSpZAwaJEmSJElSyRg0SJIkSZKk
kjFokCRJkiRJJVOSoCEiro2I5yPi8S20+WlEzI2IGRFxYCnOK0mSep+IOD4i5kTE0xFxQTvP7xUR
90fEuoj49zbP1UXEzIh4LCKmdV7VkiT1HqXq0fBL4LjNPRkRJwC7pZT2AM4Bflai80qSpF4kIgrA
5WTXHfsCp0fEW9o0WwmcD/xXO4doBqpTShNTSodt12IlSeqlShI0pJSmAqu30ORk4FfFtg8BlRGx
UynOLUmSepXDgLkppfkppQbgJrLrjA1SSi+klB4BGtt5feDQUUmStqvO+o92DLCw1fbi4j5JkqSt
0faaYhFbd02RgP+LiOkR8emSViZJkgAoz7uAtiIi5V2DJEldUUop8q6hBzgqpbQ0IkaSBQ6ziz0z
N/BaRJKkzevI9Uhn9WhYDIxrtT22uK9dKSWXDi4XX3xx7jV0p8X3y/fL96vrLL5fW7dog8VAVavt
LV5TtJVSWlp8XAHcSjYUo712Llux+PfZ98v3q+ssvl++X9tz6ahSBg1RXNrzZ+BMgIg4AngxpfR8
Cc8tSZJ6h+nA7hExPiL6AKeRXWdszoZrk4gYEBGDiusDgfcAs7ZnsZIk9UYlGToRETcC1cDwiFgA
XAz0AVJK6ZqU0h0RcWJEPAO8ApxdivNKkqTeJaXUFBHnAXeTfWFybUppdkScQ/G6ozjh9MPAYKA5
Ir4A7AOMBG4tDo0oB36TUro7n59EkqSeqyRBQ0rpjA60Oa8U59Kmqqur8y6hW/H92jq+X1vH92vr
+H7pzUop3QXs1Wbf1a3Wn2fTIZst1gIHbt/qeif/Pm8d36+t4/u1dXy/to7v1/YRWzPOojNEROpq
NUmSlLeIIDkZZKfwWkSSpPZ19Hqky911YnMmTJjA/Pnz8y5Db2D8+PHU1dXlXYYkSSXntUjn8FpC
krq/btOjoZic5FCRtoa/J0naPuzR0Hm8FsmX77MkdV0dvR7prNtbSpIkSZKkXsCgQZIkSZIklYxB
gyRJkiRJKhmDBkmSJEmSVDIGDZIkSZIkqWS6ze0t2/rmNy9lwYIXt9vxq6p24Fvf+rftdvzOcvbZ
ZzNu3Di+9a1v5V2KJEk9jtcjHeP1iCT1Lt02aFiw4EUmTJi03Y5fV7f9jt3iiiuu4Prrr+eJJ57g
jDPO4Lrrrtvu55QkSaXj9YgkSa/n0Int4JJLLulQuzFjxnDRRRfxyU9+cjtXJEmSehuvRyRJeTFo
2A7Wr1/foXannHIKJ510EsOGDXvDtpdccgljx45lyJAh7L333txzzz3ttnvsscc4+OCDqays5LTT
TmPdunVbVbskSeoZvB6RJOXFoGE7SCmV9HhPP/00V1xxBY888ghr1qzhL3/5CxMmTHhdu4aGBt7/
/vfziU98glWrVvGhD32IP/zhDyWtRZIkdQ9ej0iS8tJt52joSubNm8fvf/97IoKUEvfddx/f//73
SSkRERx++OG84x3veNPHLysro76+nlmzZjF8+HCqqqrabffggw/S2NjI5z//eQA++MEPcuihh77p
80qSpO7D6xFJUldh0FACu+22GxdccMGG7fXr1/OVr3ylpMe/9NJLmTRpErW1tRx33HH88Ic/ZPTo
0Zu0W7JkCWPGjNlk3/jx40tWhyRJ6rq8HpEkdRUOnegmTjvtNKZMmcL8+fMBuPDCC1/XZvTo0Sxe
vHiTfQsWLOiU+iRJUs/n9YgkqSMMGraDjo6JbGpqYt26dTQ1NdHY2Mj69etpamp6Xbunn36ae+65
h/r6evr06UP//v0pFF7/q3vb295GeXk5l112GY2Njdxyyy1MmzZtm38eSZLU/Xg9IknKS7cdOlFV
tcN2vbd0VdUOHW771FNPcdNNN20YE3nvvffyrW99a8OYyLe97W0ce+yxr3vdt7/9bSZPnkxEAPCb
3/yGiy++mG9+85ubtFu/fj0XXnghc+bMoaKigiOPPJJrrrkGgBNPPJGjjz6aCy+8kIqKCm655RY+
9alP8Y1vfIMTTzyRD37wg5scq3V7SZK0bbwe8XpEkvR6UeoZibdVRKT2amr5T1Ndm78nSd1RTV0N
NXU1G9arJ1QDUD2hesN63or/vkbedfQGXovky/dZkrqujl6PGDSopPw9SeruYnKQLu56/44ZNHQe
r0Xy5fssSV1XR69HnKNBkiRJkiSVjEGDJEmSJEkqGYMGSZIkSZJUMgYNkiRJkiSpZAwaJEmSJElS
yZTnXYAkSVJ3MH78eCK88cf2Nn78+LxLkCRto24dNJTivufd4d7pkiQpf3V1dXmXIElStxBd7T7F
b/be1aW473lXvXd6Z/vsZz/L2LFj+frXv77Vr/Xe15K6u676f0FH71utbbe5axFJknq7jl6POEdD
CUyYMIF+/fqxatWqTfZPnDiRQqHAggULSn7O+vp6zjzzTIYNG8aoUaP44he/WLI6r7rqqjcVMkiS
JEmSZNBQAhHBLrvswm9/+9sN+2bNmsVrr7223cZyXn/99cyYMYO6ujqee+45TjnllC5ZpyRJkiSp
dzFoKJGPf/zj3HDDDRu2b7jhBj7xiU9s0uaOO+7goIMOorKykvHjxzN58uQNz918883suuuurF27
FoA777yT0aNHs3LlynbPV1FRQWVlJUOGDKF///684x3vKFmdZ599Nt/85jcBuPfeexk3bhw/+tGP
2GmnnRgzZgzXX399h84lSZIkSep9DBpK5IgjjuDll1/mqaeeorm5md/97nd87GMf22S+gkGDBvHr
X/+al156idtvv52f/exn/PnPfwbgwx/+MEcddRSf//znWbVqFZ/61Ke47rrrGD58eLvnO+igg3jw
wQeZNGlSyetsa9myZbz88sssWbKEX/ziF5x77rm89NJLW3VeSZIkSVLv0K3vOtFWTM63+39Lb4F3
vOMd7L333uy8886bPH/00UdvWN9vv/047bTTuPfeeznppJMAuPzyy9l///2prq7m5JNP5oQTTmj3
PKtXr+akk07i9ttv5+KLLyYiuPjiiwEYN24cd911F/vuu++brrOtPn36cNFFF1EoFDjhhBMYNGgQ
Tz31FIcddliH3hdJkiRJUu9RkqAhIo4HLiXrIXFtSumSNs8PAf4bqALKgB+mlK4vxblbK8VdJ7bF
xz72MY4++miee+45zjzzzNc9/9BDD/HVr36VWbNmUV9fT319PR/60Ic2PF9ZWcmHPvQhfvzjH3PL
Lbds9jz/8z//wz777MN73vMeDjnkEI4++mgigk984hM0NTVtMWToSJ1tDR8+nEJhY+eXAQMGbBji
IUmSJElSa9s8dCIiCsDlwHHAvsDpEfGWNs3OBZ5MKR0IHAP8MCJ6VG8KgKqqKnbZZRfuvPNOPvCB
D7zu+Y9+9KOccsopLF68mBdffJFzzjlnkyELM2bM4LrrruP000/n/PPP3+x5GhsbaWhoAGDYsGH8
9a9/5frrr+e4447jS1/60jbXKUmSJEnSm1WKORoOA+amlOanlBqAm4CT27RJwODi+mBgZUqpsQTn
7nKuu+46/v73v9O/f//XPbd27VqGDh1KRUUF06ZN48Ybb9zw3Lp16/j4xz/O9773Pa677jqWLFnC
VVdd1e45TjzxRKZPn87Pf/5zGhsbKSsr48gjj2Tu3LkMGDBgm+uUJEmSJOnNKkXQMAZY2Gp7UXFf
a5cD+0TEEmAm8IUSnLfLaH1ryF122YWDDjqo3eeuvPJKLrroIiorK/n2t7/NRz7ykQ3Pfe1rX2P8
+PF85jOfoU+fPvz617/moosuYt68ea8734QJE7jzzju54YYbGD58OBMnTmTUqFHcc889XHDBBdx9
993bVOfW/LySJEmSJLUWW7rbQIcOEPFB4LiU0meK2x8DDkspfb5NmyNTSv8vInYD/g/YP6X0uoH+
EZFaJjYEqK6uprq6mojY4p0RYnKUZI6GbT1Gb/dGvydJ6uq6yv8FNTU11NTUbNiePHkyKSWT3k4Q
Ecn/yyRJer3i5703vB4pRdBwBDAppXR8cftCILWeEDIi/hf4bkrpvuL234ALUkoPt3O8dv9zb+8D
bE1dDTV1NRvWqydUA1A9oXrD+hspxTG0kUGDpO6uqwQNbXX0P3ZtO4MGSZLa15lBQxnwFPAuYCkw
DTg9pTS7VZsrgOUppckRsRPwMHBASmlVO8frcNCgrsffk6TuzqBBBg2SJLWvo9cj23znh5RSU0Sc
B9zNxttbzo6Ic7Kn0zXAt4HrI+Lx4su+0l7IIEmSJEmSurdt7tFQavZo6N78PUnq7uzRIHs0SJLU
vk7r0SBJUkc5L44kSVLPZ48GlZS/J0kd1WV7DnTVuuzR0Gns0SBJUvt6XI+G8ePHE+H1VVc3fvz4
vEuQJEmSJOWo2wQNdXV1eZcgSZIkSZLeQCHvAiRJkiRJUs/RbXo0SJIkSZLUU6WUWLt2LcuWLaO+
vp59990375LeNIMGSZIkSZI6UXNzMytXrmTZsmUsWrSMp59exrPPLmPNmgSMZNCg5Vx2mUGDJEmS
JElqo6Ghgeeff55ly5ZRV5eFCvPnL6ehYRARo2huHsWgQYczaNAodthhMI2N63jxxZ/mXfY2MWiQ
JEmSJKkEXnnlFZYtW8bSpct45pmlzJ27jKVLXwJGkNIoyspGMWjQWxk5chTl5X3zLne7MWiQJEmS
JGkrpJRYvXo1S5cuZfHiZcydu4xnnlnG6tUNFAqjSGkUffvuwaBB/8TYsSMoFMryLrlTGTRIkiRJ
krQZjY2NLF++nGXLljF/fjb0oa7uedav70fEaJqbRzFw4MEMGjSK8eMriYi8S86dQYMkSZIkScBr
r722YejDs89mPRUWLVoJDKe5eRSFwigGDdqbYcNGUVHRP+9yuyyDBkmSJElSr9LQ0MCLL77ICy+8
wJIlzzN37lKeeWYZK1euI2InmptH0bfveAYNOpwxY3akUPCj89bw3ZIkSZIk9Tjr1q1j9erVrFq1
ipUrV7F48SoWL17N0qWrWLXqVSIqiRhOU9NODBx4AIMGHUdV1VCHPpSAQYMkSZIkqdtJKfHKK69s
CBNeeGEVCxeuYsmSLExYu7aRiKFEDKOpaRh9+oyhf/+30r//MKqqhhBRyPtH6LEMGiRJkiRJXVJz
czNr1qxh1apVrF69muXLN4YJy5atYv36ciKGAsNIaRh9++5O//5DGTx4GMOGDbR3Qk4MGiRJUrcS
EccDlwIF4NqU0iVtnt8L+CVwEPC1lNKPOvpaSVLna2xs5MUXX9wQJixbtjFMWL78RZqbBwAbw4T+
/fejf/+hjBgxjPLyfnmXr3YYNEiSpG4jsn6ulwPvApYA0yPiTymlOa2arQTOB055E6+VJG0H9fX1
rFq1qrisZsmSVSxatIqlS1ezcuXLQCUwlJSGUSgMo3//XenffyijRw+lrKwi7/K1lQwaJElSd3IY
MDelNB8gIm4CTgY2hAUppReAFyLin7f2tZKkbZdSYuXKlSxcuJCnn17I448vYMmSlygUsl4Jzc1D
KS8fRf/++9C//1DGjq2kUCjLu2yVkEGDJEnqTsYAC1ttLyILELb3ayVJm9HY2MiSJUuoq1tAbe1C
nnxyIa+80gcYR1nZOCorD6OqakcnX+xFDBokSZLamDRp0ob16upqqqurc6tFkrqatWvXsnDhQubN
W8gTTyxg3rznaW4eSUpV9O+/P5WV72X48CF5l6kSqKmpoaamZqtfZ9AgSZK6k8VAVavtscV9JX1t
66BBknqzlBIrVqxgwYIFzJmzkFmzFrJs2asUCuNIaRyVle9m9OidKSvrk3ep2g7ahu2TJ0/u0OsM
GiRJUncyHdg9IsYDS4HTgNO30L71fc229rWS1OvU19ezePFi5s/PeivMmbOIV18dAFRRUVFFZeVR
jB8/0ttGaosMGiRJUreRUmqKiPOAu9l4i8rZEXFO9nS6JiJ2Ah4GBgPNEfEFYJ+U0tr2XpvTjyJJ
XcKaNWtYsGBBcRjEQp57bgUpjaK5eRwDBx5MZeUpjBw5KO8y1c0YNEiSpG4lpXQXsFebfVe3Wn8e
GNfR10pSb9Hc3Mzzzz/PggULmT17AbNmLWTlygYixhFRxZAhxzNmzM4UCn5M1LbxT5AkSZIk9UDr
1q1j0aJF1NVlcyvMmbOY+vohpDSOPn12o7LyGKqqhjkMQiVn0CBJkiRJPcCaNWuoq6tj7twFPPHE
QhYsWA2MJqUqBg06guHDx1JRMSDvMtULGDRIkiRJUjdUX1/P/PnzmTNnHtOmzWPRorXABAqFKior
JzJ27CgKhbK8y1QvZNAgSZIkSd1ASomlS5cyd+48HnlkHrW1S2hu3hnYlR12OIWqqtFEFPIuUzJo
kCRJkqSu6qWXXmLevHnMnDmPRx99jldeGUhKuzJo0JGMHj2BsrI+eZcovY5BgyRJkiR1EevXr6eu
ro7a2nk8/PA8Fi9+jYhd6dNnd4YOfQ/Dh1fmXaL0hgwaJEmSJCknzc3NLFmyhKefzoZDzJmzjJTG
ALsxdOipjB8/yrtCqNspSdAQEccDlwIF4NqU0iXttKkGfgxUACtSSseU4tySJEmS1J2sXr2aZ56Z
x4wZ85gxo47XXhtMSrsxePDR7LzzeMrKKvIuUdom2xw0RDbbyOXAu4AlwPSI+FNKaU6rNpXAFcB7
UkqLI2LEtp5XkrR5NXU11NTVbFivnlANQPWE6g3rkiSpc6xbt47nnnuuOBziWZYtqwd2pW/ftzB0
6ImMHDk47xKlkipFj4bDgLkppfkAEXETcDIwp1WbM4A/pJQWA6SUXijBeSVJm9E6UIjJQc1ZNbnW
I0lSb9LU1MTixYt5+uksWHj66eeBcUTsxtChh1JVtaPDIdSjlSJoGAMsbLW9iCx8aG1PoCIi7gEG
AT9NKf26BOeWJEmSpFyllFi1alVxOMSzzJhRx/r1O5DSbgwZcgxjx1ZRKDg9nnqPzvrTXg4cBLwT
GAg8EBEPpJSe6aTzS5IkSVLJvPbaazz77LM8+eSzPPzwPFasaAJ2o1+/fRk69H306TMw7xKl3JQi
aFgMVLXaHlvc19oi4IWU0jpgXUT8AzgAaDdomDRp0ob16upqqqurS1CmJEndR01NDTU1NXmXIUlq
x4IFC/jP//wNDQ1VFAq7MXToEVRVjXA4hFRUiqBhOrB7RIwHlgKnAae3afMn4LKIKAP6AocDP9rc
AVsHDZIk9UZtg/bJkyfnV4wkaRMPPTSTxsajqao6Ku9SpC5pm4OGlFJTRJwH3M3G21vOjohzsqfT
NSmlORHxF+BxoAm4JqVUu63nliRJkqTO1NzczNSpcxgx4lN5lyJ1WSWZoyGldBewV5t9V7fZ/gHw
g1KcT5IkSZLysGDBAtasGczQoUPzLkXqsgp5FyBJkqQtW78evvQlWL4870okPfZYLRH75F2G1KUZ
NEiSJHVxKUFZGey/P9x8c7YtqfOllJgyZTYjRhg0SFvizVwlaRvU1NVQU1ezYb16QjUA1ROqN6xL
0rbq1w8uuQQ+8AE4++wsbLjiCthpp7wrk3qXRYsWsXp1f8aPH5F3KVKXZtAgSdugdaAQk4Oas2py
rUdSz3b44fDoozB5cta74Sc/gY98BLyjntQ5Zs6sBfbOuwypy3PohCRJUjfSrx9897tw223wH/8B
H/wgLFuWd1VSz5dS4h//mM3w4Q6bkN6IQYMkSVI3dNhhWe+GvfeGAw6AG2907gZpe1q6dCkrVpQx
cOCOeZcidXkGDZIkSd1U377wn/8Jt9+e9XJ4//th6dK8q5J6ppZhE+FYJekNGTRIkiR1c4ccAg8/
DG99Kxx4IPz3f9u7QSqllBJTp85m2DCHTUgdYdAgSZLUA/Ttm83ZcMcd8P3vw8knw5IleVcl9QzL
ly9nyZImBg0anXcpUrdg0CBJktSDHHxw1rth4sSsd8OvfmXvBmlbPfGEwyakrWHQIEmS1MP06ZPd
AvMvf4Ef/Qje9z5YvDjvqqTua8qU2eywg8MmpI4yaJAkSeqhJk6EadPg0EOz9euvt3eDtLVeeOEF
5s9/jSFDxuZditRtGDRIkiT1YH36wMUXw913w09+Au99LyxalHdVUvfhsAlp6xk0SJIk9QIHHpj1
bnjb27LeDdddZ+8GqSOmTnXYhLS1DBokSZJ6iYoKuOgi+Nvf4PLL4YQTYOHCvKuSuq7Vq1czb94a
Kiur8i5F6lYMGiRJknqZ/feHhx6Ct78dDjoIfvELezdI7Zk1qxZ4CxF+bJK2hn9jJEmSeqGKCvjG
N+Dvf4cYddoFAAAgAElEQVSrroLjjoMFC/KuSupa7rtvNkOGOGxC2loGDZIkSb3YW98KDz4I1dVw
8MFwzTX2bpAAXnrpJZ56ahU77DAh71KkbsegQZIkqZerqICvfQ3uuQd+/nN4z3tg/vy8q5LyVVs7
m5T2pFAoy7sUqdsxaJAkSRIA++0HDzwA73oXHHII/Oxn0Nycd1VSPu67bzaDBztsQnozDBokSZK0
QXk5XHgh3Hsv/PKXcOyx8NxzeVclda61a9dSW/s8Q4fumncpUrdk0CBJkqTX2WcfuO++bJLIww6D
K6+0d4N6j9ra2TQ370GhUJ53KVK3ZNAgSZKkdpWXw1e+Av/4B/zqV9mQimefzbsqaft74IHZDBzo
sAnpzTJokCRJ0hbtvXfWu+G97816N1x+ub0b1HO9+uqrzJy5mGHDds+7FKnbsi+QpG6hpq6Gmrqa
DevVE6oBqJ5QvWFdkrT9lJXBl74E73sfnH02/P73cO21sNtueVcmldbs2XNobt6NsrKKvEuRui2D
BkndQutAISYHNWfV5FqPJPVWe+0FU6bAT34Chx8OF10En/tcdotMqSd48MHZDBhwQN5lSN2aQyck
SZK0VcrK4N//He6/H267LRta8etfQ1NT3pVJ22bdunU89tgChg3bI+9SpG7NoEGSJElvyp57wl//
Cj//OVx9Ney3H/zud87foO7rqaeeorFxAuXlffMuRerWDBokSZK0TY45JhtOceml8MMfwsSJ8Mc/
Qkp5VyZtnQcfrKVfP+82IW0rgwZJkiRtswg47jh46CH49rdh8mQ49FC44w4DB3UP69ev55FH6hgx
Yq+8S5G6PYMGSZIklUxEdmeKRx6Br34VvvxlOPLIbIiFgYO6srlz59LQUEV5eb+8S5G6PYMGSZIk
lVyhAB/8IDz+OJx/fnZnipYhFlJX9NBDtfTps3feZUg9gkGDJEmStpuyMjjjDKithbPOgjPPhPe8
JxtiIXUVDQ0NTJs2jxEj3pJ3KVKPUJKgISKOj4g5EfF0RFywhXaHRkRDRHygFOeVJElS91BengUN
Tz2V9XQ49VT453+GRx/NuzIJnnnmGerrx1BRMSDvUqQeYZuDhogoAJcDxwH7AqdHxOuiwGK77wF/
2dZzSpIkqXvq0wfOOQfmzs0mj/znf86Ch1mz8q5Mvdn06bWUlztsQiqVUvRoOAyYm1Kan1JqAG4C
Tm6n3fnA74HlJTinJEmSurF+/bK5G555Jpss8l3vgtNPz3o8SJ2psbGRBx6Yy8iRBg1SqZQiaBgD
LGy1vai4b4OI2Bk4JaV0FRAlOKckSZJ6gAED4P/9vyxweOtb4e1vz4ZYPPts3pWpt3j22WdZt24n
+vQZlHcpUo/RWZNBXgq0nrvBsEGSJEkbDB4MX/taFjhMmACHHQaf+QwsWJB3ZerpHn64lrIyezNI
pVRegmMsBqpabY8t7mvtEOCmiAhgBHBCRDSklP7c3gEnTZq0Yb26uprq6uoSlClJUvdRU1NDTU1N
3mVIna6yEiZNyoZV/OAHMHFiNqTia1+DnXfOuzr1NE1NTTzwwNOMGHFM3qVIPUopgobpwO4RMR5Y
CpwGnN66QUpp15b1iPglcNvmQgbYNGiQJKk3ahu0T548Ob9ipBwMHw7f/S588YtwySXZsIqzzoIL
LoAdd8y7OvUUdXV1rF07jOHDK/MuRepRtnnoREqpCTgPuBt4ErgppTQ7Is6JiM+095JtPackSZJ6
hx13hB/+EJ54AurrYe+94atfhVWr8q5MPcGjj9ZSKDhsQiq1kszRkFK6K6W0V0ppj5TS94r7rk4p
XdNO239JKd1SivNKkiSpd9h5Z7jsMnjsMVi5EvbcMxti8dJLeVem7qq5uZmpU+cwYsQ+eZci9Tid
NRmkJElSSUTE8RExJyKejogLNtPmpxExNyJmRMTEVvvrImJmRDwWEdM6r2qVSlUVXHMNTJsGdXWw
++7wne/A2rV5V6buZsGCBaxZM4T+/YfmXYrU4xg0SJKkbiMiCsDlwHHAvsDpEfGWNm1OAHZLKe0B
nANc1erpZqA6pTQxpXRYJ5Wt7WDXXeH662HqVJg1C3bbLZs88tVX865M3cVjj9US4bAJaXswaJAk
Sd3JYcDclNL8lFIDcBNwcps2JwO/AkgpPQRURsROxecCr396lL32ghtvhL/9DR54IOvh8NOfwrp1
eVemriylxJQpsx02IW0n/kcrSZK6kzHAwlbbi4r7ttRmcas2Cfi/iJgeEZ/eblWq0+23H/zhD3D7
7fB//5fN4XDTTZCchlztWLRoEatX92fAgBF5lyL1SKW4vaUkSVJ3cVRKaWlEjCQLHGanlKa2bdT6
VtttbzWqrm3iRLjttmxIxXnnZfM5XHYZ7Ltv3pWpK5k5sxZw2IT0Rmpqaqipqdnq1xk0SJKk7mQx
UNVqe2xxX9s249prk1JaWnxcERG3kg3F2GLQoO7p7W+Hhx+Gq66C6mr4xCfg4oth8OC8K1PeUkr8
4x+zGT789LxLkbq8tmH75MmTO/Q6h05IkqTuZDqwe0SMj4g+wGnAn9u0+TNwJkBEHAG8mFJ6PiIG
RMSg4v6BwHuAWZ1XujpbeTmcf342WeTKlbD33vDb3zqcordbunQpK1aUMXDgjnmXIvVYBg2SJKnb
SCk1AecBdwNPAjellGZHxDkR8ZlimzuA5yLiGeBq4HPFl+8ETI2Ix4AHgdtSSnd3+g+hTrfTTvDL
X8LNN8P3vw/HHJOFD+qdWoZNRETepUg9lkMnJElSt5JSugvYq82+q9tsn9fO654DDty+1akrO/LI
bDjFz34G73wnfOxjMGkSDBmSd2XqLNndJmoZNuzUvEuRejR7NEiSJKnXKCuDc8/NejS89FI2nOI3
v3E4RW+xfPlyli5tZtCg0XmXIvVoBg2SJEnqdXbcEa69Nrsl5o9+lE0Y+cQTeVel7e2JJxw2IXUG
gwZJkiT1WkccAdOmwWmnwbveBf/2b1lPB/VMU6bMZocd9sm7DKnHM2iQJElSr1ZWBp/9LDz5JLzy
Sjac4te/djhFT/PCCy8wf/5rDBkyNu9SpB7PoEGSJEkCRo6En/8cbr0VfvITOPpomDkz76pUKg6b
kDqPQYMkSZLUyuGHw0MPZXelOPZY+Pzn4cUX865K22rqVIdNSJ3FoEGSJElqo6wMzjkHamth3bps
OMUNN0Bzc96V6c1YvXo18+atobKyKu9SpF7BoEGSJEnajBEj4Jpr4M9/hiuugH/6J5gxI++qtLVm
zaolYm8i/PgjdQb/pkmSJElv4NBD4cEH4ayz4Ljj4PzzHU7RnUydWsvgwXvnXYbUaxg0SJIkSR1Q
KMCnP50Np2hoyIZT/PKXDqfo6l566SWefno1O+wwIe9SpF7DoEGSJEnaCsOHw89+Brfdlj0edRQ8
+mjeVWlzamtnk9JeFApleZci9RoGDZIkSdKbcMgh8MAD8KlPwQknwLnnwurVeVelthw2IXU+gwZJ
kiTpTSoU4JOfhNmzIaVsOMW11zqcoqtYu3Yts2cvZ+jQXfMuRepVDBokSZKkbTRsGFx5JdxxB/zi
F3DkkfDII3lXpWzYxJ4UCuV5lyL1KgYNkiRJUokcdBDcdx+ccw68973w2c/CqlV5V9V73X9/LQMG
OGxC6mwGDZIkSVIJFQpw9tnZcIqysmw4xc9/7nCKzvbqq6/y+ONLGDZs97xLkXodgwZJkiRpOxg6
FC6/HO66K7sN5hFHwPTpeVfVe8yePYeUdqesrCLvUqRex6BBkiRJ2o4mToSpU+Fzn4OTTsruTvHS
S3lX1fM98EAt/fs7bELKg0GDJEmStJ0VCnDWWVBbC42NsM8+cPPN2Z0qVHrr1q1jxoyFDBu2R96l
SL2SQYMkSZLUSYYOhauvzkKGb30rmzDyuefyrqrneeqpp2hq2oXy8r55lyL1SgYNkiRJUic76ih4
9FE4+mg49FC45BJoaMi7qp7jwQdr6dvXYRNSXgwaJEmSpBz06QMXXgjTpsE992S3xnzggbyr6v7W
r1/PI4/UMWLEXnmXIvVaBg2SJElSjnbdFe68E77xDTj1VPjXf4XVq/OuqvuaO3cuDQ1VlJf3y7sU
qdcyaJAkSZJyFgEf+Qg8+WQ2ceS++8Jvf+tkkW/GQw/V0qePwyakPJUkaIiI4yNiTkQ8HREXtPP8
GRExs7hMjYi3luK8kiRJUk+yww5w5ZVwyy3wve/B8cfDvHl5V9V9NDQ0MG3aPEaMeEvepUi92jYH
DRFRAC4HjgP2BU6PiLZ/s58Fjk4pHQB8G/j5tp5XkiRJ6qmOOAIefhje/W44/HD4znegvj7vqrq+
Z555hvr6MVRUDMi7FKlXK0WPhsOAuSml+SmlBuAm4OTWDVJKD6aUXipuPgiMKcF5JUmSpB6rogK+
/OUscLjvPpg4EaZMybuqrm369FrKyx02IeWtFEHDGGBhq+1FbDlI+BRwZwnOK0mSJPV4EybA//4v
TJ4Mp58On/40rFqVd1VdT2NjIw88MJeRIw0apLyVd+bJIuIY4Gzg7VtqN2nSpA3r1dXVVFdXb9e6
JEnqampqaqipqcm7DEldRER2R4pjj83uTrHPPvCDH8BHP5o9J3j22WdZt24n+vQZlHcpUq9XiqBh
MVDVantscd8mImJ/4Brg+JTSFm/Y0zpokCSpN2obtE+ePDm/YiR1GZWVcNll8PGPwznnwPXXw1VX
wR575F1Z/h5+uJayMnszSF1BKYZOTAd2j4jxEdEHOA34c+sGEVEF/AH4eErJeXMlSZKkbXDYYTB9
Opx4IrztbfAf/wHr1+ddVX6ampq4//6nGDHCoEHqCrY5aEgpNQHnAXcDTwI3pZRmR8Q5EfGZYrOL
gGHAlRHxWERM29bzSpIkSb1ZeTn8+7/Do49mocMBB8C99+ZdVT7q6up45ZXh9OtXmXcpkijRHA0p
pbuAvdrsu7rV+qeBT5fiXJIkSZI2qqqCP/0J/vhH+NjHslti/td/wYgReVfWeR59tJZCYZ+8y5BU
VIqhE5IkSZJyFAHvfz/U1mbzOOy7L9xwA6SUd2XbX3NzM1OnznHYhNSFGDRIkiRJPcTgwXDppXDH
HfDTn8I73wlz5uRd1fa1YMEC1qwZQv/+Q/MuRVKRQYMkSZLUwxx8MDz0EJxyCrz97XDxxbBuXd5V
bR+PPeawCamrMWiQJEmSeqDycvjCF2DGDHjiCdh/f/j73/OuqrRSSkyZMpvhwx02IXUlBg2SJElS
DzZ2LNxyC/zgB3D22XDmmbBiRd5VlcaiRYtYvbo/Awb0opkvpW7AoEGSJEnqBU46CZ58EkaOhP32
g2uvhebmvKvaNjNn1hLhsAmpqzFokCRJknqJQYPghz+Eu+6Cq6+G6ursThXdUUqJf/xjNsOGOWxC
6moMGiRJkqReZuJEeOAB+PCH4eij4RvfgFdeybuqrbN06VJWrChj4MAd8y5FUhsGDZIkSVIvVFYG
550HM2fCM8/AnnvCz38OjY15V9YxLcMmIiLvUiS1YdAgSZIk9WJjxsBNN8Gtt8JvfpPdneJPf4KU
8q5s87K7TdQydKjDJqSuyKBBkiRJEocdBvfcA//1X/D1r2dDKh58MO+q2rd8+XKWLm1m0KDReZci
qR0GDZIkSZIAiID3vjcbTnH22fChD8Gpp8LTT+dd2aaeeKIWcNiE1FUZNEiSJEnaRFkZ/Mu/wFNP
wSGHwJFHwuc+B88/n3dlmX/8o5YddnDYhNRVGTRIkiRJateAAXDhhTBnDvTtC/vsA5Mnw9q1+dX0
wgsvsHDheoYMGZtfEZK2qDzvAiRJaqu5uZnGxkYaGxtpamrasN6R7ZZ99fWNrF+fLY2NTaxf37hh
X2Nj9nzrpbGxiYaGRtgBGhoaqKioyPttkKQuY8QI+PGP4fzzs1th7rEHXHwxfPKT0Nn/XGbDJvZ2
2ITUhRk0SFIv0NzcTHNzM01NTRuWUm1nH9CbaGxspqGhacPS2LhxX7aebbe0B/jGN66gvr6RhoZN
P+w3NyegnEKhnOy/qjIisvWIclIqK+7fuKRURkot61m7iL4UCuWtlrI22+VEbNzXr1858CWDBkna
jF13hRtvhEcega98JQsfvvtdeP/7s/kdOsOUKbVUVh7fOSeT9KYYNEhSJ0sp0dzcTENDA42NjZs8
trev5bG+voH6+kbWrWtg/frscd26jfuyb+sbWL++ofgtffbIzvAv//IfQIGIMrIP7WVko+fKNuxr
2W5ZIspIKduX0sbt7EN+WXF/yzH6UiiUEVEofnDP2kcUNqy3fZ5KWL/+wxQKZfTrV86AARs/+Gft
/KZKkrqqgw+Gv/4V/vIXuOAC+MEPsrtVHHXU9j3v6tWree65tVRVVW3fE0naJgYNktRKSqnVB/v6
DR/+W9Zf/9jAq6/Ws25dAwDXXvs/bT78NxS77zfQ0LDxsbkZIiqK39JvfMz+Wa7YsJ5SRfFb+gqa
mysoFCooFAZQKJRTVtay3bJevmG7oqKCvn0rij0Cvs748d/skh/cBw4cmXcJkqQ3KQKOPx6OPRZ+
8xs44wyYOBG+9z14y1u2zzlnzaoF3kKEU81JXZlBg6Ruad26de1+8G9v32uv1fPaa9m3/y2hwGuv
1bN+fQPr1tUXewhk6/X1DcVv7yuKSx+yD/0bH7MP/xWklK2XlQ2krKwCxsIjj+zd7of/7IN/OUOG
VGzowt+ZumLIIEnqGcrK4Mwz4cMfhssug3/6J/jAB2DSJBg9urTnmjq1lsGD31nag0oqOYOGDjjt
NEgJxozJlp133vSxf/+8K5R6hxUrVvCXv0wB4LOf/TER2Tf/bcOAlLLH5uZsX0QfysoGUShUUFbW
h7Ky7DHbztYHDKhg8ODsuW35lmTHHffb9h9UkqRuqF8/+PKXswkiv/td2G8/OPfcbN/gwdt+/Jde
eomnn17NuHETtv1g26ixMevRUda53xtI3YZBQwecfz7Mnw9LlsCiRTBtGixenC1LlmS3/dlcCNGy
vtNO/kMkvVlLlizhzjunMHXqAgqFI6AKxo//at5lSZKkdgwbls3XcN55cNFF2R0qvvEN+MxnoE+f
N3/c2trZpLRXp/cKTAlWr84+B7QsK1ZAU1N2x43+/bd+Ke/Gn8Kam2Hduo3La6+1v952u7kZCoXs
M1Gh0P6ypefeTPuOPA/Z77hlabudx76mpnJGjBi1/X+Z21E3/iPeeY46avMT26QEK1dmgUNL8LB4
McycCXfeuXHfqlUwcuSWw4gxY6CysvNm7JW6uvnz53P77VOYNm055eVHMnbsB7IhCpIkqcsbPx5+
9SuYMSObMPLSS7OeDqee+uaud7NhE28vfaFt1Ndv/IKxZSkUYNy47Hr9rW/NhoSUlcH69dmH6faW
l1/OAom2+199NTvemwkoKipK81mhsXHLIcGWAoP6eujbN+vB0r9/9tiytGxXVm5cb3ksFLJwprl5
88uWnt/Sc42Nb3zszR0Psve05X1tWd/WfW+0vaV9WeDQvechMWjYRhHZfYVHjID99998u4YGWLZs
0zBi8WL4+9833dfUlIUO7YUQrR/79u28n1HqTCkl5s2bx223TWHGjDX07ft2qqpOK05qKEmSupsD
D8zuTvHXv2a3xPzBD+D734d3vKPjx1i7di2zZy9n7NhdS1pb694KCxdmjytXZr2RW0KFE07IPji3
p+UD9tChW3fOhobNBxSvvZZ9SdnyAb/10tS05SCiX7+szRv1OGhu3jQkaBsYDB6cfUna9rn+/bPP
IX4xun01NDTy4otL8i5jm3jl3kkqKrIUdNy4Lbd7+eXX946oq4P77tu4vXQpDBmSBQ477pj9IzBi
xOYfR4zo3t2z1DuklJgzZw5//OMU5sxpYMCAf2LChP2cVVqSpB7i3e+Ghx+G3/4Wzjorm8Phe9+D
ffd949dmwyb23OYvHlp6K7SECosWZT0Txo2DsWOzLw5Hj96+184R2RCSPn02H2BsTmPjlgOKNWuy
n6d//yz82FyYUKqeEdLm+PGzixk8GPbaK1s2p7kZXnghCx1WrMjWWx4ff3zT7RUrskR0yJAthxGt
Q4mRI2HQIP/xUedobm7miSdmccstU6irq2Dw4KOZMGEv75IgSVIPVCjARz+aDZ+48ko45hh43/vg
W9/KehBszv331zJgwGFbda6W3gqtQ4WW3gotocJ735tdJ3cX5eXZ54VSTK4pbU8GDd1QoZD1ZNhx
x461b27O/pFtG0C0hBUzZ75+f2Njx4KJlsfhw+01oa3T2NjIjBkz+cMfprJkyRAqK49nwoRdDRgk
vaGIOB64FCgA16aULmmnzU+BE4BXgLNSSjM6+lpJ21/fvvDFL8LZZ2e9GvbfH845J5vLoe23/K+8
8gpPPLGUnXfefYvHrK/Prm1bz61QXp6FCmPHwgEHwKhRXrNKncG/Zr1AoZAFAcOHb7mnRGuvvdZ+
MLFiRfvBREuviZbgYaedsn/I21t22sk5Jnqz+vp6pk9/lFtvvZ8VK3Zk2LD3s8suVXmXJambiGw8
1eXAu4AlwPSI+FNKaU6rNicAu6WU9oiIw4GfAUd05LWSOtcOO2RBw7nnwsUXw557wte+Bv/6rxuv
F+fMeYrm5t02mRA6pez6s2VuhcWLN+2tcMAB3a+3gtSTGDSoXf37d2xOiRZNTfDii1nwsGIFLF+e
TX65bBlMn75xfdkyeP75bGjG5oKIljBi1KgstPC2oD3DunXrePDB6dx664O8+OJ4Row4nV12GZ13
WZK6n8OAuSml+QARcRNwMtA6LDgZ+BVASumhiKiMiJ2AXTrwWkk5GDcOrrsOnngCLrwQfvIT+M53
4MMfhgceqKW8/GCee+71vRVa5lY48EB7K0hdiX8VVRJlZRt7TbzlLVtu2zKUo3X40BJAzJq16b7V
q7OwYUuhRMsyZIjzSnRFr7zyClOmPMhttz3CK6/swciRZ7HLLiPzLktS9zUGWNhqexFZ+PBGbcZ0
8LWScvTWt8Ltt8M992R3qPjOd5pZvPhYXn55R0aNsreC1F0YNKjTtR7K8UazDDc0ZD0k2oYS8+bB
/fdvuq++vv1eEW2X0aMdutEZ1qxZQ03N/dxxx0zWr9+XHXf8NCNHbsW9nySpdLY6hp40adKG9erq
aqqrq0tYjqQ3cswx8NBDcOONK7nppikceOCp9laQclBTU0NNTc1Wv86/rurSKiqy23juvPMbt331
1axXRNtQ4rHHNq4vXZq1GTgwCxy2tIwalc3oay+JrbNq1Sr+9rf7+MtfamlqOpBRoz5L375+5SCp
ZBYDrSd2GVvc17bNuHba9OnAa4FNgwZJ+SgU4IwzhvPoo/NZv34F5eX2iJQ6W9uwffLkyR16nUGD
eowBA2CXXbJlS1LKJgtaunRj+LB0KcyfDw8+uHF76dKs7RsFEqNHZ70zensgsXz5cu6+eyp///sz
wCGMHn0+FRUD8i5LUs8zHdg9IsYDS4HTgNPbtPkzcC7wu4g4AngxpfR8RLzQgddK6kIKhQLHHnsA
N9/8GAMHvifvciR1kEGDep2IbN6HESOycYBb8vLLmwYPLcuTT25cX7YM1q7Nhmq09ITYXCCx0049
b5KiJUuWcOedU5gyZQFlZUew884nUl7eL++yJPVQKaWmiDgPuJuNt6icHRHnZE+na1JKd0TEiRHx
DNntLc/e0mtz+lEkddChhx7IzTdfT3PzuygUnCVc6g5K8pFnW+5nLXVlgwdny557brnd+vWb9o5o
WaZN23T7hRdg2LBNh2e0PI4cCTvuuHEZPrxrhxLz58/n9tunMG3acv5/e/ceHeV933n8852RNLog
hLhIEEBAAgZbCEtcjG+AbC7xxt64dU83cbO5dPecbhunTePe4mzOCezZs+tenTRps+4lrtOzbU7r
7KndHrDBwbITWlKwAWNsY1tc5YBGIAwSQkKa+e4fMwIh6zaM0DOX9+ucOXrm9/wePV8NQvrNR8/z
+xUU3Km5cx+6ZtkpALhR3P15SYsHtT056PmXxnosgMw2ffp03XxzpU6ceE/Tp/PfF8gGab+NSWc9
63TPDWSKSESaNy/xGEksllj6c3Ag8e670q5dV5cGjUYTK25UVFwbPgwOIwa2TZmSuJfxRnJ3NTc3
69lnX9HBg52KRO5WTc2nFQplcCICAACy3vr1Dfr2t/cRNABZYjzeHVz3etbu3joO5weyRjh89WqG
0cRiibkkBoYP/Y8DB6593tYmXbyYuB1kqEBiqICirGzs80q4u95662390z/9WIcP96m0dI3mzatV
ImdMjbvU15dYUWSojyPt6+2VTs/4e2nKWj2pR2UeVkhhmUIy9W+Hk9tX2/rbQzaozRL9Qna1LWRX
+4Xt2rar28l9g9pkC/RW/A254orFY4orprjHFfeY4kp+HLDtiivmMfk1/RLt/f0S+65uX92X3E5+
dMWu2b66LyZpnf5Sv6v+ifdNliHba/X3+pPE94V88HfKoGfjuX+UYyPLBQDILEuX1qq4eLsuX76o
oqKyoMsBMIrxCBquZz3r95NtBA3AMMLhq6HAaMuASonbN86cuTZ86N9+991r21pbE2/4RwojZsyQ
pLjefvuEfvKTwzp9OqKCgk8qEqlWX5/pjTc+HBCMFhL09SUClIKCxKOwcOiPw21HItKUwirJpck2
e9Cb7cQjpp4PtbkN6mfJh8eT+xLPlew3sM0Vkyw+YLu/b/zK57nS5qYfhj4leVgWCiU+KiwlQw9T
SLoShiT3W/++a/vZgH6msMwHbFso8dzCMr96zMCgJayiK/0lV4mmJb9TfMAb61S2E4/4dR2rK8dL
ktvVN/YX1HJl23xw8jXyc0tj/4jHxrn/FwAyTSQS0bp1S/SjH72uOXPuCLocAKPIyOudWbsaSF0k
Is2enXiMxcWLQ18tcepU4oqJ1ta4jhxp0cWLvZo06U6VlU1SQYHp8uWrb/5LSoYOBEYKEAoK0l2h
Y8zF4ZkAAB6GSURBVL1etQ162F9O55PcEFvM9HUf/Jf14G2xr+o/Z+jr9d8ysq7/FXQJkq5/3WoA
yFV33FGvF17YKvfbZfm+3BeQ4cYjaEhnPeshsXY1cOOVlSUe8+cP1yOkgwcv6IUX/l2HDn2gUGi5
qqqWKxKZPIFVAvnretetBoBcNW/ePM2a1auOjp9p8uQx/mUFQCDGI2i47vWsx+HcAG6gurqlqqtb
qtbWVu3atVc7dnxXly7N1+TJK1VZ+VH+mgAAACaMmWnTpgZ9//v7CRqADJf2HPXuHpPUvyb1IUk/
6F/P2sx+Jdlnq6SjyfWsn5T0xXTPC2DiVFdX66GH7tc3v/mbeuSRj2natO06fvw7amn5N/X2Xgq6
PAAAkCeWL79VZm8oFusNuhQAIxiXORrSWc8aQPaIRCJatWqlVq5coZaWFjU17dErr7ys3t4lmjp1
pcrLZ3OVAwAAuGEqKirU0PARvfnm26qurgu6HADDyMjJIAFkNjPT3Llz9dnPztUv/EKX9u7dp23b
fqjjx4tVVLRS1dV1CoeLgi4TAADkoHvuadBrr+2TRNAAZCqCBgBpKS0t1dq1d2nNmjvV3NysnTv3
aPfuFxWP12nGjFUqK5sRdIkAACCHLFmyRGVlW9XdfV7FxRVBlwNgCGnP0QAAUuIqh4ULF+pXfuVh
PfHEr+qXfqlYfX1P6+jRpxSNvqF4PBZ0iQAAIAcUFBTo3ntrFY3uD7oUAMMgaAAw7ioqKrRp0736
oz/6in73d2/TTTe9qpMnn9CJEz9Sd/cHQZcHAACy3O23N8h9v9w96FIADIFbJwDcMOFwWLW1taqt
rdWZM2e0a9debd/+pE6fnqvy8lWaOvVjMiPvBAAAqZk1a5bmzy/SuXPHNWXK/KDLATAII3wAE2L6
9Ol68MH79MQTX9Gv//oSzZr1ko4f/1OdPPkTXb58MejyAABAFjEzbdhQr/Pn9wVdCoAhcEUDgAlV
VFSkFSuWa8WK5Xr//ff14x/v1UsvfVs9PYtUWblKkyfPZYlMAAAwqvr6ZQqHX1ZfX48KCiJBlwNg
AIIGAIGZPXu2Pv3p2XrwwU3at++Atm59VsePh1VYuErV1csYNAAAgGGVlZXp9tsXaM+eQ5o1a3nQ
5QAYgKABQOBKSkp055236447VuvYsWN66aU92rXrR4rHl2ratJWaNGlm0CUCAIAMtHZtg3bt+rEk
ggYgkxA0AMgYZqYFCxZowYIF+sVf7NCePa9p69a/07FjFSouXqmqqlqFQvzYAgAACQsXLtSUKc+p
q+uMSkunB10OgCRG7AAyUnl5ue69d50aG9fonXfe0Ysv7tGrr74gqV6aL/X1dSscjjCfAwAAeSwU
CmnDhlv1wx/uU03NxqDLAZBE0AAgo4VCIS1ZskRLlixRe3u7/vVf9+pvXpXOnn1C3d2XJUVkVqxQ
qERSsdyvPqQSFRQUD3hc+zwcLgz4qwMAAOlavbpBzzzztNzXs2w2kCEIGgBkjalTp+qBBzZJr0rf
/e5jisfj6unpUXd3t7q7u3Xp0qUr293d3ersvKSOjg51dHQnH5fU2dmtixe7dfHiJcViJrNimRVL
KpZZieLxq0FFKFSswsLhwooIgxkAADLA9OnTtWRJhVpa3tO0aTcFXQ4AETQAyGKhUEglJSUqKSm5
ruN7e3uvCSYGBhWXLnWrs/Oizp8/o46ObnV29j8u6dy5bl261COp6MqVFFKxVCOdPPkPcg9J+vBj
YHv/ttnID8lG7TPq5yiRenu7FAoVyCycbOeWEwBA7li/vkHf+c4+ggYgQxA0AMhbhYWFKiwsVHl5
ecrHurt6enquCSe+933p0UdrFY/HP/Rw9w+1xWJxxWJ9isXi6uuLX/Ox/zH4eSqP/nOoRPrgg2+r
t7dPfX0xxeMuKZwMHQokhSUlQojEr4VEu3v4yr7E9oc/Jj5HWKFQgUKh8JUw48PPP7xPxVJfX0+y
nfADAHD96uqWKhLZocuXL6qoqCzocoC8R9AAANfBzFRcXKzi4uJr2mtrawOqaHhPbPkt/dmf/d6V
54kAIqZYLKa+vr4hP45lX19fTJcv96q3t1s9PYnnvb0x9fT0qbc3psuX+/sknvdv9/XF1N3dJxVL
bW1/nPx88WTQcTX8GPixP9joDz6ksNw//NG9P8gYLfgY/rmYugMAsk4kEtHatYv10ksHNWfO7UGX
A+Q9ggYAyDOhUEihUEiFhcG+o/7mlt/Wk09+TVLiCpHhwo3hAo+h+8Z0+XKPenu71NPTd03oMVT4
0dt7bXtvb580Uyoo4NcjAGSbO++s144dz8t9NVfJAQFjJAUACJyZqaCgICPe4P+fLV9TUVFR0GUA
AFI0f/58zZx5WZ2dp1Re/pGgywHyGlOmAwAAAMh6ZqZNm+rV3r4/6FKAvEfQAAAAACAnLF9+q8ze
UDzeF3QpQF4jaAAAAACQE6ZMmaL6+pk6c+btoEsB8hpBAwAAAICc0djYoEuX9gVdBpDXCBoAAAAA
5Iybb16i0tKfqbv7fNClAHmLoAEAAABAzigsLNS999aqre1A0KUAeYugAQAAAEBOuf32BsXj++Xu
QZcC5CWCBgAAAAA55SMf+Yhqagp0/vyJoEsB8hJBAwAAAICcYmbatKlB588zKSQQBIIGAAAAADmn
vn6ZwuG31dfXE3QpQN4haAAAAACQc8rKyrR69Xy1tR0KuhQg7xA0AAAAAMhJa9c26PLl/UGXAeQd
ggYAAAAAOWnhwoWqqGhXV9fZoEsB8gpBAwAAAICcFA6HtWHDMrW1MSkkMJEIGgAAAADkrNWrG+R+
QO7xoEsB8kZaQYOZVZrZdjM7bGYvmFnFEH3mmNlOMztkZgfN7DfSOScAAAAAjNWMGTO0ZEmF2tub
gy4FyBvpXtHwVUkvuvtiSTslPTZEnz5Jj7p7raQ7JD1iZkvSPC8AAAAAjMn69fXq6OD2CWCipBs0
PCjp6eT205J+bnAHdz/t7vuT252S3pI0O83zAgAAAMCY1NUtVSRyRL29XUGXAuSFdIOGKndvlRKB
gqSqkTqb2XxJ9ZJ+muZ5AQAAAGBMiouLdffdNykaPRh0KUBeKBitg5ntkFQ9sEmSS/r6EN19hM8z
SdIzkr6cvLJhWJs3b76y3djYqMbGxtHKBAAgpzQ1NampqSnoMgAgZ9x1V7127twuaXXQpQA5b9Sg
wd03DrfPzFrNrNrdW81spqToMP0KlAgZ/tbdnx3tnAODBgAA8tHgoH3Lli3BFQMAOWDBggWqqupW
R8cplZfPCrocIKele+vEc5K+kNz+vKThQoTvSXrT3b+V5vkAAAAAIGVmpk2b6tXevj/oUoCcl27Q
8PuSNprZYUnrJT0uSWY2y8z+Jbl9l6TPSLrXzPaZ2Wtmdl+a5wUAAACAlKxYUS/poOLxvqBLAXLa
qLdOjMTd2yVtGKL9lKQHktu7JIXTOQ8AAAAApGvKlCm69dZqvfPOYVVV1QZdDpCz0r2iAQAAAACy
xj33NKira1/QZQA5jaABAAAAQN645ZabVVr6vnp6LgRdCpCzCBoAAAAA5I3CwkLdc88tikYPBF0K
kLMIGgAAAADklTvuaFAstk/uHnQpQE4iaAAAAACQV2bPnq2amrAuXDgZdClATiJoAAAAAJBXzEyb
NjXo3DkmhQRuBIIGAAAAAHmnvn6ZwuG3FItdDroUIOcQNAAAAADIO5MmTdJtt81TNHoo6FKAnEPQ
AAAAsoKZVZrZdjM7bGYvmFnFMP3uM7O3zewdM/u9Ae3fMLMWM3st+bhv4qoHkInWrWvQ5cv7gy4D
yDkEDQAAIFt8VdKL7r5Y0k5Jjw3uYGYhSd+R9HFJtZIeNrMlA7r8ibsvTz6en4iiAWSuRYsWafLk
M+rqOht0KUBOIWgAAADZ4kFJTye3n5b0c0P0uU3Su+5+3N17Jf0geVw/u7ElAsgm4XBYGzYs05kz
XNUAjCeCBgAAkC2q3L1Vktz9tKSqIfrMljRwvbqWZFu/L5nZfjP7q+FuvQCQX1avblA8fkDu8aBL
AXJGQdAFAAAA9DOzHZKqBzZJcklfH6K7p/jp/1zS/3B3N7P/KelPJP3XoTpu3rz5ynZjY6MaGxtT
PBWAbFFVVaXFi8t16tQRTZ26MOhygIzS1NSkpqamlI8jaAAAABnD3TcOt8/MWs2s2t1bzWympOgQ
3d6XVDPg+Zxkm9y9bUD7X0r65+HONTBoAJD71q+v15//+T6CBmCQwWH7li1bxnQct04AAIBs8Zyk
LyS3Py/p2SH67JG00MzmmVmRpE8nj1MynOj3kKQ3blypALLJsmV1KipqVm/vpaBLAXICQQMAAMgW
vy9po5kdlrRe0uOSZGazzOxfJMndY5K+JGm7pEOSfuDubyWP/wMze93M9ktaJ+krE/0FAMhMxcXF
uvvuRYpGDwZdCpATuHUCAABkBXdvl7RhiPZTkh4Y8Px5SYuH6Pe5G1oggKx2990NeumlHUosXgMg
HVzRAAAAACDvLViwQDNmdKmz83TQpQBZj6ABAAAAQN4zM23cWK+zZ/cFXQqQ9QgaAAAAAEDSypX1
kg4qHo8FXQqQ1QgaAAAAAEBSZWWlli2r0tmzh4MuBchqBA0AAAAAkHTPPQ26eJHbJ4B0EDQAAAAA
QFJt7S0qLW1RT09H0KUAWYugAQAAAACSCgsL1dh4i6LRA0GXAmQtggYAAAAAGOCOO+oVi+2Tuwdd
CpCVCBoAAAAAYIA5c+Zo7lzThQsngy4FyEoEDQAAAAAwgJlp48YGnTu3P+hSgKxE0AAAAAAAgzQ0
LFM4/KZisctBlwJkHYIGAAAAABikvLxcK1fWqK3tzaBLAbIOQQMAAAAADKGxsUE9Pdw+AaSKoAEA
AAAAhnDTTTdp8uQ2XbrUHnQpQFYhaAAAAACAIYTDYa1fX6e2Nq5qAFJB0AAAAAAAw1i9ukHx+H65
x4MuBcgaaQUNZlZpZtvN7LCZvWBmFSP0DZnZa2b2XDrnBAAAAICJUl1drUWLJuncuaNBlwJkjXSv
aPiqpBfdfbGknZIeG6HvlyUxZSsAAACArLJhQ70uXNgXdBlA1kg3aHhQ0tPJ7acl/dxQncxsjqRP
SPqrNM8HAAAAABNq2bI6FRW9p97eS0GXAmSFgjSPr3L3Vkly99NmVjVMvyck/Y6kYW+tAADkvqZj
TWo61iRJWjdvnTY3bZYkNc5vVOP8xsDqAgBgJCUlJbrzzoXatesNzZ69KuhygIw3atBgZjskVQ9s
kuSSvj5Edx/i+Psltbr7fjNrTB4/os2bN1/ZbmxsVGNj42iHAACyAIHC2DU1NampqSnoMgAASWvW
NOjll38kiaABGM2oQYO7bxxun5m1mlm1u7ea2UxJ0SG63SXpk2b2CUklksrN7Pvu/rnhPu/AoAEA
gHw0OGjfsmVLcMUAALRgwQJNm9apzs5WTZpUPfoBQB5Ld46G5yR9Ibn9eUnPDu7g7l9z9xp3/6ik
T0vaOVLIAAAAAACZJhQKadOmep09y6SQwGjSDRp+X9JGMzssab2kxyXJzGaZ2b+kWxwAAAAAZIqV
K+slHVQ8Hgu6FCCjpTUZpLu3S9owRPspSQ8M0f6ypJfTOScAAAAABGHq1Kmqq5uh5uZ3NGPGzUGX
A2SsdFedAABkIFZ3AADgxrjnnnq9/vo+ggZgBAQNAJCDCBRSQzADABir2tpbVFz8vHp6OhSJlAdd
DpCRCBoAAHmPQAEAMFZFRUW6555btH37Ac2de3fQ5QAZKd3JIAEAAAAgr6xdu0qlpbt07NgP1N7e
LHcPuiQgo3BFAwAAAACkYNasWfrjP/6KXn/9oLZt26Hm5ssKh1dq5sx6FRaWBl0eEDiCBgAAAABI
UVFRkVauXKEVK5arpaVFr7yyV01Nf6re3iWaOnWlystny8yCLhMIBEEDAAAAAFwnM9PcuXP1mc/M
1c//fJf27t2nbdt+qOPHixWJrFJV1VKFw0VBlwlMKIIGAAAAABgHpaWlWrv2Lq1Zc6eam5u1c+ce
7d69Q+7LNGPGKpWWTg+6RGBCEDQAAAAAwDgyMy1cuFALFy7Upz51Xrt3v6pt2/5G0egMlZWt0rRp
ixUKhYMuE7hhCBoAAAAA4AapqKjQxz9+rzZsWKc333xL27f/VG+8sU1my1VdvUKRyOSgSwTGHUED
AAAAANxg4XBYdXVLVVe3VNFoVD/5yV69+OJ31dU1T5Mnr1Jl5UeZPBI5g6ABAAAAACZQVVWVHnro
E3rggQ06cOB1bdu2XUeO9KqgYJWqq+tVWFgSdIlAWggaAAAAACAARUVFWrVqpVauXKGWlhY1Ne3R
K6+8nFwic5XKyz/CVQ7ISgQNAAAAABCg/iUyP/vZuXrooYt69dX92rr1GR07Vqzi4lWqqqpTOFwY
dJnAmBE0AAAAAECGKCsru7JE5nvvvaedO/fqpz/dIfdbNWPGSpbIRFYgaAAAAACADGNmWrRokRYt
WqRPfeoD7d79qp5/niUykR0IGgAAAAAgg02ZMkX33bdeGzc2Xlki8+DBbQqFWCITmYmgAQAAAACy
wIeXyNyjF1/8ri5enK8pU1ZpypQFTB6JjEDQAAAAAABZJrFE5v26//4Nev31g9q69QUdPdonqU7F
xVNUVFSuoqJJikTKVVBQQgCBCUXQAAAAAABZKhKJXFki8+TJkzp06LDa2o7o7NlOnT3boXPnOnXx
4mWFQpNkVi73SXIvl5QIIgYGEoWFZQQSGBcEDQAAAACQ5cxMNTU1qqmp+dC+3t5edXZ2qrOzUx0d
Hero6ND5851qaztxJZBob+9QZ2ePpFKFQokgIh5PhBL9gUQk0r89SWahCf8akT0IGgAAAAAghxUW
FqqyslKVlZUj9ovFYlfCiP6P58936syZn+nMmQ6dPdup9vYOnT7dJbNSmU3SwECisPDq1RH9V0qw
MkZ+ImgAAAAAACgcDquiokIVFRUj9ovH47p48eKgQKJDZ8+2qq3tPbW3JwKJtraLiscjyUCiQvH4
DBUXV6msrEqlpTMUDhdOzBeGCUfQAAAAAAAYs1AopPLycpWXl4/Yz93V1dWVDCLOKxpt05EjR3Ts
2G6dPHlG8fhkmVUpHq9SSUkigCgpmcZVEDmAoAEAAAAAMO7MTGVlZSorK9PMmTO1ePFirVmT2BeP
x9Xe3q5oNKpTp6I6evRNHT3apJaWD2Q2Ve5Vck+ED2VlVSounsK8EFmEoAEAAAAAMKFCoZCmT5+u
6dOn65ZbbrnS3tfXpzNnzigajepnP4uqufk1HTsW1YkTF2U2Xe5VMrsaQEQik1kpIwMRNADICk3H
mtR0rEmStG7eOm1u2ixJapzfqMb5jYHVBQAAgPFTUFCgmTNnaubMmVq27Gp7T0+P2traFI1G1dIS
VXNzs44fj+r06V6FQomrH8LhqwFEUVFZcF8ECBoAZAcCBQAAgPwViUQ0Z84czZkzR8uXX23v6upS
NBpVNBrViRNRHTnypo4fb1VXV1hmiQCisLA/gJihgoLi4L6IPELQAAAAAADISqWlpZo/f77mz5+v
225LtLm7Ojs7FY1G1doa1fHjLTpy5DWdONGm3t6SKxNQRiL9K2BMZwWMcUbQAAAAAADIGWZ2ZVWM
j33sY7rzzkS7u+uDDz5QNBrV6dNRHT36no4e/Ve1tJyVNCU5AWW1SkurNGlStYqLK5n/4ToRNAAA
AAAAcp6ZqbKyUpWVlVq8eLHWrUu0x2IxnT17Vq2trXr//VY1N+/T0aOtOnHiksxmJOd/qFZZWTXz
P4wRQQMAAAAAIG+Fw2FVVVWpqqpKdXV1V9q7u7sHzP/Qqubmt3TsWKu6ugqS8z9Uq6gocfVDaekM
br8YgKABAAAAAIBBiouLVVNTo5qaGq1cmWhzd3V0dKi1tVWnT7fq6NGjam7erfffP6t4vELS1dsv
ysqqVVJSKbNQoF9HENL6is2s0sy2m9lhM3vBzCqG6VdhZv9oZm+Z2SEzW53OeXFVU1NT0CVkFV6v
1PB6peho0AVkF76/kKoUxh1/bWatZvb69RyP1PH/OTW8Xqnh9UoNr1dqUn29zEyTJ0/WokWLtGbN
3frc5x7Sli2/pieffEyPP/4pPfporR5+OKba2gNy/1sdP/6/deLEX+j48Wd18uS/6dy5I7p8ufPG
fDEZJN1o5auSXnT3xZJ2SnpsmH7fkrTV3W+WdKukt9I8L5L4QZIaXq/U8Hql6FjQBWQXvr9wHcY6
7nhK0sfTOB4p4v9zani9UsPrlRper9SM1+vVf/vF0qVLtWnTen3xiw/rD//wN/Xkk7+tLVv+gx55
ZLbuv/+c5sx5WRcu/JmOH/9DnTjxtI4de16nTr2mCxfeVyzWOy61ZIJ0b514UFJyCg09LalJiV/i
V5jZZElr3P0LkuTufZIupHleAACQf0Ydd0iSu//EzOZd7/EAAIyXSCSiuXPnau7cuR+6/SKx+kWr
jhw5pqNH/10nT55RPD5Z8fg0TZoUbN3pSjdoqHL3Vkly99NmVjVEnwWSzpjZU0pczbBX0pfd/VKa
5wYAAPllLOOOG3k8AABp67/9YvLkyVq4cKHuvjvRHovF1N7ertbWVsViS4MtMk3m7iN3MNshqXpg
kySX9HVJf+PuUwf0Pevu0wYdv0LSbkl3uPteM/umpPPu/o1hzjdyQQAA5Cl3z/nFvNMddwzYN0/S
P7v7sgFt7WM5nrEIAADDG8t4ZNQrGtx943D7khMtVbt7q5nNlBQdoluLpJPuvjf5/BlJvzfC+XJ+
EAUAAIY2DuOOkYzpeMYiAACkJ93JIJ+T9IXk9uclPTu4Q/ISxZNmdlOyab2kN9M8LwAAyD+jjjsG
sOTjeo8HAADXadRbJ0Y82GyqpH+QNFfScUn/yd0/MLNZkv7S3R9I9rtV0l9JKpR0RNIvu/v5dIsH
AAD5I4Vxx99JapQ0TVKrpG+4+1PDHT/xXwkAALktraABAAAAAABgoHRvnbghzOzXzewtMztoZo8H
XU82MLPfMrN48q81GIaZ/UHye2u/mf0wufwqBjGz+8zsbTN7x8yGnVMFCWY2x8x2mtmh5M+t3wi6
pkxnZiEze83Mngu6lmxgZhVm9o/Jn1+HzGx10DXlA8YjqWM8MjaMR8aG8cjYMRa5PoxHUpPKeCTj
ggYza5T0HyXVuXudpD8KtqLMZ2ZzJG1U4jJQjGy7pFp3r5f0rqTHAq4n45hZSNJ3JH1cUq2kh81s
SbBVZbw+SY+6e62kOyQ9wms2qi+L+XpS8S1JW939ZiWWin4r4HpyHuOR1DEeSQnjkVEwHkkZY5Hr
w3gkNWMej2Rc0CDp1yQ97u59kuTuZwKuJxs8Iel3gi4iG7j7i+4eTz7dLWlOkPVkqNskvevux929
V9IPJD0YcE0Zzd1Pu/v+5HanEj90ZwdbVeZKvhn5hBJz92AUyb90rnH3pyTJ3fvc/ULAZeUDxiOp
YzwyRoxHxoTxSAoYi6SO8UhqUh2PZGLQcJOktWa228xeMrOVQReUyczsk0osH3ow6Fqy0H+RtC3o
IjLQbEknBzxvEb+oxszM5kuql/TTYCvJaP1vRpgkaGwWSDpjZk8lL+/8CzMrCbqoPMB4JAWMR9LC
eGRojEeuE2ORMWM8kpqUxiMFE1jYFWa2Q1L1wCYl/oG/nqyp0t1vN7NVSswO/dGJrzJzjPJ6fU2J
yxQH7strI7xe/93d/znZ579L6nX3vwugROQoM5sk6RlJX07+NQGDmNn9klrdfX/y0vS8/5k1BgWS
lkt6xN33mtk3JX1V0jeCLSv7MR5JDeOR1DAeQRAYi4wN45HrktJ4JJCgwd03DrfPzH5V0v9L9tuT
nFBomrufnbACM8xwr5eZLZU0X9IBMzMlLrt71cxuc/foBJaYUUb6/pIkM/uCEpdJ3TshBWWf9yXV
DHg+J9mGEZhZgRK/2P/W3Z8Nup4MdpekT5rZJySVSCo3s++7++cCriuTtSjxl+K9yefPSGJStHHA
eCQ1jEdSw3gkbYxHUsRYJCWMR1KX0ngkE2+d+Cclf+Ca2U2SCvP5l/pI3P0Nd5/p7h919wVK/OM3
5PMv9dGY2X1KXCL1SXfvCbqeDLVH0kIzm2dmRZI+LYmZeEf3PUlvuvu3gi4kk7n719y9xt0/qsT3
1k5+qY/M3VslnUz+TpSk9WLiqonAeGSMGI+kjvHImDAeSR1jkTFiPJK6VMcjgVzRMIqnJH3PzA5K
6pHEP/jYubjsZzTfllQkaUfijy7a7e5fDLakzOLuMTP7khIzYock/bW7M8P9CMzsLkmfkXTQzPYp
8X/xa+7+fLCVIYf8hqT/a2aFko5I+uWA68kHjEeuH+OR0TEeGQXjkdQwFsEEGfN4xNyZ+wIAAAAA
AIyPTLx1AgAAAAAAZCmCBgAAAAAAMG4IGgAAAAAAwLghaAAAAAAAAOOGoAEAAAAAAIwbggYAAAAA
ADBuCBoAAAAAAMC4+f+DLBbJVWQG2gAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>When a stock has been trending down for 5 days, once the earnings are announced it really doesn't move on average. However, the variability is <em>incredible</em>. This implies two important things:</p>
<ol>
<li>The market is just as often wrong about an earnings announcement before it happens as it is correct</li>
<li>The incredible width of the min/max bars and standard deviation area tell us that the market reacts <em>violently</em> after the earnings are released.</li>
</ol>
<p>Let's repeat the same study, but over a time horizon of 8 days and 3 days. Presumably if a stock has been going down for 8 days at a time before the earnings, the market should be more accurate.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="c1"># 8 day study next</span>
<span class="n">study_trend</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="n">does_trend_down</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>100% (47578 of 47578) |###########################################################| Elapsed Time: 0:20:29 Time: 0:20:29
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXZ7KShCRsspOgVgURBfelmNZdK+KOWkSq
1ttatb2/XrWu4PVWsa16XeuGW+uOWm9VtFbjgiK7EFmFhGgCgiwBQiDLfH9/fCcwgQAJmeQkmffz
8TiPOXPmzDmfSWDynfd8v99jzjlERERERERERPZUKOgCRERERERERKRtU7ggIiIiIiIiIk2icEFE
REREREREmkThgoiIiIiIiIg0icIFEREREREREWkShQsiIiIiIiIi0iQKF0REJK6Y2QgzC5vZfg3Y
d7SZ9Yi6/7iZHdC8FcaOmY03swIz+9rM7m/A/jlmNreFarvDzL4ys1lmNmm7n/MfzGyxmc03s5Oj
tt9pZsVmtr4latwZM/tDkOcXERFpjRQuiIhIvBkJfApc1IB9LwN6195xzv3SObegmepqEjNL2O7+
0cAxzrlBwCDgCDMb1oBDueaorx73OOcOds4NAd4Gbgcws4HABcAA4DTgETOzyHPeAg5vofp25aag
CxAREWltFC6IiEjcMLN04FjgcrYLF8zsBjObE/km/Y9mdi5wGPA3M5tpZqlm9pGZDY3sf1Fk/zlm
dnfUcTZEvmGfbWafm1m3euroZGZvRL65/9zMBplXaGaZUfstMrNuZtbVzF4zsy8jy9GRx283s+fM
7DPgue1O44BUM0sFOgCJwPf11HJopNZZwNVR23PM7BMzmx5Zjopsf9bMhkft9zczO9PMBkZqmxk5
3j67+l045zZG3U0HwpH14cBLzrlq51wRsBg4IvKcqc65HV7Ddq8nzcyeMrMpZjbDzM6MbP/CzAZE
7feRmQ3dxf6jzWyimb1rZgtrf8dmdhfQIfI6n488/5+RfzdzzOz8XdUnIiLSXilcEBGReHIWMMk5
9w3wg5kNATCzU4EzgcMj36Tf45ybCEwDLnbODXXOba49iJn1BO4G8oBDgMOjPnCnA5875w7B95C4
sp46xgEznXMHAzcDzzvnHPAmcHbkHEcARc65VcD/Avc6544EzgOeijrWAOCnzrlLok/gnJsC5APL
gRLgPefcwnpqmQBcHXnd0VYCJzrnDsP39ngwsv0pYEykxkzgaHzPg/8A7nfODcWHMt9F9nk7eshD
tNphDsDFwG2Rzb2Bb6N2KyGq90gD3Az82zl3FPBT4M9m1gF4Cbgwct4eQA/n3Mxd7A9wMHA+MBgY
aWa9nXN/ADZF/k2MAk4FSpxzQ5xzg4FJjahVRESk3VC4ICIi8eQi/IdMgJfZ1nvhROBp59wWAOfc
ush2iyzbOxz4yDm3xjkXBv4O1A45qHTOvRNZnwHk1vP844DnI+f6COhsZhnAK/gP8kRuX46q76FI
74K3gAwzS4s89pZzrnL7E0R6DhwA9MJ/OD/BzI7dbp8sIMs5Nzmy6fmoh5OAJ81sDvAqPsTAOfcJ
sK+ZdcH//CZGfgZfADeb2X8BuVE/yzOccyvq+RngnLvFOdcP//O7pr599sDJwI2Rn1U+kAz0i7yG
8yL7XAC8tpv9wYcOGyOvZR6QU8/55gInmdldZnacc25DjF6HiIhIm5IYdAEiIiItwcw64b+ZHmRm
DkjADx24fk8PuZPtVVHrNdT/t3b7eQ0MwDn3hZntY2ZdgRHAHVGPH+mcq6rzJD8VQflO6jgbmOKc
q4js+y6+l8Hkney/vd8BK5xzgyPzOVREPfYcMAofgFwWqf1FM5sC/Ax4x8x+6ZzLb+C5XsD3fhiL
76nQN+qxPpFtjXGuc27x9hvN7AczOwjfg+GqXe0fGQayJWpT9O9y6+/eObc4MlTmdOBOM/vAOXdn
I+sVERFp89RzQURE4sX5wHPOuf7Oub2dczlAoZkdB/wLGFPbHT4SRACsBzLrOdZUYJiZdY588L4I
/613Q30K/DxyrjxgVdQcBG8A9wLzonpQvA9cV/tkMzu4AecoBo43swQzSwKOB+ZH7+CcKwPWmdkx
kU0/j3o4Cz+kAuBSfBhT61ngt/4QfoJLM+vvnCt0zj0I/AM/lGCnzGzfqLsjgNqJMt/CD0FINrP+
wL74n3edp+/i0O8B10ad55Cox17Gh0mZzrmCBuy/M5WR33vtEJkK59wLwJ+AoQ14voiISLujcEFE
ROLFhfgP7tFeBy5yzr0H/B8w3cxmAv8v8vizwF8jk/elEulxEOnmfyM+UJgFTHfO/TPynIZcbWEc
cKiZfQX8ERgd9dgrwCVsG74BPlg4zPwEkAXU/dZ9Z14DluK77c8CZjnn3q5nv1/gr8gwc7vaHwEu
iwwX2I+oHhLOuZX4oOLpqP0vMH/Zy1nAgUQmmNzFnAt3RyZAnI0f9nFd5NjzIj+DecA7wK8j81HU
XlrzW/yEisVmdls9x70TSIocey7ben8ATMT/O3h5J/sXbLd/tOifzePAXDN7HjgImBp53bdFjici
IhJ3LPL3WkRERKRBIvM9fAUM1RwDIiIiAuq5ICIiIo1gZifgexU8oGBBREREaqnngoiIiIiIiIg0
iXouiIiIiIiIiEiTKFwQERERERERkSZRuCAiIiIiIiIiTaJwQURERERERESaROGCiIiIiIiIiDSJ
wgURERERERERaRKFCyIiIiIiIiLSJAoXRERERERERKRJFC6IiIiIiIiISJMoXBARERERERGRJlG4
ICIiIiIiIiJNonBBRERERERERJpE4YKIiIiIiIiINInCBRERERERERFpEoULIiIiIiIiItIkChdE
REREREREpEkULoiIiIiIiIhIkyhcEBEREREREZEmUbggIiIiIiIiIk0Sk3DBzE41swVmtsjMbqjn
8Uwze8vMZpvZXDO7LBbnFRERkfjTgHbHxWb2VWT5zMwGN/S5IiIismfMOde0A5iFgEXACUApMA0Y
6ZxbELXPH4BM59wfzKwrsBDo7pyrbtLJRUREJK40sN1xFDDfOVdmZqcCY51zRzXkuSIiIrJnYtFz
4QhgsXNumXOuCngJOGu7fRzQMbLeEVitYEFERET2wG7bHc65Kc65ssjdKUDvhj5XRERE9kwswoXe
wLdR979j2x/xWg8BA82sFPgKuC4G5xUREZH405B2R7QrgHf38LkiIiLSQIktdJ5TgFnOuZ+a2T7A
v8xssHNu4/Y7mlnTxmmIiIi0U845C7qGtsTMfgKMAY5r5PPUFhEREdmJnbVHYhEulAD9ou73iWyL
Nga4K1LIEjMrBA4Aptd3wKbOAyGxNXbsWMaOHRt0GRIA/e7jl373rY+ZcoWIhrQ7iEzi+DhwqnNu
bWOeC2qLtEZ6X4pf+t3HL/3uW59dtUdiMSxiGrCvmeWYWTIwEnhru32WASdGiukO7AcsjcG5RURE
JL7stt1hZv2AicAo59ySxjxXRERE9kyTey4452rM7DfA+/iw4inn3Hwzu8o/7B4H7gSeMbM5kadd
75xb09Rzi4iISHxpYLvjVqAz8Ij5r1iqnHNH7Oy5Ab0UERGRdiUmcy445yYB+2+37bGo9eX4eRek
DcrLywu6BAmIfvfxS797ac0a0O64Eriyoc+VtkHvS/FLv/v4pd9922KtbUyhmbnWVpOIiEjQzEwT
OrYQtUVERETqt6v2SEtdLaLJcnNzWbZsWdBlyG7k5ORQVFQUdBkiIiIxp7ZIy1BbQkSkbWozPRci
CUkAFUlj6PckItI81HOh5agtEiz9nEVEWq9dtUdicbUIEREREREREYljChdEREREREREpEkULoiI
iIiIiIhIkyhcEBEREREREZEmUbggIiIiIiIiIk3SZi5Fub3bbruf4uJ1zXb8fv2yueOO3zbb8VvK
mDFj6Nu3L3fccUfQpYiIiLQ7ao80jNojIiLtX5sNF4qL15GbO7bZjl9U1HzHrvXwww/zzDPPMHfu
XC6++GImTJjQ7OcUERGR2FF7RERExNOwiGYwfvz4Bu3Xu3dvbr31Vi6//PJmrkhERETijdojIiLS
khQuNIMtW7Y0aL8RI0YwfPhwOnfuvNt9x48fT58+fcjMzGTAgAF89NFH9e43a9YsDj30ULKyshg5
ciSbN29uVO0iIiLSPqg9IiIiLUnhQjNwzsX0eIsWLeLhhx9mxowZrF+/nvfee4/c3Nwd9quqquLs
s89m9OjRrFmzhvPPP5+JEyfGtBYRERFpG9QeERGRltRm51xoTZYsWcJrr72GmeGcY/Lkydxzzz04
5zAzjjzySI4//vg9Pn5CQgKVlZUUFBTQpUsX+vXrV+9+U6ZMobq6mmuvvRaAc889l8MPP3yPzysi
IiJth9ojIiISJIULMbDPPvtwww03bL2/ZcsWrr/++pge//7772fs2LHMmzePU045hb/85S/07Nmz
zn6lpaX07t27zracnJyY1SEiIiKtl9ojIiISJA2LaCNGjhzJp59+yrJlywC48cYbd9inZ8+elJSU
1NlWXFzcIvWJiIhI+6f2iIiI7IzChWbQ0DGONTU1bN68mZqaGqqrq9myZQs1NTU77Ldo0SI++ugj
KisrSU5OpkOHDoRCO/7qjj76aBITE3nwwQeprq7m9ddfZ+rUqU1+PSIiItL2qD0iIiItqc0Oi+jX
L7tZr/3cr192g/dduHAhL7300tYxjh9//DF33HHH1jGORx99NCeddNIOz7vzzjsZN24cZgbA3//+
d26//XZuu+22Ovtt2bKFG2+8kQULFpCUlMQxxxzD448/DsDpp5/OsGHDuPHGG0lKSuL111/niiuu
4JZbbuH000/n3HPPrXOs6P1FRESkadQeUXtEREQ8i/VMwk1lZq6+mmr/UErrpt+TiEjziLy/WtB1
xAO1RYKln7OISOu1q/aIhkWIiIiIiIiISJMoXBARERERERGRJlG4ICIiIiIiIiJNonBBRERERERE
RJpE4YKIiIiIiIiINInCBRERERERERFpksSgCxARERFpC3JycjDT1UCbW05OTtAliIjIHrDWdh3h
xlxbOr8on/yi/K3rebl5AOTl5m1d351YHEO20bWpRUSax66uKy2xtbO2iIiISLzbVXukTYcLdR4f
Z7jbm/ZaYnGM9uBXv/oVffr04eabb270cxUuiIg0D4ULLUfhgoiISP121R7RnAsxkJubS2pqKmvW
rKmzfciQIYRCIYqLi2N+zsrKSi699FI6d+5Mjx49+N3vfhezOh999NE9ChZEREREREQkPilciAEz
o3///rz44otbtxUUFFBRUdFsYzOfeeYZZs+eTVFREYWFhYwYMaJV1ikiIiIiIiLtn8KFGBk1ahTP
Pvvs1vvPPvsso0ePrrPPO++8w9ChQ8nKyiInJ4dx48ZtfeyVV15h7733ZuPGjQC8++679OzZk9Wr
V9d7vqSkJLKyssjMzKRDhw4cf/zxMatzzJgx3HbbbQB8/PHH9O3bl3vvvZfu3bvTu3dvnnnmmQad
S0REREREROKDwoUYOeqoo9iwYQMLFy4kHA7z8ssv8/Of/7zO/AMZGRk8//zzlJWV8fbbb/PXv/6V
t956C4ALLriAY489lmuvvZY1a9ZwxRVXMGHCBLp06VLv+YYOHcqUKVMYO3ZszOvc3ooVK9iwYQOl
paU8+eSTXH311ZSVlTXqvCIiIiIiItJ+tatLUdq4YLv21/YKOP744xkwYAC9evWq8/iwYcO2rg8a
NIiRI0fy8ccfM3z4cAAeeughBg8eTF5eHmeddRannXZavedZu3Ytw4cP5+233+b222/HzLj99tsB
6Nu3L5MmTeLAAw/c4zq3l5yczK233kooFOK0004jIyODhQsXcsQRRzTo5yIiIiIiIiLtW7sKF2Jx
tYim+PnPf86wYcMoLCzk0ksv3eHxL7/8kj/84Q8UFBRQWVlJZWUl559//tbHs7KyOP/887nvvvt4
/fXXd3qeV199lYEDB3LyySdz2GGHMWzYMMyM0aNHU1NTs8tgoSF1bq9Lly6EQts6uaSlpW0dviEi
IiIiIiKiYREx1K9fP/r378+7777LOeecs8Pjl1xyCSNGjKCkpIR169Zx1VVX1RmOMHv2bCZMmMBF
F13ENddcs9PzVFdXU1VVBUDnzp354IMPeOaZZzjllFP4/e9/3+Q6RURERERERBpD4UKMTZgwgQ8/
/JAOHTrs8NjGjRvp1KkTSUlJTJ06lRdeeGHrY5s3b2bUqFHcfffdTJgwgdLSUh599NF6z3H66acz
bdo0nnjiCaqrq0lISOCYY45h8eLFpKWlNblOERERERERkcZQuBAD0Zdx7N+/P0OHDq33sUceeYRb
b72VrKws7rzzTi688MKtj910003k5OTwy1/+kuTkZJ5//nluvfVWlixZssP5cnNzeffdd3n22Wfp
0qULQ4YMoUePHnz00UfccMMNvP/++02qszGvV0RERERERMR2dZWAIJiZq68mM9vlFQ1snMVkzoWm
HiPe7e73JCIieyby/qp0twXsrC0iIiIS73bVHmnT4UJ+UT75Rflb1/Ny8wDIy83bur47sTiGbKNw
QeKN3kOkpShcaDkKF0REROrX7OGCmZ0K3I8fZvGUc258PfvkAfcBScAq59xPdnKsPeq5IK2Dfk8S
z9T7SZqTwoVtdtfuMLP9gaeBocBNzrl7ox4rAsqAMFDlnNvhusoKF0REROq3q/ZIky9FaWYh4CHg
BKAUmGZm/3DOLYjaJwt4GDjZOVdiZl2bel4RERGJPw1pdwCrgWuAEfUcIgzkOefWNnuxIiIicSQW
EzoeASx2zi1zzlUBLwFnbbfPxcBE51wJgHPuhxicV0REROLPbtsdzrkfnHMzgOp6nm9oQmsREZGY
i8Uf197At1H3v4tsi7Yf0NnMPjKzaWY2KgbnFRERkfjTkHbHrjjgX5H2yJUxrawRrrwSnnkmqLOL
iIjEXpOHRTTiPEOBnwLpwBdm9oVz7pv6dh47duzW9by8PPLy8lqgRBERkdYjPz+f/Pz8oMtoj451
zi03s274kGG+c+6z7Xdq7rbI734HZ58N06fDvfdCcnJMDy8iIhITjWmPNHlCRzM7ChjrnDs1cv9G
wEVPrmRmNwCpzrlxkftPAu865ybWc7x6J1HKzc1l2bJlTapVml9OTg5FRUVBlyESCE3oKM1JEzp6
DWl3RO17O7AhekLHhjzeUhM6lpXBqFGwdi28+ir06NHspxQREWmSXbVHYjEsYhqwr5nlmFkyMBJ4
a7t9/gEcZ2YJZpYGHAnMb8xJioqKcM5paeWLggUREWlmDWl3RNvaADKzNDPLiKynAycDBc1Z7K5k
ZcGbb8KJJ8Lhh8OUKUFVIiIi0nRNHhbhnKsxs98A77PtklDzzewq/7B73Dm3wMzeA+YANcDjzrl5
TT23iIiIxJeGtDvMrDswHegIhM3sOmAg0A14w8wcvg30d+fc+8G8Ei8UgttvhyFDYPhw+OMf4Yor
gqxIRERkzzR5WESs6drSItJWaViENCcNi2g5QbVFFi6EESNg2DB44AFISWnxEkRERHapuYdFiIiI
iEgT7b8/fPklrFwJeXlQWhp0RSIiIg2ncEFERESklcjMhIkT4Wc/8/MwTJ4cdEUiIiINo3BBRERE
pBUJheDmm+GJJ+Ccc+DRR0EjRkVEpLVr8oSOIiKtVX5RPvlF+VvX83LzAMjLzdu6LiLSWp1+uu+5
MGIETJ8ODz8MqalBVyUiIlI/TegoInGhJSZb1ISO0pw0oWPLaW1tkY0bYcwYWLYMXn8d+vQJuiIR
EYlXmtBRREREpI3KyIBXXoHzzoMjjoBPPgm6IhERkR0pXBARERFp5czg+uvhmWfg/PPhwQc1D4OI
iLQuChdERERE2oiTT4YvvoAnn4TLLoOKiqArEhER8RQuiIiIiLQhe+8Nn38OVVVw3HF+LgYREZGg
KVwQERERaWPS0+Hvf4dLLoGjjoKPPgq6IhERiXcKF0RERETaIDP4z/+Ev/0NLroI7r1X8zCIiEhw
FC6IiIiItGEnnABffulDhksugU2bgq5IRERaSk1NDRs2bGDFihWUl5cHWktioGcXERERkSbLyYHJ
k+Gqq+CYY+CNN6B//6CrEhGRxgqHw1RUVFBeXr512bRpExs2lLNmjV/WrfPL+vXllJdXEgqlUVlp
nHXWfpx//pmB1a5wQURERKQd6NABnn3WX6by6KPh+efhpJOCrkpERCorK9mwYUOdwGDjRh8UrF1b
zrp1m1i3rpyysnI2bKgAUgmF0jFLx7l0wuE0nEsnKak7ycnpJCWlk5ycTnZ2Ol27pmJmLF8+k6qq
bwN9nQoXRERERNoJM7j2Wjj4YBg5Eq65Bm64ARISgq5MRCQ+VFdXs2LFCkpKSlm8uIQFC0opKVmH
WUfM0oHawCCdxMQuJCf3IykpjaSkdDIy0unUKQ2ztjl7gcIFERERkXbm+ONh6lQYPRreftv3aNh3
36CrEhFpX8LhMKtWraKkpISlS0uZN6+E4uIfCIe74FxvkpL6kZl5NH37diMUav8pr8IFERERkXao
b1/44AN46CF/ucpx4+BXv4JQ2/xCTETiTDgcBiDUSt60nHOsXbuWkpISiopKmDevlKVLV1BVlQn0
IhTqTceOB9OzZw8SEpKCLjcQChdERERE2qlQyA+TOOUUuPRSePNNmDDBBw8iIkGqrKxk/fr1rFu3
jrKyMtasKWPFijK+/76MlSvLWL16PeGwIyMjlawsP79A584ZdO6cTqdOfghBeno6GRkZpKf79eTk
5JjVt379ekpLSykuLmH+/FIWLSqloiIZ6A30omPHn9CtW08SE1Njds62TuGCiIiISDu3//7+ahLj
x8Ohh8Kf/wyjRvk5GkREYs05R3l5OWVlZVuXlSvXbQ0PVq0qY8OGShISsoAsnMvCuWxSUvqTkpJF
amoWvXtnYhaiqqqCLVvK+fbbjSxZUk5VVTnV1eWEQiWYbQTKca6ccHgjKSlGVlYG2dm1YYRfsrK2
BRC1S1paGhZ5E6yoqKCkpITvvitl/vwSFi0qZe3aGkKh3jjXi4yMI8nK6kW3bhmB/lxbO4ULIiIC
QH5RPvlF+VvX83LzAMjLzdu6LiJtV2Ii3HwznHGGDxbeeAMeewz22ivoykSkLXDO4ZwjHA4TDofZ
uHHj1l4Ha9fW7XXwww9lVFcnEwplA1mEw1mEQtmkpuaQmppNx45ZdO687cP9riQn+ysjpKfv+s3K
OUdNTSVVVeWsWlVOaWk5lZXlVFZuxGw1oVAxPojYiHPlmG2hY8c0kpISWL16M2Y9ca43HToMJjPz
NHJyshpUn2yjcEFERIC6IYKNM/Ivyw+0HhFpHoccAtOnw+23+6tKPPIInH120FWJSFOtXr2ar74q
YM6cYqqra6ipCRMOO2pqwpEP3ttut9/uAwNX7230c8EiS4hQqCNmvtdBOJxFSkpfUlIGkZqaRY8e
WS0+74CZkZiYQmJiCh06dN7t/uFwDVVVmwiHq+jXr5OChBhQuCAi0sqpR4GIxFpKCtx9Nwwf7q8o
8cYb8MADkJ0ddGUi0hhlZWXMmVPAxx8XsGTJBuBAMjKOJBRKwiyEmUUua2g7vZ+UFNrtPtvut58P
4KFQAikpHYMuo11RuCAi0sqpR4GINJdjjoHZs+H662HwYHjqKTjppKCrEpFd2bhxIwUFX/PJJwXM
n78aGEBm5sn065cTCQFEgqFwQURERCSOpafDww/DiBFw+eVw5plwzz1+u4i0DhUVFcybN5/PPivg
q69KCYf3o2PHH9O37z6EQglBlycCKFwQEZF2RsNIRPbMSSfBnDn+0pWHHALPPut7NohIMLZs2cLC
hQuZPLmA6dOXUVOzD+nph9G7949afD4DkYZQuCAiIu2KhpGI7LnsbHjuOT8Hw7nn+vkYxo3zczSI
SPOrqqpi8eLFfPFFAV9+uYSqqhxSUwfRs+e5JCbqP6K0bgoXRERERKSOs8+GY4+Fq66Cww/3gcMh
hwRdlUj7VFNTw5IlS/jyywI+/3wRmzf3Ijl5EN26nUlSUoegyxNpMIULItLi1G1d2gP9O5b2bq+9
4PXX4fnn4eST4brr4IYbIFGtR5EmC4fDFBUVMW1aAZ9+Op/y8m4kJg6iW7eTSU7OCLo8kT2iPw8i
0uLUbV3aA/07lnhgBpdeCj/5CfziF/DWW74Xw/77B12ZSNvjnOO7775jxowC8vO/pqysI6HQILp1
+w+6ds0KujyRJlO4ICIiLUbf9ou0TX37wnvvwV//6odL3HYb/OY3ENJV70R2q6amhjlz5vLGG59R
XGyEQoPo2nUMOTldgi5NJKYULoiISIvRt/0ibVcoBL/+tb+qxOjR8Oab8PTTkJMTdGUirVN1dTUz
Zszi9dcns2JFJ7KzTycnpz9mFnRpIs1C4YKIiIiINNiPfgSffgp//jMcdhiMHw9jxvghFCLiLyH5
5ZfTefPNKaxe3ZMuXc6jf/8+QZcl0uwULoiIiIhIoyQk+MkdTz/dz8nw6qvw2GPQr1/QlYkEp6Ki
gsmTv+TNN6eycePedO16Cf379wi6LJEWo3BBRERERPbIQQfB1Knwpz/BoYfCuHHwH/+huRgkvmzc
uJGPP/6Cf/5zJhUVB7DXXpfTtavmU5D4o3BBRERERPZYUhLcdBOcfTZcfjm8/DI8+aQfPiHSnq1b
t44PP5zMpEkFVFUNpnv3/6B7d131QeKXwgURERERabIBA/xcDA89BEcf7YdN/O53kKjWprQzP/zw
A//612d88MFCnDuUHj2uJjk5I+iyRAKnt3sRERERiYmEBLjuOjjzTLjySnjlFZgwwQ+fEGnrli9f
zrvvfspnny0DjqBnz2tJSuoQdFkirYbCBRERERGJqb33hg8+gKeegp/+FK6+2g+dSE4OujKRxisu
Lubttz/lyy9XkJR0DL17jyAhQf+YRbYXk+l2zOxUM1tgZovM7IZd7He4mVWZ2TmxOK+IiIjEn921
O8xsfzP73Mw2m9l/Nua5EjtmcMUVMHs2zJzpJ3ycNi3oqkQaxjnHkiVLuO++Z7j11jeYNWt/+vW7
jt69j1ZS+BDzAAAgAElEQVSwILITTe65YGYh4CHgBKAUmGZm/3DOLahnv7uB95p6ThEREYlPDWx3
rAauAUbswXMlxnr3hn/8A156yQ+XGDXKX1UiLS3oykR25Jxj4cKFvPnmp8yfX0la2o/JzR2Ef/sQ
kV2Jxf+SI4DFzrllzrkq4CXgrHr2uwZ4DVgZg3OKiIhIfNptu8M594NzbgZQ3djnSvMwg4sugrlz
4bvv4OCD4eOPg65KZJtwOMxXX83hjjse5a67PuHbb48jN/fXdO8+WMGCSAPFYs6F3sC3Ufe/w//x
3srMegEjnHM/MbM6j4mIiIg0wm7bHc30XImBbt3gxRfhrbfgkktg+HC4+27IzAy6MolnzjnGj3+c
BQtSyMo6mdzcfTCzoMsSaXNaKoa7H4ge16j/rSIiIiJxavhwKCiAykp/JYl33w26IolnK1euZNGi
LfTvP4bOnfdVsCCyh2LRc6EE6Bd1v09kW7TDgJfM/0/tCpxmZlXOubfqO+DYsWO3rufl5ZGXlxeD
MkVERNqO/Px88vPzgy6jNWpIu6PJz1VbpPllZ8OTT/qrSlx5Jfz4x3D//dC5c9CVSbxZurQQ5/YO
ugyRVqkx7ZFYhAvTgH3NLAdYDowELorewUX9bzWzp4H/21mwAHX/oIuIiMSj7T/Qjhs3LrhiWpfd
tju2E/0VZIOfq7ZIyznxRD8Xw803w6BB8MADcN55QVcl8WT27KWkpQ0OugyRVqkx7ZEmD4twztUA
vwHeB74GXnLOzTezq8zsl/U9pannFBERkfjUkHaHmXU3s2+B3wE3m1mxmWXs7LnBvBKJlpEB//u/
8OqrcMstcO65sGJF0FVJPAiHw8yZs4zs7P5BlyLS5sWi5wLOuUnA/ttte2wn+/4iFucUERGR+LS7
dodz7nugb0OfK63HscfC7Nlwxx0weDD86U9w6aX+ahMizaG0tJQtW7JJTk4PuhSRNk/XVRERERGR
ViM1Ff74R5g0yc/BcPrpUFwcdFXSXi1evFTzLYjEiMIFEREREWl1hg6FqVPhuOPg0EPhscfAaXCt
xNisWYVkZGhIhEgsKFwQERERkVYpKclP9Pjxx/DEE3DaaVDS0GuDiOxGVVUV8+eXkJWVE3QpIu2C
wgURERERadUGDoQvvoBjjoEhQ+Bvf1MvBmm6b7/9lpqa7iQmpgRdiki7oHBBRERERFq9pCS47TY/
F8Pdd/vLVa5cGXRV0pYtWrQU5zQkQiRWFC6IiIiISJsxdCjMmAH77gsHHwxvvBF0RdJWzZhRSFaW
JnMUiRWFCyIiIiLSpqSkwPjxMHEiXH89jBoFa9cGXZW0JZs3b2bJklVkZvYJuhSRdkPhgoiIiIi0
ScccA7NnQ3Y2DB4M770XdEXSVhQVFeFcH0KhxKBLEWk3FC6IiIiISJuVng4PPghPPw2//CX86lew
cWPQVUlrt2BBIWYaEiESSwoXRERERKTNO/FEmDMHNm/2czF8+mnQFUlrNmPGUrKzNZmjSCwpXBAR
ERGRdiEry/dguO8+uPBC+P3vfdggEm3Dhg18++0GOnbsGXQpIu2KwgURERERaVeGD/e9GJYt81eX
mD496IqkNSkqKsIsFzN9FBKJJf2PEhEREZF2p2tXeOUVuO02OOMMuP12qKwMuippDb7+eimJiZpv
QSTWFC6IiIiISLtkBiNHwqxZvvfCUUdBQUHQVUmQnHPMnFmo+RZEmoHCBRERERFp13r1gn/+E66+
Gn7yE7jnHqipCboqCcLatWtZtaqGtLSuQZci0u4oXBARERGRds8MLr8cpk2Dd9+FYcPgm2+Crkpa
2tKlhUB/zCzoUkTaHYULIiIiIhI3cnPh3/+GCy7wwyQefhjC4aCrkpZSUFBIcrKGRIg0B4ULIiIi
IhJXQiG47jqYPBmefx5OOQWKi4OuSpqbc45Zswrp1EnhgkhzULggIiIiInFp//3hs8/8PAyHHgoT
JoBzQVclzWXlypWsX59Camp20KWItEsKF0REREQkbiUmwk03wQcfwCOP+KBh/vygq5LmsGTJUpxT
rwWR5qJwQURERETi3sEHw5dfwnnn+ckeb7kFKiqCrkpiafbsQtLS9g66DJF2S+GCiIiIiAiQkAC/
+Q189RUsXgyDBsGkSUFXJbFQU1PD3LnLyM7ODboUkXZL4YKIiIiISJReveDll/2VJK6+Gi68EEpL
g65KmqK0tJQtWzqRnJwedCki7ZbCBRERERGRepx6KhQUwI9+5IdNPPQQ1NQEXZXsiW++KdR8CyLN
TOGCiIiIiMhOdOgAd94Jn3wCr74KRx4JM2YEXZU01syZS8nIULgg0pwULoiIiIiI7MaAAZCfD9dc
A2ecAdddB+vXB12VNERVVRULFpSSlZUTdCki7ZrCBRERERGRBjCD0aPh66+hvBwGDvS9GZwLujLZ
leLiYmpqupOYmBJ0KSLtmsIFEREREZFG6NIFnnwSXnoJxo3zPRmWLg26KtmZxYsLcU6XoBRpbgoX
RERERET2wHHHwcyZcPzxcMQRcNddUFkZdFWyvRkzCsnK0nwLIs1N4YKIiIiIyB5KToYbboBp0+Cz
z+CQQ/zkj9I6bN68mSVLVpGZ2SfoUkTaPYULIiIiIiJN1L8//POf8N//DZdcAr/4BfzwQ9BVSVFR
EdCXUCgx6FJE2j2FCyIiIiIiMWAG554L8+ZBVhYceCA8/bQmfAzS/PlLAQ2JEGkJChdERERERGKo
Y0e47z6YNAkefdTPyfD110FXFZ9mziykUydN5ijSEhQuiIiIiIg0gyFD4IsvYORIyMuDm26CTZuC
rip+bNiwge++20hGRo+gSxGJCwoXRERERESaSUIC/PrXMGcOFBbCoEEwdWrQVcWHwsJCIBczfeQR
aQn6nyYiIiIi0sx69oQXX4S//AXOOAOeeSboitq/r78uJDFR8y2ItBSFCyIiIiIiLeTss+Hjj+GP
f4Rrr4WqqqArap+cc8yYsZTsbIULIi1F4YKIiIiISAsaONAPjViyBE46CVauDLqi9mft2rWsXh0m
La1r0KWIxA2FCyIiIiIiLSw7G956C447Dg4/HGbMCLqi9mXJEn8JSjMLuhSRuBGTcMHMTjWzBWa2
yMxuqOfxi83sq8jymZkdFIvzioiISPzZXbsjss8DZrbYzGab2ZCo7UWR9sgsM9O0ehKohAS4804/
D8Opp8LzzwddUfsxd24hKSm6BKVIS0ps6gHMT7/6EHACUApMM7N/OOcWRO22FBjmnCszs1OBJ4Cj
mnpuERERiS8NaXeY2WnAPs65H5nZkcCjbGt3hIE859zaFi5dZKfOOw8OOABGjICZM+FPf4LEJrfS
45dzjtmzC8nOPjnoUkTiSix6LhwBLHbOLXPOVQEvAWdF7+Ccm+KcK4vcnQL0jsF5RUREJP7stt0R
uf8cgHPuSyDLzLpHHjM0LFRaodpLVM6bB6ecAj/8EHRFbdf333/Phg2ppKZmBV2KSFyJxR/X3sC3
Ufe/Y9fhwRXAuzE4r4iIiMSfhrQ7tt+nJGofB/zLzKaZ2ZXNVqXIHujcGd55x8/BcPjhMHt20BW1
TUuXFgIaEiHS0lq0w5WZ/QQYAxy3q/3Gjh27dT0vL4+8vLxmrUtERKS1yc/PJz8/P+gy2qNjnXPL
zawbPmSY75z7bPud1BaRoCQkwN13w5Ah/koSDzwAF10UdFVty6xZS+nQ4ZCgyxBpFxrTHolFuFAC
9Iu63yeyrQ4zGww8Dpy6u3GO0X/QRURE4tH2H2jHjRsXXDGtS0PaHSVA3/r2cc4tj9yuMrM38MMs
dhkuiAThwgv9PAxnn+3nYbjrLs3D0BA1NTXMnVtMly5nB12KSLvQmPZILIZFTAP2NbMcM0sGRgJv
Re9gZv2AicAo59ySGJxTRERE4tNu2x2R+5cCmNlRwDrn3PdmlmZmGZHt6cDJQEHLlS7SOAcfDNOm
waxZcPrpsGZN0BW1fqWlpVRWdiIpKS3oUkTiTpPDBedcDfAb4H3ga+Al59x8M7vKzH4Z2e1WoDPw
iC79JCIiInuqIe0O59w7QKGZfQM8Bvw68vTuwGdmNgs/wfT/Oefeb/EXIdIIXbrApEkweLCfh2HO
nKArat0WL16Kc5pvQSQIMelc5ZybBOy/3bbHotavBDRpkoiIiDTZ7todkfu/qed5hYAGYkubk5gI
f/4zDB0KJ5wADz8MF1wQdFWt06xZhWRkHBt0GSJxSSO3RERERETagIsv9vMwnHOOn4fhf/7HTwAp
XlVVFfPnl9KzZ07QpYjEJV3nWURERESkjRg61M/DMHUqnHEGrN3lNOnxpbi4mHC4BwkJyUGXIhKX
FC6IiIiIiLQh3brBe+/5XgxHHAFffx10Ra3DwoVLca5/0GWIxC2FCyIiIiIibUxSEtx/P9x6K+Tl
weuvB11R8GbOLCQrS5M5igRF4YKIiIiISBt16aXw7rvw29/CLbdAOBx0RcGoqKhg6dIfyMzsE3Qp
InFL4YKIiIiISBt22GF+HoZPPoHhw2HduqAranlFRUU415dQSDNcigQl7sKFdeugqiroKkRERERE
Yqd7d/j3v6F/fz8PQ0FB0BW1rAULCgmFNCRCJEhxFy7cfz9kZ/s33V/9Cp54wl/Kp7Iy6MpERERE
RPZcUhI8+CDcdJOfh+HOO+PnS7UZM5aSna3JHEWCFHfhwtix8P33cO+9fobdTz+FUaN84HDYYXDV
VfD44zBjhgIHEREREWl7LrvMf3k2eTIcfrhfb8/Wr19PSUk5GRk9gi5FJK4lBl1AEDIy4Ljj/FKr
vBxmz/Zvvp9/7lPfJUtgwAA49NBty0EHQUpKcLWLiIiIiOxOv37wzjvw3HNw6qlwxRVw222Qmhp0
ZbFXVFQE5GIWd9+birQqcRku1Cc9HY491i+1Nm2Cr77yvRimTIGHH4ZvvvE9HrYPHNrjG7WIiIiI
tF1mMHo0nHIK/PrXMGQITJgARx8ddGWxVVCwlMREDYkQCZrChV1IS/NvvtFvwJs2wZw5PnCYOhUe
fRQWL4b9998xcOjQIbjaRUSk4ZxzOOeoqakhHA5TU1OzddnV/dp1EZHWrEcPmDgRXnsNzjkHRo70
8zGkpwddWdM555g5s5BOnY7b/c4i0qwULjRSWhocdZRfalVUbAscpk+Hxx6DhQshJwcGDYIDD/S3
gwbBvvv6yXZERFqrcOQi6c45zCzganwdVVVVVFZWsmXLFrZs2VLv+ubNlZSXb2Hjxi1UVPh1gHHj
HqO6uoaamjDV1TX1rPv7zgEkYJYAhCK3ddfNEnAuFNnuH6us3AL7BvOzERFpKDM4/3z4yU/gt7+F
wYPhySf9/bZszZo1rF4dpl+/LkGXIhL3FC7EQIcOcOSRfqlVWQmLFvnLABUUwAsv+NvvvoMf/Whb
2FAbPPTvDyENExNpk6qqqti0aRMApaWlOP8pFaDe9aZsA1i0aBHV1dV1lpqaGqqrq6mqqmbLlmoq
K6uprKyhstLfr91eVVUTecxv80sNVVV+mz9eGPaGMWPGkZiYQEJCKHKbQGJiwtZtSUl+W1KS3+bv
h7au1y6JifVt89chf//9f28NAzZu3MKmTX590ya/vnlzJZs3VxIOJxAKJQMphEIpOOfXa2/D4RQg
mYSELBITU0hISCYhIQW6wvr1Z2KWgFmIUCiB5OQEQiF/3yx6fc/ehNetW7ZHzxMRCULXrvC3v8E/
/wmXXgpnnAH33AOZmUFXtmeWLi0E9m4VYbhIvFO40EySk7cFCNE2bYL58+Hrr33Y8Nhj/nb1ahg4
sG4vh0GDoHdvnzSLSMsJh8NUVFRQXl5eZ1m/vpy1a8tZs8bfrlvnt1VUVBMKpUMO3Hrr/wHR/2n9
upmxLR9o3LY66/3gnnum41wCziXi38YT69wPhToQCiVGPjgnbrfU3WaWQHJyIqmp0dtCwDhycm7H
uRqcCxMO1+BczdbbmpowVVV1t9W33862OVcD/eHFF5NISMioEwgkJCSTmJhCcnIKHTr49aZM0tWx
Y689fq6ISHv1s5/5yc3/6798m/Oxx+C004KuqvHmzi0kJeVHQZchIihcaHFpadvmZYhWVgbz5m3r
6TBpkr/dvLlu4FC7vtdewdQv0hbVfuu/Zs2aOmHBxo07hgVlZeVs2FABpPrAAL+Ew+k4l05yck+S
ktJJTk4nKSmdLl3SSUhIiXxj8v/o2/eqZn41o+nT5+JmPodnZpj5PxMJCc1zjpycYc1zYBER2a3s
bHjiCfjgA7jyShg2DO67Dzp3DrqyhnHOMWtWIdnZJwddioigcKHVyMracfJIgFWrfC+H2p4Or7zi
b5OSfNBw4IH+cpkDB/plr73U00HiTzgcZsOGDZSVlbFu3TrWrSvj++/LWL58HStXlrFqVRn0gt//
/nnMfFjgnA8MEhM7kZTUZ2tYkJGRTqdOabqclYiIxI0TT4S5c+Gmm/yXWA895Cd+bO2+//57Nm7s
QJcuWUGXIiIoXGj1unWDvDy/1HIOli/3IcO8ef5ymS+95AMIMx8yRAcOAwZAnz4KHaTtqqqq2hoc
lJWVsWaNDw5WrPDBwZo1GwiH0zDLArIJh7NIStqL1NT9SEnJolu3LOBm+vW7LuiXIiIi0iplZMAD
D8CFF8IvfuHblg8+CN27B13Zzi1ZshTndAlKkdZC4UIbZAa9evnl5KheYM7BypU+cJg/39++9Za/
3bRpx8Bh4EDIzdVEkhK8TZs2bQ0OysrKWLVqHcuX+94HK1euY8OGSkKhTMx8cOBcFqmpe5OSkkVq
aha9e2cSCuntTEREpKmOPRZmz4Zx4/wVJe69Fy6+uHV+STV7diHp6UOCLkNEItQab0fMfLrcvfuO
lxVas2Zb4DBvnh9bN3++n0hy//3rBg8DB8I++0Ci/nVIM1u7di0Av/71AyQkZANZ1NRkkZCQTUpK
X1JTs+jYMZvOndM1C7SIiEgL6dAB7r4bzjtvWy+Gv/7VTzTeWtTU1DB3bjFdupwddCkiEqGPj3Gi
c2efRB97bN3t69fDggXbejtMmODXS0t9wFAbNtROJvmjHyl0kNhYvXo199zzHKRBbu6NQZcjIiIi
2znsMJg+He66Cw45xN9efnnr6MVQUlJCZWVnkpLSgi5FRCL0MTHOZWbCEUf4JVpFBSxc6OdxmDfP
Xw+5oABKSmC//Xa8gkX//hpeIQ33/fffM37839i06aegNoGIiEirlZwMt9/uJ3is7cXwxBO+7Rek
b74pJBzWfAsirYnCBalXhw4+oT7kkLrbN23yPRxqL5n517/629Wr/dCK7S+ZqYkkZXulpaWMH/8C
lZWn0KPHQUGXIyIiIg1w0EHwxRd+DobDD/eBw9VXB/fl0owZS+nY8bhgTi4i9VK4II2SlgaHHuqX
aGVlvodDQYHv7TBpkr/dtGlb0BB92727Qod4VFxczPjxL2N2Jt27HxB0OSIiItIIiYlw/fUwYoQf
HvHqq/Diiy0/F0NlZSULFy6nZ8+clj2xiOySwgWJiawsOPpov0T74QcfMnz9tQ8eXn/d35rtGDgc
cIC/9KZCh/ZpyZKl/OlPr5GcfA6dO+8bdDkiIiKyh/bbDz7+2E/6ePjhfvjsT3/acucvLi4mHO5B
QkJyy51URHZL4YI0q65d4fjj/VLLOVixYlvgMHMmPPecn+MB/NUrDjig7u0++/gxf9I2LVy4iD//
+U3S0y8gOzs36HJERESkiUIhuOkmOPJIuOQSuO4636uhJYZJLFpUCOzd/CcSkUZRuCAtzgx69vTL
iSdu2+6c7+mwYIFfFi6EJ5/0t99+Czk59QcPXbsG91pk977+eh733vs2WVkXk5nZJ+hyREREJIZO
OAGmTYMLLvBzMjz7LGRnN+85Z84sJDPzlOY9iYg0msIFaTXM/LCIbt3gxz+u+9iWLfDNNz5oWLAA
PvkEHn/crycl7Rg4HHCAn8U4KSmY1yLerFlf8cAD/6JLl1FkZPQIuhwRERFpBn36QH4+/Nd/+Xm5
Jk7ccVLwWKmoqGDp0tX06aMvLERaG4UL0iakpPh5GQ48sO525+D777f1dFiwAD780K+XlvqAITpw
OPhgfwwNsWh+U6fO4JFHPqZbt9Gkp3cLuhwRERFpRsnJ8L//C8ccAyedBPfcA2PGxP48RUVFQF9C
oYTYH1xEmkThgrRpZtCjh1/y8uo+VlHhezvUBg//+pf/Q1dU5CeRPPRQOOwwf3vggerlEEuffTaF
xx+fQs+el9GhQ+egyxEREZEWcuGFMHgwnHMOfP45PPggpKbG7vjz5y/FrH/sDigiMaNwQdqtDh38
NZkPOqju9o0bYfZsmD7dd+H7y1984HDQQXUDh4EDFTjsiQ8//ISnn55N795jSE3NCrocERERaWED
BsDUqXDllb4nw2uvwd4xmn9xxoxCsrPPjc3BRCSmFC5I3MnIgOOO80utDRu2BQ4ffgh/+hMUF9cf
OCTqf029nHNMmvQhL7ywgD59xpCS0jHokkRERCQgHTvCiy/CQw/5S5U/9RT87GdNO+b69espLS2n
Xz/N4yTSGuljkgj+D+CPf1x3IskNG2DWLB84fPABjB/vr1oxeHDdwGHAAAUOzjn+8Y9JTJxYTN++
l5GcnB50SSIiIhIwM7jmGt9euvBCfzWJO+6AhD2cLqGwsBDoj5nFtE4RiY04/0gksnMdO8KwYX6p
tX69DxxmzID334e77oKSkrqBwyGH+AkkYzm+sDULh8NMnPg2//jH9+TmjiYxMU5euIiIiDTIMcf4
ttNFF8Epp8ALL8BeezX+OF9/XUhiouZbEGmtFC6INEJmJhx/vF9qlZVtCxwmTfI9HAoL/WWZBg6s
uxxwAKS3oy/1w+EwL774JpMmrSc3dxSJiSlBlyQiIiKt0F57+S9mbrvNfxnz8st+uERDOeeYMWMp
nTodt/udRdoh56C6GrZsgc2b/W30+qpV3TjyyNJAa1S4INJEWVn+ShXRV6uoqvJXqpg3zy/vvOMn
jly0CLp390HDgAHbQocBA/xx2pKamhqeffY1PvqoitzcS0hI0OyXIiIisnMJCfA//wNHHQVnnQW3
3OKHTTRklMOaNWtYswb69esS87rKy6GyErKzG1aLSGOFw/7fWH2hwPbru3rczPeOTknxS/R6TU0K
1dWhQF+nwgWRZpCU5AODAQPg3KgJjWtqfK+G2tAhPx8eecRfLjM7u24vh9rwoUvs/4Y2WVVVFRMm
vMLkyQn07z+SUEhvJSIiItIwZ54JU6bAeef5y1U++aSfcHtXlixZSqzmW6ip8fNoffMNLF0Ka9ZA
crL/VrhXL+jd2y+9eu2+LolvzkFFhZ+rbf16f1vfekWF/zdWXygQfT8jY+fhQUrKrud5W778OzIy
qlruxddDnwhEWlBCAuy7r1+GD9+2PRz2f+RqQ4cvv4Snn/brqak7Dq8YOND3gAhCZWUljz32ItOm
ZZCbO4JQaA9nZRIREZG4tffeMHmy77lwxBEwcaL/YmVn5swpJCVl/z0+35o1PkxYsgSWLfNf3uyz
j58Dok8f30bbsAFKS/18WlOn+tuUlG2BQ69efknRKNC4UF29Y1gQHRrULomJfq62zEx/27Ej9OgB
++23bXtaGoSC7VTQIhQuiLQCoRDk5PjltNO2bXfO/5GbNw/mz4e5c/0YxYIC/4dt6FAYMmTbbW5u
83bn27x5Mw8//Hfmzu1G//4/wywO3iVFRESkWXTo4HstPPWUn0D7oYf8VSW255zjq6+K6NTp1AYf
e8sW31t0yRK/VFX5MGHQID8kIy1tx+d07Ogn5d5//9rz+lCiNnD46CNYscIPZY3u3dC9e+u4cljt
t+jV1dvuRz+2q/XG7Av+i7Hqat8LpL7bhmzb3b7hsG8jh0I+/Nl+qW979LaGPm/z5vqDgy1bfE+C
7YODXr22rWdm+h7L4sXkv4GZnQrcD4SAp5xz4+vZ5wHgNKAcuMw5NzsW5xZpz8y2/fE66aRt253z
PR1mzvSTST79NFx7rR8zGB02DBni/0Du6SWfom3atIkHHniehQv7kZNzqi4DJSKBaUq7oyHPFZGW
dfnlvu1y3nn+cpX33OO7kNdasWIFGzd2oEuXzJ0ewzlYvnxbmLB8uW8/7bOPDyz22qvxX8CY+R4O
XbrAQQf5bTU1sGqVDxtKSvyE3mvWQLdudQOHrl1j84VPZaVv3zVkqe16H/1hN7qG3a03dt/ERL8k
JNS9rV2P3p6U5MOkne27s+eHw/5nXnu7/dLQ7ZWVdbdFrycn+5CgV69tIUJtb4P/3979x8lV1/ce
f3/O/Ngfye6yCWx+bX6SMCQkCBgIrPDIKqJ4weIDW2qpBSlqb1tKe3tbqAqXYFtbtSo+rg8fehUp
KVq0VgV89CpSu97qvVp8IBUQEmCz2c3PDSE/drO/ZuZ87h9nkmw2u8luZnfPzszryeM85syZ75nz
2QzJfOY933OWdndiig4XLPrq8nOSrpa0S9LTZvaYu780bMw7JJ3r7qvMbIOkL0i6vNhjA5XKTFqy
JFre9a7j27u7o7DhmWekxx6T7rsvStjXrTtxlsMFF0xsSl9vb68+85nN2rbtPC1ZcjXBAspG6KFy
YV65MKfQo9tcmFPec8qHeeU8p3yYU97z0bbC9qProfLq7euWqsdueDG5iuk7xrMvgHhcfLH0859L
t94qvfnN0je+EX1Ql6RXX90macVJ+/T0HA8T2tujD4Pnniu96U3RbM6p+EY5kYimvM+fH/0acin6
4LpnTxQ2vPKK9KMfSX190oIFx8OGRYuiD6zu0WPjDQzco980NnJpaIied/i22trJ+UIJOFOTMXPh
Mkkvu/t2STKzRyXdIGn4G/UNkjZLkrv/zMwazGyeu++dhOMDKGhqis4dfPvbj287dEh69tkodPj3
f5c++9noTTiTOXGWwxveMPpFiw4dOqRPfWqzdu16gxYvvmrMYME9mlY2MBAl56MtIx/rmfd96foG
fQkqmQIAAB9jSURBVHRoqYJsnRK5eiXydUrm65QK65UK65RWvapUpyqrU43VqyZRp5pEnWoT9ZqV
rFNdul6zUnWqTdUqmOLQI/RQQ/mshvJDyoVZZcMhZfPRbc6zkq/QS/7CiX8u8pOeZ7RtGm2cjzbu
PD2nZxR6KHdXqFDuoUKFkjzarrBw68ceGz7m+OPRc0TPcvR+WKivRf9iX5NkMgWyY/8FMhu2zaJb
yRSM8djw9cCCwnOapHX6SfivyvqgcuFQdOuDyvqg8hpSzgeV06Dyiu7nNai8RethEG0Pg0GFNqTQ
BuVBdN+DIXkwKE8MSsF8fTSYL7e8FOQky0lBYT3ISYFLnpSChBQmJTu+bpaUlJAFyei+EpKSsiAp
CwuPeVKqDqTeBRP6fwlFOeO+Q9LycewLICaNjdJ3vhP9Wu/166VHHpGuvlp69tl21dZeolxO6uw8
HigcOiQtXx4FCldfHV0cOw7p9PEvfY7q6zt+OsV//mf0m8Oy2Wi6f3V11HMNDwVmzYoCiKPbjj6e
SvHtOUrHZIQLiyR1Dbu/Q9Eb/6nG7CxsI1wAplhDg7RxY7Qc1d8fXb/h6CyHzZulF16QFi8+8ZSK
oaHD+spX2rRv3ztUXb1SW7eeHBAcvT8wEL251tScuFRXR7d1dVH4MXxbVc3V+mw+0Pv8R+r1Hh3x
w+r3HvX5YQ14jwbUo0Ed1hHt00G1K2uHlbMe5eyw8tajMOhRaIeloEfSoDRYJ8vWKcjWK8hGIUUy
X6+kz5bUos/YbxY+iGblNiS3rMIguo0+kA7Jg2hdw26VGJIS2ehDaZiWgpTkaclSsiAtU0oKU5JM
37SbTn4RfLSuYBzbTLJR9n3c3y8VPsRLQeHWJA+i62B4UAiBgpPHKJAdHacTn8M8KHQw0TG36rty
hZJFAUQUgLjcjocUp3tMKoQVJ6wfHS/92P5agVcpsLQCVSlQlRKqUuBpJQrrCVUppVmq0RwlvUpJ
q1LS00palVJepaSqlFJaKY/up71KKU8rHVZps12pD4S/UNKSSiqpRJBQ0pNKelJBmFBggYKg8Gd8
ht/2HDy4XZ9tXHZmO+NMnEnfsaOwbTz7AohREEgf+pC0YYP0278tffCDoZ56ap727s2oqys6/eDc
c6Xrros+jM/Ui+TV1h6/iLd0/EuYqqqZWzNQrBlw6ZGTbdq06dh6a2urWltbY6sFKEc1NdGVmS8b
1lJns9GvxDwaODzxRKj29h4FwVWaM2eOBgej/c4++8SAYHiIMPE3y6RkB7TElxX9M+XCnHrCHvWG
PToSRkFFn/eoX4c14L06YK/ofL9RSaWUVFoJpZRSOvqQqpRSnlYyjLal7Pj9tKWV8pTSno4+jCYs
+hA6ylTL+810z6izDSbP/Wb6yBQf4+hx/sR/MuXHuHuqfxbbowVemrMK2tra1NbWFncZ5WLC3/vR
iwDxestbotMk3v/+Ae3b16yLL07o3e+Oeo5SZFa6taOyTaQfmYxwYaekYZOA1FzYNnLM4tOMOWb4
GzqA6ZFKRddmWLdOuuUWyd307W8/q29/u0MLF/6WamrmxF3iKSWDpBprGtVY0zjq47+w2/SOKf6w
DEymkR9o77///viKmVmK6TvS49hXEr0IMBMsWiQ9+mhWf/InT2jJkgy/pQqIwUT6kcn4G/q0pJVm
ttTM0pLeI+nxEWMel3SLJJnZ5ZIOcr0FYGYzM91443W6444Neu21B3XgQHvcJQGAVFzfMZ59Acwg
DQ0NWr68XocOdZ1+MIBYFR0uuHte0h2SnpT0gqRH3f1FM/s9M/tgYcy/SNpmZq9I+qKkPyj2uACm
x4YN63Xvvb8hs29p166fjXGRQQCYHsX0HWPtG8OPAWACWloyOnRoS9xlADiNSbnmgrt/T1JmxLYv
jrh/x2QcC8D0W7ZsmTZter8+97l/1Msv79HSpdcpCGbkJVsAVIBi+o7R9gUws61Zk5H0z5LeFncp
AE6BE5cAjMtZZ52lu+66XRs3Dqi9/WENDfXGXRIAAKgACxYs0Jw5Q+rrey3uUgCcAuECgHFLp9O6
7babdOut52rnzi+pp2d33CUBAIAyZ2Zqaclo/35OjQBmMsIFABNiZrrmmlbdddfbdeTIP6i7+/m4
SwIAAGXuwgszcidcAGYywgUAZ+SCC9Zo06Zb1NDwlLq6fsiFHgEAwJRZvny50um9Gho6EncpAMZA
uADgjM2fP1/33PMBrVu3Xdu2PapcbjDukgAAQBlKJpO69NJz9frrL8ddCoAxEC4AKMqsWbP0R390
i975ztnq7HxQ/f2vx10SAAAoQ+vXZzQ4yKkRwExFuACgaIlEQr/+69frD/7gUu3b9xUdOLAt7pIA
AECZWbVqlczaFYa5uEsBMArCBQCTwsx0+eWX6t573y3pn7Vr139wHQYAADBpamtrtWbNfL7EAGYo
wgUAk2r58uXatOl2LV78c23f/oTCMB93SQAAoExcfnlGvb2cGgHMRIQLACZdY2Oj7rrrdl155RG1
tz/MlZ0BAMCkWL06I2kLsyOBGYhwAcCUqKqq0u23v0fvfe8y7djxJfX27om7JAAAUOLmzp2rRYuq
1NOzK+5SAIxAuABgypiZrr32LfrzP3+reno2q7v7hbhLAgAAJa6lJaODBzk1AphpCBcATLl169Zq
06bfUV3dk+rq+jemMgIAgDO2dm1G7oQLwExDuABgWixYsED33vsBXXBBu7Zt+7ry+aG4SwIAACWo
ublZ9fW9Ghg4GHcpAIYhXAAwbWbPnq0777xV119fq46OB9XffyDukgAAQIkJgkAbNqzSa68xewGY
SQgXAEyrZDKp3/iNd+r3f/8SdXc/GHc5AACgBF18cUb5POECMJMQLgCYdmamlpYNuueeGyVJnZ1/
r46Of9X+/VuVzfbFXB0AAJjpzj33XKVSO5XLDcRdCoCCZNwFAKhc5567QpL04Q9fqY6OLj3//E+1
ZctODQzMlrRYqVSz6usXa9asc2RGFgoAACLpdFoXXbREzz//ipqa1sZdDgARLgCYAVauXKmVK1fq
rW+VwjDUvn371NnZpS1buvTCC/9PnZ29MmuWe7Pq6harvr5ZyWR13GUDAIAYXXppRk8/vUUS4QIw
ExAuAJhRgiDQvHnzNG/ePF166XpJ0pEjR7Rjxw5t29al55//sV5+eZey2QaF4WJVVS1WQ8Ni1dTM
lZnFXD0AAJgumcx5kp5SGOYVBIm4ywEqHuECgBlv1qxZymQyymQyuvZaKZ/Pa+/everq2qGXXmrX
Cy/8SJ2dg4XZDYtVX79Y9fWLlEik4y4dAABMkfr6eq1cOUfd3Z1qbFwedzlAxSNcAFByEomEFi5c
qIULF2rDhsskST09PdqxY4fa27v03HM/1Kuv7lE+P1fui1VV1SwtkI4c2adEIq1EIqVEIi2zBLMd
AAAoYS0t52vz5i2EC8AMQLgAoCzU1dVp9erVWr16ta67TsrlctqzZ486O7v0q19t0Rd3SqnU1zUw
MKTBwawGB4eUy4UyS8ssJbO0pFRhidbdj9+6R2OOBhNBkDohqAiClFQn9fcfOKm20QOMk7eNa1y1
NDR0RGbBKAtByVjc/ehaYb3Y2+PPNTBw8msOAJgea9ZkJD0q97fzPgjEjHABQFlKJpNqbm5Wc3Oz
Wlqu0Afu/0197GN3nDAmDEMNDQ0pm80eux2+Pvx2aCirgYFB9ff3qq9vSAMDWfX3H78dHMxKktw3
D/vwqRHHO3n7aGNH23Zs32qpt/fzyudDhWF47DaXy0uywm/VOL6c7v6YyxKpq+sRSV5YQkkuM5d7
eMK2keujPT5ym7tLy6WOjr886Wcd2RuO9ed5slHGLZe2bdsksyi8MTMFgR1bH3lf0gn3T7ceBKbq
appZAIhLU1OTzjnH1de3T7NmNcVdDlDRbPxN2/QwM59pNQGYOna/ye+b+r/z03GcuI/h7oXAIa8w
DItaMv+Y0dabtw77MB2ccDvW+kQer/qbKmU/kj35ZxznN0/jGZf4y4TC/xFO+bdZ0/Lam8ndSTKm
Ab0IUFq+853/rSeemK3Fi6+KuxQgNrt3P6ONG7t08803TOlxTtWPMHMBAMqEmSmRSCiRmJwrZq9a
tWpSnudUksmpfxtimiwAlLcLL8zo8cd/KIlwAYhTEHcBAAAAAHCmli5dqurq1zQ42BN3KUBFI1wA
AAAAULISiYQuu2yl9u/fGncpQEUjXAAAAABQ0t74xoyy2S1xlwFUNMIFAAAAACVt5cqVCoLtyueH
4i4FqFiECwAAAABKWk1NjdauXagDB9rjLgWoWIQLAAAAAEre5Zdn1NvLqRFAXAgXAAAAAJS888/P
yGyr3MO4SwEqEuECAAAAgJLX2NioJUtm6fDhnXGXAlQkwgUAAAAAZaGlJaODBzk1AogD4QIAAACA
snDBBRmZES4AcSBcAAAAAFAWFi1apIaGfvX17Y+7FKDiEC4AAAAAKAtmpiuuyOj117fGXQpQcQgX
AAAAAJSNiy7KKAw5NQKYbkWFC2bWaGZPmtkWM/u+mTWMMqbZzH5oZi+Y2XNmdmcxxwQAAJVpPH1H
Ydy1ZvaSmW01s7uHbb/PzHaY2TOF5drpqx7AdFm+fLlSqd3KZvviLgWoKMXOXPgLSU+5e0bSDyV9
aJQxOUl/6u4XSLpC0h+a2flFHhcAAFSe0/YdZhZI+pykt0u6QNJvjeg7Pu3ulxSW701H0QCmVyqV
0hvfuFyvv/5K3KUAFaXYcOEGSQ8X1h+W9K6RA9x9j7s/W1jvlfSipEVFHhcAAFSe0/Ydki6T9LK7
b3f3rKRHC/sdZVNbIoCZYP36jAYGODUCmE7FhgtN7r5XikIESU2nGmxmyyRdJOlnRR4XAABUnvH0
HYskdQ27v0Mnfqlxh5k9a2ZfHuu0CgCl77zzVsnsVYVhLu5SgIqRPN0AM/uBpHnDN0lySfeMMtxP
8TyzJX1T0h8XZjCMadOmTcfWW1tb1draeroyAQAoK21tbWpra4u7jGk3WX3HGD4v6aPu7mb2V5I+
Len20QbSiwClbfbs2cpkztHOnR2aM2dl3OUAJWsi/chpwwV3v2asx8xsr5nNc/e9ZjZfUvcY45KK
goV/cPfHTnfM4W/oAABUopEfaO+///74iplGk9B37JS0ZNj95sI2ufu+Ydu/JOmJsY5FLwKUviuu
yOihh7YQLgBFmEg/UuxpEY9Lel9h/VZJYwUHX5H0K3f/bJHHAwAAlWs8fcfTklaa2VIzS0t6T2E/
FQKJo26U9PzUlQogbqtXZ+S+Re4TneQE4EwUGy58XNI1ZrZF0tWS/laSzGyBmX23sP4mSb8t6S1m
9gt+9RMAADhDp+073D0v6Q5JT0p6QdKj7v5iYf9PmNkvzexZSRsl/bfp/gEATJ+zzz5bCxYk1du7
J+5SgIpw2tMiTsXdX5f01lG275Z0fWH9J5ISxRwHAABgPH1H4f73JGVGGXfLlBYIYEYxM73pTRl9
61tbVFe3IO5ygLJX7MwFAAAAAJiR1q7NSOJXUgLTgXABAAAAQFlasmSJamsPanDwcNylAGWPcAEA
AABAWQqCQBs2rNJrrzF7AZhqhAsAAAAAytYll2SUzxMuAFONcAEAAABA2Vq5cqWCoFO53GDcpQBl
jXABAAAAQNmqqqrSRRct0YEDr8ZdClDWCBcAAAAAlLXLLsuor49TI4CpRLgAAAAAoKxlMudJelnu
YdylAGWLcAEAAABAWWtoaNCKFQ06dKgr7lKAskW4AAAAAKDstbRkdOgQp0YAU4VwAQAAAEDZW7Mm
I+kluXvcpQBliXABAAAAQNmbP3++5s7Nqa/vtbhLAcoS4QIAAACAsmdmamnJaP9+To0ApgLhAgAA
AICKcOGFGbkTLgBTgXABAAAAQEVYtmyZqqv3aWjoSNylAGWHcAEAAABARUgmk1q/foX2798adylA
2SFcAAAAAFAx1q/PaGiIUyOAyUa4AAAAAKBirFq1SkGwTfl8Nu5SgLJCuAAAAACgYtTW1mrNmvk6
eHBb3KUAZYVwAQAAAEBF2bAho95eTo0AJhPhAgAAAICKsnp1RtIWuXvcpQBlg3ABAAAAQEWZO3eu
mpur1dOzK+5SgLJBuAAAAACg4rS0nK+DBzk1ApgshAsAAAAAKs7atdGpEQAmB+ECAAAAgIqzaNEi
1dX1qr//QNylAGWBcAEAAABAxQmCQFdccZ72798adylAWSBcAAAAAFCRLrooozDk1AhgMhAuAAAA
AKhIK1asUDK5U7ncQNylACWPcAEAAABARUqn07r44qXav//luEsBSh7hAgAAAICKdemlGfX3c2oE
UCzCBQAAAAAVK5M5T2avKJvtj7sUoKQRLgAAAACoWHV1dbrppkvV2fkVDQwcirscoGQRLgAAAACo
aO94x9X64Acv0e7dD6q3d2/c5QAliXABAAAAQMW76qor9Gd/9jYdPLhZBw92xF0OUHKScRcAAKgc
bR1tautokyRtXLpRm9o2SZJal7WqdVlryRwDAFCe1q1bqw9/eJY+9al/0r591+mcc9bEXRJQMggX
AADTZjo+4BMiAACKsWLFct177+/ok5/8qnbt6tXChZfFXRJQEggXAAA4A8yQAIDyNX/+fN1zz+/q
gQceUVdXj5qb3yIzi7ssYEYjXAAA4AwQIgBAeWtsbNTdd9+uz3/+a3ruuce0dOk7FQSJuMsCZiwu
6AgAAAAAo6itrdWdd96ilpYj6uh4VPn8UNwlATNWUTMXzKxR0tclLZXUIekmdx/1l8OaWSDp55J2
uPuvFXNcABgPpq0D5WW8fYeZPSjpekl73f3Cie4PAMOl02m9//3v0VlnfVff/e7DWrz4ZqXTs+Iu
C5hxij0t4i8kPeXunzCzuyV9qLBtNH8s6VeS6os8JgCMy3SECAQYwLQab9/xkKT/KWnzGe4PACdI
JBK66aZf01ln/ZseeeQrWrjwvaqpaYy7LGBGMXc/853NXpK00d33mtl8SW3ufv4o45oVvdH/taQ/
PdXMBTPzYmoCUFrsfpPfx9/5UxkeYLR1tB0LLSY7wJiu4+DMmJncvaKvJjbevqMwdqmkJ0bMXBhv
30IvAmBMP/3p0/rCF/6P5s69WXV1C+IuB5Ak7d79jDZu7NLNN98wpcc5VT9S7MyFJnffK0nuvsfM
msYY9xlJfy6pocjjAUDFma4P94QIKAHj7Tuman8A0OWXX6r6+tl64IFHlMu9W42NK+IuCZgRThsu
mNkPJM0bvkmSS7pnlOEnxfxmdp2icx6fNbPWwv6ntGnTpmPrra2tam1tPd0uAACUlba2NrW1tcVd
xrQrtu+YoDH3pxcBcCpr1qzWRz5Sq09+8hvq7r5WTU3r4i4JmBIT6UeKPS3iRUmtw6YX/pu7rx4x
5mOS3ispJ6lGUp2kb7n7LWM8J1MRgTLH9Htg4jgtYnx9x7Cxo50WMa796UUAjFd3d7f+7u++qgMH
NmjRopa4y0EFmwmnRRQbLnxc0uvu/vHChZEa3X3MCyOZ2UZJ/51rLgAAMDGECxPrO8xsmaJwYd1E
96cXATARhw4d0gMPPKKOjpVasuRtMqvof6oRk5kQLgRFPvfHJV1jZlskXS3pbwsHXGBm3y3yuQEA
AIYbV99hZl+T9H8lnWdmnWZ226n2B4BiNDQ06K67flcXXrhTHR3fUhjm4y4JiEVRMxemAt8WAABw
MmYuTB96EQBnIpvNavPmf1Zb25CWLv1NJZNVcZeEClIOMxcAAAAAoOKlUinddttNete75qij4yEN
DfXGXRIwrQgXAAAAAGASBEGgG2+8Tu9732rt2PGg+vr2x10SMG0IFwAAAABgkpiZ3vrWjbrzzqu0
b99DOnx4Z9wlAdOCcAEAAAAAJtn69Zfo7rvfqSNHvqr9+1+OuxxgyhEuAAAAAMAUOP/8jO6557cU
BI9pz55n4y4HmFKECwAAAAAwRRYvXqx7732fGhvb1Nm5Wdu3f1+7d/9Chw/vVD4/FHd5wKRJxl0A
AAAAAJSzs88+W/fd91/V1dWlvXu71dHRofb2/9COHa8pl5st6Ry5N6m6ukmzZjWptvZsBQEf1VBa
+D8WAAAAAKZYdXW1Vq1apVWrVunKK6NtYRjqwIED6u7u1p493Wpv36Jt2/5dO3cekPtZMmtSGDap
tjYKHWpq5siMyeeYmQgXAAAAACAGQRBo7ty5mjt3rlavXq03vznans/ntX//fnV3d2v37m61t/9S
27Z1q7PzsMzmSmqSexQ4zJrVpOrqs2Rmsf4sAOECAAAAAMwgiURCTU1Nampq0tq1x7dns1nt27dP
3d3d2rmzW6+++rS2b9+nzs5+BUF0aoV7Y2F2QxQ2RKGDjbhVUdvMAiUSaSWT1ScszKoYH3dXGOYU
hjm554+tn7icvH3kWLOcpJyCIK++vm4lEufE+nOZu8dawEhm5jOtJgAA4mZmcne+lpoG9CIASs3A
wMCx0GH//oPK50NJUhh64YNstIzcdvTfuqOPjxw7fNzw/fP5UP39Q+rtHdCRI9HS1zcgKSWzaplV
S4oW92gJw6MhRM1JoUS0VI07nHAPlc9nFYZZ5fNDhSVaP77t+H33IZkNySwrsyFJWUlHb7OShv+b
P/r6ie8LZ7Ieyj0n95zMQiWTCaVSyWFLQul0tJ5OJwvriWPrVVXHt6fTx8cmk8eX5uZmzZ07d1x/
hmfqVP0I4QIAACWAcGH60IsAwMS5u4aGhjQwMDDq0t8/oN7eAR0+PKCenmh9eDjR3z8o95SCIAol
zKrlbjKLwoFoORoU5JVOp1RVlVJ1dVrV1dFtTU1aVVUp1dZG247e1tSklUqllE6nlU4fX0+lUkql
UiecUjJV64lEQslkUolEQolEomRPYyFcAACgxBEuTB96EQCYfu6uwcHBEwIJdx81FEgmkyX74bzU
ES4AAFDiCBemD70IAACjO1U/whU3AAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgX
AAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAA
AABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABA
UQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgXAAAAAABAUQgX
AAAAAABAUQgXAAAAAABAUYoKF8ys0cyeNLMtZvZ9M2sYY1yDmf2Tmb1oZi+Y2YZijovp1dbWFncJ
iAmvfeXitcdMNIG+40Ez22tmvxyx/T4z22FmzxSWa6enckwG/l2qXLz2lYvXvrQUO3PhLyQ95e4Z
ST+U9KExxn1W0r+4+2pJb5D0YpHHxTTiL3Xl4rWvXLz2mKHG23c8JOntYzz2aXe/pLB8byqKxNTg
36XKxWtfuXjtS0ux4cINkh4urD8s6V0jB5hZvaSr3P0hSXL3nLsfLvK4AACg8py275Akd/+xpANj
PIdNQV0AAFS8YsOFJnffK0nuvkdS0yhjlkt6zcweKkxB/F9mVlPkcQEAQOUZT99xOneY2bNm9uWx
TqsAAAATZ+5+6gFmP5A0b/gmSS7pHkl/7+5zho3d7+5zR+z/Rkk/lXSFu//czB6QdMjd7xvjeKcu
CACACuXuZf+te7F9x7DHlkp6wt0vHLbtHEmvubub2V9JWuDut4+yL70IAABjGKsfSY5jx2vGeqxw
saR57r7XzOZL6h5l2A5JXe7+88L9b0q6e6KFAgCA8jcJfcepnnvfsLtfkvTEGOPoRQAAmKBiT4t4
XNL7Cuu3Snps5IDC9MUuMzuvsOlqSb8q8rgAAKDynLbvGMY04voKhUDiqBslPT+ZxQEAUMlOe1rE
KXc2myPpG5IWS9ou6SZ3P2hmCyR9yd2vL4x7g6QvS0pJapd0m7sfKrZ4AABQOSbQd3xNUqukuZL2
SrrP3R8ys82SLpIUSuqQ9HtHr+EAAACKU1S4AAAAAAAAUOxpEagQZnafme0o/MaPZ8zs2rhrwtQx
s2vN7CUz22pmY14jBeXHzDrM7D/N7Bdm9h9x1wMAw9GPVBb6kcpFP1KamLmAcTGz+yT1uPun464F
U8vMAklbFV0fZZekpyW9x91firUwTAsza5f0Rnc/EHctADAS/UjloB+pbPQjpYmZC5gIrp5dGS6T
9LK7b3f3rKRHJd0Qc02YPibeGwDMbPQjlYF+pLLRj5QgXjBMxB1m9qyZfdnMGuIuBlNmkaSuYfd3
FLahMrikH5jZ02b2gbiLAYBR0I9UBvqRykY/UoIIF3CMmf3AzH45bHmucPtOSZ+XtMLdL5K0RxLT
EYHy9CZ3v0TSf5H0h2Z2ZdwFAags9CMARD9SkpJxF4CZw92vGefQL0l6YiprQax2Sloy7H5zYRsq
gLvvLtzuM7NvK5qW+uN4qwJQSehHUEA/UsHoR0oTMxcwLmY2f9jdGyU9H1ctmHJPS1ppZkvNLC3p
PZIej7kmTAMzqzWz2YX1WZLeJv6uA5hB6EcqCv1IhaIfKV3MXMB4fcLMLpIUSuqQ9HvxloOp4u55
M7tD0pOKAsgH3f3FmMvC9Jgn6dtm5oreH77q7k/GXBMADEc/UiHoRyoa/UiJ4ldRAgAAAACAonBa
BAAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAAAAAAKArhAgAA
AAAAKMr/B9pAH9lY/+K6AAAAAElFTkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>However, looking only at stocks that trended down for 8 days prior to a release, the same pattern emerges: on average, the stock doesn't move, but the market reaction is often incredibly violent.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[9]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="c1"># 3 day study after that</span>
<span class="n">study_trend</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">does_trend_down</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>100% (47578 of 47578) |###########################################################| Elapsed Time: 0:26:26 Time: 0:26:26
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXNwmBsG+yCglK61q3IqK4pGhde9XbuqAo
1NZbu9rltpVra4FeH636u7e1rXa71aptXVBxRZEqBBAVEEVFRVFBBFzKThDI9v39MQMGCCTAJCeZ
eT0fj3HOnPOdcz5nIsk57/me7wkxRiRJkiRJknYlL+kCJEmSJElS82eAIEmSJEmS6mWAIEmSJEmS
6mWAIEmSJEmS6mWAIEmSJEmS6mWAIEmSJEmS6mWAIElqsUII54YQakIIn25A21EhhF61Xv85hHBg
41aYGSGE/iGEuSGEF0IIr4QQrmjAe4pDCK80RX3p7X0nhPB6ur7r0vOODiG8WOtxbq32U0MIC9Lz
XwghdE/PHxVC+Cg974UQwleaah+2259zWsr/H5IkNZWCpAuQJGkvDAdmABcB4+pp+2VgPvABQIzx
a41a2V4IIeTHGKtrzVoODIkxVoYQ2gKvhhAeijF+UM+qYuNV+YkQQinwb8BnYoxVW8IA4BXgszHG
mnR481II4eEYY016+UUxxhfrWOXdMcYrG7/yXToXeBRYkHAdkiQ1G/ZAkCS1SCGEdsBQ4KukAoTa
y64KIbyc/nb7FyGELwGDgL+nv9Vuk/4G/Kh0+4vS7V/e8u15ev76EMK1IYR5IYRnQgj71FFHlxDC
AyGEl9JtDg0pi0IIHWu1ezOEsE8IoXsI4b4Qwqz049j08jEhhDtCCE8Dd9TeRoyxKsZYmX5ZBISd
fCafTdf6IvCtWvOLQwjTQwjPpx9D0vNvDyGcXavd30MI/xZCODhd2wvp9e1fz4/jG8B1McaqdL0r
0s+baoUFRUDNdu/b2XFInfu33b6OqFXjH0IIeSGEK0IIN9RqMyqE8NudtA/p+Tv8jNM/k7OBG9Lt
B4QQrgwhvJpud2d99UmSlI0MECRJLdU5wKQY41vAihDCkQAhhNNJfRt+dIzxSOCGGOP9wBzg4hjj
UTHGTVtWEkLoDVwHlAJHAEfXOqluBzwTYzyCVE+H/6ijjnHACzHGw4GfAH+LMUbgQeDf09sYDCyO
Mf4L+A3wqxjjMcB5wC211nUQMCzGOGL7jYQQ9g0hvAS8C1y/k94HtwLfSu93bR8Bp8QYB5HqtfG7
9PxbgMvS6+8IHAtMBL4O3BhjPIpU8LI03WZiqHUZSC2fBk4MITyXDmYG1ap7cAhhPvAS8PVagQLA
bekT9J9ut74vpgOZ8SGEfev4LA4ELgSOS9dYA1wM3E/6M0+7ELh7J+23fMY7/IxjjM8CDwM/Sv//
sgi4Cjgi3e7rdXwGkiRlPQMESVJLdRFwd3r6Hj7phXAK8NcY42aAGOOa9PxA3d9sHw1MjTGuSp/c
/gM4Mb2sIsb4WHp6LlBSx/uPB/6W3tZUoGsIoT0wntTJOunne2rVd1O6l8DDQPv0ZQkAD8cYK+ra
2Rjj0nRIMRD48va9IUIInYBOMcaZ6Vl/q7W4FfCXEMLLwL2kggpijNOBgSGEbqQ+v/vTn8GzwE9C
CD8CSmp9lmftJLgoALrEGIcAP07v+5a6Z8cYDyX1OV8dQihML7o4xvgZ4ATghBDCJVs+g/Q2Dwee
BG6vY3snA0cBc9Kf4zBgv3TPh7fToUVX4IAY4zM7aT8gva6G/IwhFYDcGUIYAVTvpI0kSVnNMRAk
SS1OCKELqZPAQ0MIEcgndb3/j/d0lTuZX1lrupq6/25uP85AAIgxPhtC2D+kxgM4F/h5reXH1Lok
ITUz1aN+Q32Fxhg/SH+jfwIwob72ad8HPogxHhZCyAc21lp2B3ApqZDjy+lt3BVCeA74AvBYCOFr
McayXaz/vS21xBjnhNTAlt1ijCtr1f1GCKEcOJRUj4330/M3pC8JGAz8Pca4utZ6/wLcwI4CcHuM
8Sd1LLubVG+DBcADDWhfO7DZ2c8Y4CxSwdLZpMKVQ7frTSFJUtazB4IkqSU6H7gjxjggxrhfjLEY
WBRCOB74J3BZCKEItoYNAOuAjnWsazap7vdd0yfXFwFlu1HLDOCS9LZKgX/FGMvTyx4AfgW8Vqsn
xGTgu1veHEI4vL4NhBD6hhDa1Nqf44E3areJMa4F1oQQjkvPuqTW4k7A++npkaQCly1uB76XWkVc
kN7GgBjjohjj74CHgMPqKfFBUoEOIXVHjFYxxpUhhJL0Z0oIoRg4AFgcQshP93oghNCKVFAxP/26
9iUS5wCv1bG9p4DztvTCCKlxKPrXquUcUoHI3bto3y+9bGfh0XrS/7+kx0voH2OcBoxOz29fz2ci
SVLWMUCQJLVEF/LJt8tbTCA1qv8TwCPA8yGEF4D/TC+/Hfhj+pr7NqR7DqS75I8mFRq8CDwfY3w0
/Z6G3MVgHPDZ9PgEvwBG1Vo2ntS19nfXmvddYFD6Gv/5QL23ZCR1ycGsdPf7qaTGdXi1jnZfAX6f
3u/atf+e1GUPL5Iar2BrT4cY40fA68Bfa7W/IIQwP93+ENKDOu5iDIS/AvuF1G0j7yQVUkAq6Hgp
Xc/9wDdijKuA1sATIYR5wAukxlj4v/R7rqy17W+T7hVRW4zxdeCnwOT05z4Z6JVetia9P/1jjM/v
on3vLaurY38g9TP7UQhhLqnLRv6evgRkLvCbGOO6nbxPkqSsFVLjPEmSpFyUHn/hJeCoGOP6pOuR
JEnNlz0QJEnKUSGEk0ldIvBbwwNJklQfeyBIkiRJkqR62QNBkiRJkiTVywBBkiRJkiTVywBBkiRJ
kiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTV
ywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBB
kiRJkiTVywBBkiRJkiTVywBBkiRJkiTVywBBkiRJkiTVK2MBQgghL4TwQgjh4UytU5Ik5Y4Qwukh
hAUhhDdDCFfVsfyAEMIzIYRNIYQfbLdscQjhpRDCiyGE2U1XtSRJuaMgg+v6LvAa0DGD65QkSTkg
hJAH3AScDCwH5oQQHooxLqjVbCXwHeDcOlZRA5TGGFc3erGSJOWojPRACCHsC5wJ/CUT65MkSTln
MLAwxvhujLESuBs4p3aDGOOKGONcoKqO9we8NFOSpEaVqT+0vwZ+BMQMrU+SJOWWvsB7tV4vTc9r
qAj8M4QwJ4TwHxmtTJIkARm4hCGEcBbwYYxxXgihlNQ3AHW1M1yQJKkOMcY6/3ZqtwyNMb4fQtiH
VJDweozx6e0beTwiSVLdGnI8kokeCEOBs0MI7wB3AZ8LIdyxk4Ky+jFmzJjEa3Af3Uf30X3Mpkcu
7KO2Wgb0r/V63/S8Bokxvp9+/hfwAKlLInbWNqsfufDvxn3Mjof7mB0P9zE7Hg211wFCjPHqGGP/
GON+wHBgSoxx5N6uV5Ik5ZQ5wMAQQnEIoZDUMcWu7uy09VuSEELbEEL79HQ74FRgfmMWK0lSLsrk
XRgkSZL2SIyxOoTwbWAyqS84bokxvh5CuCK1OP45hNATeB7oANSEEL4LHAzsAzyQvjyhAPhHjHFy
MnsiSVL2ymiAEGOcBkzL5DpbktLS0qRLaHTuY3ZwH7OD+6hsE2OcBByw3bw/1Zr+EOhXx1vLgSMa
t7qWIxf+3biP2cF9zA7uY24Ju3O9w15tKITYVNuSJKmlCCEQHUSxyXg8IknSjhp6PJL4JQwlJSW8
++67SZehehQXF7N48eKky5AkqVF4PNI0PJ6QpJYt8R4I6aSjSWrQnvPnJEmNwx4ITcvjkWT5OUtS
89TQ45FM3MZRkiRJkiRlOQMESZIkSZJULwMESZIkSZJULwMESZIkSZJULwMESZIkSZJUr8Rv41iX
n/3sRpYsWdNo6+/fvzM///n3Gm39TeGyyy6jX79+/PznP0+6FEmSspLHI/XzeESSckuzDBCWLFlD
ScnYRlv/4sWNt26Am2++mdtuu41XXnmFiy++mFtvvbVRtydJkjLP4xFJkrblJQy74frrr29Qu759
+3LNNdfw1a9+tZErkiRJucbjEUlSUgwQdsPmzZsb1O7cc8/l7LPPpmvXrvW2vf7669l3333p2LEj
Bx10EFOnTq2z3YsvvshnP/tZOnXqxPDhw9m0adNu1S5JkrKDxyOSpKQYIOyGGGNG1/fmm29y8803
M3fuXNatW8cTTzxBSUnJDu0qKyv593//d0aNGsWqVas4//zzuf/++zNaiyRJahk8HpEkJaVZjoHQ
XLz99tvcd999hBCIMTJz5kxuuOEGYoyEEDjmmGM46aST9nj9+fn5VFRUMH/+fLp160b//v3rbPfc
c89RVVXFlVdeCcCXvvQljj766D3eriRJajk8HpEkNRcGCLuw//77c9VVV219vXnzZn784x9ndP03
3ngjY8eO5bXXXuO0007jf//3f+ndu/c27ZYvX07fvn23mVdcXJyxOiRJUvPl8YgkqbnwEoaEDR8+
nBkzZvDuu+8CMHr06B3a9O7dm2XLlm0zb8mSJU1Sn6TmpWxxGWPLxjK2bCylt5VunS5bXJZ0aZJa
MI9HJEkNYQ+E3dDQaw6rq6uprKykurqaqqoqNm/eTEFBAfn5+du0e/PNN1m2bBlDhw6lsLCQoqIi
ampqdljfscceS0FBAb/73e/4xje+wcMPP8zs2bMZNmxYRvZLUstRWlJKaUkpAGFcoOzLZYnWI6np
eTwiSUpKswwQ+vfv3Kj3Ru7fv3OD2r3xxhvcfffdW685nDZtGj//+c+3XnN47LHH8vnPf36H9117
7bWMGzeOEAIA//jHPxgzZgw/+9nPtmm3efNmRo8ezYIFC2jVqhXHHXccf/7znwE488wzOfHEExk9
ejStWrViwoQJXH755fz0pz/lzDPP5Etf+tI266rdXpIk7T2PRzwekSRtK2R6JN+dbiiEWNe2tvwx
VPPmz0lqfsK4QBzjv8uWLv37NSRdR67weCRZfs6S1Dw19HjEMRAkSZIkSVK9DBAkSZIkSVK9DBAk
SZIkSVK9DBAkSZIkSVK9DBAkSZIkSVK9DBAkSZIkSVK9CpIuQJIkKWnFxcWE4N00G1txcXHSJUiS
9kKzDBDKFpdRtrhs63RpSSkApSWlW6ebYh2SJCk3LF68OOkSJElq9kKMsWk2FEKsa1shBHZVQxgX
iGP2rsZMrCMbfOMb32DfffflJz/5yW6/t76fk6Sm5++27JD+/epX301kZ8cjkiTlsoYejzgGwi6U
lJTQpk0bVq1atc38I488kry8PJYsWZLxbVZUVDBy5Ei6du1Kr169+P73v5+xOv/whz/sUXggSZIk
SZIBwi6EEBgwYAB33XXX1nnz589n48aNjXad5G233ca8efNYvHgxixYt4txzz22WdUqSJEmScosB
Qj0uvfRSbr/99q2vb7/9dkaNGrVNm8cee4yjjjqKTp06UVxczLhx47YuGz9+PPvttx/l5eUAPP74
4/Tu3ZuVK1fWub1WrVrRqVMnOnbsSFFRESeddFLG6rzsssv42c9+BsC0adPo168fv/rVr+jZsyd9
+/bltttua9C2JEmSJEm5xwChHkOGDGH9+vW88cYb1NTUcM8993DJJZdsMx5A+/bt+dvf/sbatWuZ
OHEif/zjH3n44YcBuOCCCxg6dChXXnklq1at4vLLL+fWW2+lW7dudW7vqKOO4rnnnmPs2LEZr3N7
H3zwAevXr2f58uX85S9/4Vvf+hZr167dre1KkiRJknJDs7wLw/bCuGS74W/5dv+kk07ioIMOok+f
PtssP/HEE7dOH3rooQwfPpxp06Zx9tlnA3DTTTdx2GGHUVpayjnnnMMZZ5xR53ZWr17N2WefzcSJ
ExkzZgwhBMaMGQNAv379mDRpEocccsge17m9wsJCrrnmGvLy8jjjjDNo3749b7zxBoMHD27Q5yJJ
kiRJyh0tIkDIxF0Y9sYll1zCiSeeyKJFixg5cuQOy2fNmsV//dd/MX/+fCoqKqioqOD888/furxT
p06cf/75/PrXv2bChAk73c69997LwQcfzKmnnsqgQYM48cQTCSEwatQoqqurdxkeNKTO7XXr1o28
vE86obRt23brpRaSJEmSJNXmJQwN0L9/fwYMGMDjjz/OF7/4xR2WjxgxgnPPPZdly5axZs0arrji
im0uHZg3bx633norF110Ed/5znd2up2qqioqKysB6Nq1K08++SS33XYbp512Gj/84Q/3uk5JkiRJ
kvaUAUID3XrrrUyZMoWioqIdlpWXl9OlSxdatWrF7NmzufPOO7cu27RpE5deeinXXXcdt956K8uX
L+cPf/hDnds488wzmTNnDv/3f/9HVVUV+fn5HHfccSxcuJC2bdvudZ2SJEmSJO0pA4RdqH0LxAED
BnDUUUfVuez3v/8911xzDZ06deLaa6/lwgsv3Lrs6quvpri4mK997WsUFhbyt7/9jWuuuYa33357
h+2VlJTw+OOPc/vtt9OtWzeOPPJIevXqxdSpU7nqqquYPHnyXtW5O/srSZIkSVJtYVej9Gd0QyHE
urYVQtjlnQLCuJCRMRD2dh25rr6fk6Sm5++27JD+/WqC20R2djwiSVIua+jxSLMMEMoWl1G2uGzr
dGlJKQClJaVbp+uTiXXoEwYIUvNjgJAdDBCalgGCJEk7atEBgpoff05S82OAkB0MEJqWAYIkSTtq
6PGIYyBIkiRJkqR6GSBIkiRJkqR6GSBIkiRJkqR6GSBIkiRJkqR6FSRdQHFxMSE4dlRzV1xcnHQJ
kiRJkqQEJR4gLF68OOkSJEmSJElSPbyEQZIkSZIk1SvxHgiSJNVWtriMssVlW6dLS0oBKC0p3Tot
SZKkphdijE2zoRBiU21LknJBGBeIY7L792pO7GMIxBgdDKiJeDwiSdKOGno84iUMkiRJkiSpXgYI
kiRJkiSpXgYIkiRJkiSpXgYIkiRJkiSpXgYIkiRJkiSpXgYIkiRJkiSpXgVJFyBJkiRJUlOJMbJ5
82Y2bdrE5s2bt5ne8rxhwybKyzezfv0mKioqOO+80+jatWvSpSfOAEGSJEmS1CLU1NTs9KR/06ZN
bNq07cn/hg2bKS/fxMcfp+Zv3LiZTZsqgEJCaE0IbYDWQBtibE2MqecQWlNQ0JH8/NaUlz/LsGGr
DBAwQJAkSZIkNYGampo6T/prn/yXl2856f9kesOGTwKAzZsr0yf+n5z8x7htABBCGwoKOlNQ0JqC
gjbk56eeCwtb07ZtG/LzCwmh4VfzL136SqN9Ji3NXgcIIYTWwHSgML2++2KM4/Z2vZIkKbeEEE4H
biQ1RtMtMcbrt1t+APBX4Cjg6hjjrxr6XklS5tXU1PDWW2+xevVqNm7ctPWkf8vzxx+nnjduTJ38
V1RUAa3Jy0ud+IfQZoeT/7y8thQUdN160r8lBNj25D8kvOe5a68DhBjj5hDC52KMH4cQ8oGZIYTH
Y4yzM1CfJEnKASH1VdBNwMnAcmBOCOGhGOOCWs1WAt8Bzt2D90qSMqSmpoaXX36FCRNm8O67rQmh
LzG2IT+/HQUF3Xb45r9Nm9a0a9fak/8skJFLGGKMH6cnW6fXGTOxXkmSlDMGAwtjjO8ChBDuBs4B
toYAMcYVwIoQwhd2972SpL1XVVXFvHkvcf/9T7N8eSc6dz6TkpIBhgI5JCMBQjr5nwvsD9wcY5yT
ifVKkqSc0Rd4r9brpaSCgcZ+rySpHpWVlTz//Avcf/9M/vWvHnTpci4DBhQnXZYSkKkeCDXAkSGE
jsCDIYSDY4yvbd9u7NixW6dLS0spLS3NxOYlSWoxysrKKCsrS7qMnObxiCQ1TEVFBbNmPc+ECc+w
evW+dO16IQMG9E26LGXAnh6PhBgze7VBCOEaYEPtgY3S82OmtyVJuSyMC8Qx2f17NSf2MQRijDnf
9zOEMAQYG2M8Pf16NBDrGgwxhDAGWL/lWGM33+vxiCTVY9OmTTz77GweeGAWa9eWsM8+J9C+fa+k
y0rM0qV/Z/ToIQwcODDpUhpNQ49HMnEXhu5AZYxxbQihCPg8cN3erleSJOWUOcDAEEIx8D4wHLho
F+1rH+Ts7nslSXX4+OOPmTHjOR5++Hk2bPgUPXpcRteu3ZMuS81IJi5h6A3cnh4HIQ+4J8b4WAbW
K0mSckSMsTqE8G1gMp/civH1EMIVqcXxzyGEnsDzQAegJoTwXeDgGGN5Xe9NaFckqcUpLy+nrOwZ
Hn30RTZtOpiePS9nn326Jl2WmqFM3MbxFVL3Y5YkSdpjMcZJwAHbzftTrekPgX4Nfa8kadfWrl3L
1KnP8NhjL1NZeRg9e36dNm06JV2WmrGMDKIoSZIkSWoZVq9ezZNPPs0TT7xGdfWR9O79LQoL2ydd
lloAAwRJkiRJygErVqzgiSdmMGXKQmIcRO/e36FVq7ZJl6UWxABBkiRJkrLYhx9+yOOPT2f69MWE
cAy9e59BQUGbpMtSC2SAIEmSJElZaNmyZUycOJ1nnllGQcFx9O17Dvn5hUmXpRbMAEGSJEmSssiS
JUt49NHpzJ79Ea1aHU+/fueRn98q6bKUBQwQJEmSJKmFizGyaNEiHnpoOvPmraV16+Pp3384eXme
8ilz/L9JkiRJklqoGCMLFy7kwQen8+qrmygqOoGSks8QQl7SpSkLGSBIkiRJUgsTY+S1117ngQem
s3BhpF27EykpOcjgQI3KAEGSJEmSWoiamhrmz3+VCROms2hRKzp0+BwlJZ8mhJB0acoBBgiSJEmS
1MxVV1fz0ksvc//9M1i6tD2dOp1GScn+BgdqUgYIkiRJktRMVVVVMXfui0yYMJMPPuhKly5nU1JS
bHCgRBggSJIkSVIzU1FRwezZc5kw4RlWruxN165fYsCAfkmXpRxngCBJkiRJzcTmzZt59tk5PPjg
c6xZ059u3S5mwIDeSZclAQYIkiRJkpS4jRs3MnPmLB58cDbl5fuzzz4jKSnpkXRZ0jYMECRJkiQp
IRs2bGDatGd55JG5bNx4ID16fJXu3bslXZZUJwMESZIkSWpi69ato6zsGSZOfImKikPp2fMKevbs
nHRZ0i4ZIEiSJElSE1mzZg1Tpszk8cfnU1V1BL16fZPWrTskXZbUIAYIkiRJktTIVq5cyT//+TT/
/OcCamo+S+/e36awsF3SZUm7xQBBkiRJkhrJRx99xKRJMygre5sQBtOr15W0alWUdFnSHjFAkCRJ
kqQMizFy990PM3nyQvLzh9CnzxcoKGiddFnSXjFAkCRJkqQMe/vtt5k06T3697+S/PzCpMuRMiIv
6QIkSZIkKZvEGLn33im0bz/M8EBZxQBBkiRJkjLo9dcX8Prrke7dD0q6FCmjDBAkSZIkKUNqamoY
P34KnToNI4SQdDlSRhkgSJIkSVKGvPzyKyxaVETXrgOTLkXKOAMESZIkScqA6upqxo8vo0sXex8o
OxkgSJIkSVIGzJ37IsuWdaVz55KkS5EahQGCJEmSJO2lyspKxo+fTrduw5IuRWo0BgiSJEmStJdm
zXqef/2rDx079k26FKnRGCBIkiRJ0l7YvHkz9977ND162PtA2c0AQZIkSZL2wtNPP8fatfvTrl2P
pEuRGpUBgiRJkiTtoY0bNzJhwix69ixNuhSp0RkgSJIkSdIemjp1Jhs2HERRUdekS5EanQGCJEmS
JO2B8vJyHnpoLr16nZh0KVKTMECQJEmSpD3w5JMzqKg4nDZtOiVditQkDBAkSZIkaTetWbOGRx99
md69T0i6FKnJGCBIkiRJ0m6aNGkaNTVHU1jYLulSpCZjgCBJkiRJu2HlypVMnvwGffocl3QpUpMy
QJAkSZKk3fDoo1MJ4VgKCtokXYrUpAwQJEmSJKmBPvjgA8rKFtOnzzFJlyI1OQMESZIkSWqghx+e
SkHB8eTnFyZditTkDBAkSZIkqQGWLl3KM898QO/eg5IuRUqEAYIkSZIkNcCECU/RuvVJ5OUVJF2K
lAgDBEmSJEmqx6JFi5g7dy09ex6edClSYgwQJEmSJGkXYozcd99TtG37OfLy8pMuR0qMAYIkSZIk
7cKbb77J/PmV9OhxaNKlSIkyQJAkSZKknYgxMn78FDp0+BwhhKTLkRJlgCBJkiRJOzF//qssXFhA
t24HJF2KlDgDBEmSJEmqQ01NDffcM5UuXU6294GEAYIkSZIk1WnevJdYsqQDnTsPSLoUqVkwQJAk
SZKk7VRVVXH33WV062bvA2kLAwRJkiRJ2s6cOXP58MOedOrUL+lSpGbDAEGSJEmSaqmoqGD8+Bns
s8+wpEuRmhUDBEmSJEmq5ZlnZrNqVTHt2/dKuhSpWTFAkCRJkqS0TZs2cd99z9Cz5+eSLkVqdgwQ
JEmSJClt+vRnKS//NG3bdk+6FKnZMUCQJEmSJGDDhg088MBsevUqTboUqVkyQJAkSZIkYMqUp9m0
6TO0adM56VKkZmmvA4QQwr4hhCkhhFdDCK+EEK7MRGGSJCm3hBBODyEsCCG8GUK4aidtfhtCWBhC
mBdCOLLW/MUhhJdCCC+GEGY3XdWSssW6det45JF59Op1QtKlSM1WQQbWUQX8IMY4L4TQHpgbQpgc
Y1yQgXVLkqQcEELIA24CTgaWA3NCCA/VPp4IIZwB7B9j/FQI4RjgD8CQ9OIaoDTGuLqJS5eUJSZP
nk5V1VG0bt0h6VKkZmuveyDEGD+IMc5LT5cDrwN993a9kiQppwwGFsYY340xVgJ3A+ds1+Yc4A6A
GOMsoFMIoWd6WcBLMyXtodWrVzNp0mv07j006VKkZi2jf2hDCCXAEcCsTK5XkiRlvb7Ae7VeL2XH
LyS2b7OsVpsI/DOEMCeE8B+NVqWkrPTYY2XEOJhWrdomXYrUrGXiEgYA0pcv3Ad8N90TYQdjx47d
Ol1aWkppaWmmNi9JUotQVlZGWVlZ0mVko6ExxvdDCPuQChJejzE+XVdDj0ck1fbRRx/x1FNv0aeP
Q7kpd+yPePl1AAAgAElEQVTp8UiIMe71xkMIBcCjwOMxxt/spE3MxLYkSSlhXCCOye7fqzmxjyEQ
YwxJ15G0EMIQYGyM8fT069FAjDFeX6vNH4GpMcZ70q8XACfFGD/cbl1jgPUxxl/VsR2PRyRt45Zb
7uHZZ/ux777HJV2KmqmlS//O6NFDGDhwYNKlNJqGHo9k6hKGW4HXdhYeSJIk1WMOMDCEUBxCKASG
Aw9v1+ZhYCRsDRzWxBg/DCG0TfeEJITQDjgVmN90pTcfN90EN94Iq1YlXYnUMixfvpwZM5bSu/fR
SZcitQiZuI3jUGAEMCx966QXQgin731pkiQpV8QYq4FvA5OBV4G7Y4yvhxCuCCF8Ld3mMWBRCOEt
4E/AN9Nv7wk8HUJ4EXgOeCTGOLnJd6IZGDQI5syB/faDkSNh5kyww4W0cw8+OIXCwhPJz2+VdClS
i7DXYyDEGGcC+RmoRZIk5bAY4yTggO3m/Wm719+u432LSA3inPOGDEk9VqyA226Dyy6D1q3hiivg
0kuhU6ekK5Saj3fffZdZs1ZQXHxR0qVILYa3O5IkScoy3bvDD38ICxbAb34D06dDSQl89aswe7a9
EqQYI/ff/xRFRaXk5fldqNRQBgiSJElZKi8Phg2D8eNTYcKnPgXDh8NnPwt/+hOsX590hVIy3n77
bV566WN69jws6VKkFsUAQZIkKQf07AmjR8Nbb8EvfwlPPAH9+8PXvw4vvph0dVLTiTFy771TaN9+
GCF4OiTtDv/FSJIk5ZC8PDjtNJgwAV59Ffr2hXPOgcGD4ZZbYMOGpCuUGtfrry/g9dcj3bsflHQp
UotjgCBJkpSj+vSBa66BRYtgzBh48MFUr4RvfxteeSXp6qTMq6mpYfz4KXTqNIwQ6r3lvaTtGCBI
kiTluPx8OOsseOSR1OUM3brB6afD0KFwxx2wcWPSFUqZ8fLLr7BoURFduw5MuhSpRTJAkCRJ0lb9
+8O4cfDuu/CjH8Gdd0K/fvD976cGYpRaqurqasaPL6NLF3sfSHvKAEGSJEk7KCiAc8+FSZNgzhwo
KoLS0tTjrrtg8+akK5R2z9y5L7JsWVc6dy5JuhSpxTJAkCRJ0i4NGAC/+AUsWQLf+lZqsMV+/VI9
FBYuTLo6qX6VlZWMHz+dbt2GJV2K1KIZIEiSJKlBCgvh/PPhySdh5szUvKFD4ZRT4L77oLIy2fqk
nZk163n+9a8+dOzYN+lSpBbNAEGSJEm77VOfgv/3/+C99+CrX4Xf/S41fsLVV6fu6iA1F5s3b+be
e5+mRw97H0h7ywBBkiRJe6x1a7joIpg2DaZMSd2x4eij4YwzUreFrKpKukLluqeffo61a/enXbse
SZcitXgGCJIkScqIgw6CX/861SvhootSPRSKi2HMmNQ8qalt3LiRCRNm0bNnadKlSFnBAEGSJEkZ
VVQEI0emxkmYNAlWroTDD4ezz4aJE6G6OukKlSumTp3Jhg0HUVTUNelSpKxggCBJkqRG85nPwE03
pXognHMOjBsH++0H114Ly5cnXZ2yWXl5OQ89NJdevU5MuhQpaxggSJIkqdG1a5cabHH27NTYCEuX
wiGHwBe/CJMnQ01N0hUq2/zzn9OpqDicNm06JV2KlDUMECRJktSkjjwS/vhHWLIETjsNrroqdVeH
666DDz9MujplgzVr1jBx4iv07n1C0qVIWcUAQZIkSYno0AGuuAJeeAHuugsWLoQDD4QLL0zd0SHG
pCtUSzVp0jRqagZRWNgu6VKkrGKAIEmSpESFAIMHwy23wKJFcMIJ8N3vpsKE//1fWLEi6QrVkqxY
sYLJk9+gd+/jki5FyjoGCJIkSWo2OneGb38bXn4Z/vpXeOklGDgQLrkEZsywV4LqN3FiGSEcS6tW
RUmXImUdAwRJkiQ1OyHAccfBHXfAO+/AoEHwH/8Bhx6a6pXgHRxUlw8++ICyssX06XNM0qVIWckA
QZIkSc1a167wve/B66/D738Pr76auoPDqaemAob165OuUM3FQw9NoaDgePLzC5MuRcpKBgiSJElq
EUKAk06CW29N9UC4/HK47z7o1w8uvhgeewwqK5OuUklZunQpzz77Ib17D0q6FClrGSBIkiSpxSkq
ggsugIcfhrfeguOPh2uvhX33hSuvhNmzHS8h10yY8BSFhSeSl1eQdClS1jJAkCRJUovWvTt885vw
zDMwc2bq9YgRqbs4/Pd/p8ZQUHZ75513mDt3Lb16HZF0KVJWM0CQJElS1hg4EH72M3jzzdT4CB99
BEOGwNCh8Ic/wMqVSVeoTIsxcv/9U2jb9nPk5eUnXY6U1QwQJEmSlHVCgGOOgd/9DpYtg6uvhunT
Yb/94Jxz4N57YePGpKtUJrz55pu88koFPXocmnQpUtYzQJAkSVJWa9UKzjoL7roL3nsPvvhF+NOf
oG9f+OpXYepUqKlJukrtiRgj48dPoWPHYYQQki5HynoGCJIkScoZHTvCqFHw5JPwyitw0EHw/e9D
cTGMHg3z5yddoXbH/PmvsnBhAd26HZB0KVJOMECQJElSTurbF374Q5g3L3ULSIAzzoAjjoD/+Z/U
pQ9qvmpqarjnnql07mzvA6mpGCBIkiQp533mM3DddfDuu3DjjbBgQWreKafAbbfBunVJV6jtvfji
PJYs6UCXLvslXYqUMwwQJEmSpLS8PCgthb/8JdUD4etfhwcfhH79YPhwmDgRKiuTrlJVVVXcc880
unU72d4HUhMyQJAkSZLqUFQE552XChDeeQdOOgl+8YvUpQ/f+Q7MmgUxJl1lbpozZy4ffNCDTp36
JV2KlFMMECRJkqR6dOsG3/gGzJwJzz4LPXrAyJHw6U/DuHHw1ltJV5g7KioqGD9+BvvsMyzpUqSc
Y4AgSZIk7Yb994drrkmNk3DnnbBqFQwdCsceCzffDCtWJF1hdnvmmdmsWlVMhw69ky5FyjkGCJIk
SdIeCAGOPhp+8xtYujQVKsycCQMHwtlnw/jxsHFj0lVml02bNnHffc/Qs+fnki5FykkGCJIkSdJe
atUKzjwz1SPhvfdSYyf85S/Qpw985SswZQpUVyddZcs3bdozlJd/mrZtuyddipSTDBAkSZKkDOrQ
ITU+wuTJ8OqrcOih8MMfQnEx/PjH8PLLSVfYMm3YsIEHH5xDr16lSZci5SwDBEmSJKmR9OkDP/gB
vPACPPEE5OfDF74Ahx0GN9yQuvRBDTNlytNs2nQobdp0TroUKWcZIEiSJElN4JBD4Je/hMWL4Xe/
g4ULU0HCySfDX/8Ka9cmXWHztW7dOh55ZB69ep2YdClSTjNAkCRJkppQXh6cdBL83//B8uXwzW/C
ww9D//5w4YXwyCNQUZF0lc3L5MnTqao6itatOyRdipTTDBAkSZKkhLRpA1/6EjzwACxaBMOGwfXX
Q9++8K1vwbPPQoxJV5msVatW8fjjr9K799CkS5FyngGCJEmS1Ax07QpXXAFPPw2zZ6fGT7jsstRt
IX/2M3jjjaQrTMZjj5UBx9CqVdukS5FyngGCJEmS1MwMGAA/+Qm8/jqMHw/r10NpKQweDL/9LXz4
YdIVNo2PPvqIKVPepnfvY5MuRRIGCJIkSVKzFQJ89rPw61/De+/BtdfC88/DAQfAGWfAP/4BGzYk
XWXjeeSRqeTlHUdBQeukS5GEAYIkSZLUIhQUwKmnwh13wLJlcOmlcOedqfESLr0UJk2Cqqqkq8yc
5cuXM2PGUnr3Hpx0KZLSDBAkSZKkFqZdO7j4Ypg4Ed58M3Vpw5gxsO++8L3vpXoptPTBFx98cAqF
hSeSn98q6VIkpRkgSJIkSS1Yjx7wne/ArFkwYwZ07gzDh8NBB8F//ze8807SFe6+d999l1mzVtCr
11FJlyKpFgMESZIkKUt86lMwdiwsXAi33ZYabHHIEBg6FP7wB1i5MukK6xdj5P77n6KoqJS8vPyk
y5FUiwGCJEmSlGVCSAUHN92UGi/h6qth+nTYbz84++zUnR02bky6yrq9/fbbvPTSx/TseVjSpUja
jgGCJEmSlMVatYKzzoK77krdyeFLX4K//AX69IGvfAWeegqqq5OuMiXGyPjxT9Gu3ecIwVMVqbkp
SLoASZIkSU2jY0cYNSr1WL4c7r4bfvSj1KUOF18Ml1wChx2W6sGQhNdee50FC2DAgIOTKUA5J8ZU
gFZZmbqLSWXlttNVVbB6dY+ky2w2DBAkSZKkHNSnD/zgB6nHq6/CP/6RuryhY0cYMSIVKPTv33T1
1NTUcO+9U+nU6VRCUgmGEhcj1NTs+oR++3l1Ld/Zc13z8vNTt0lt1eqT59rTbdvum/TH0mwYIEiS
JEk57pBD4Be/gGuvhZkz4e9/hyOPhM98JtUr4bzzUnd3aEwvv/wK77zThgEDBjbuhhpZjLBhA6xe
DR9/XH/7hmQlzanN9strahp2kt6QNlumQ6j7RH5n87ZMt26dusXprtrWNS+vnqtlli59ARhS/4eX
AwwQJEmSJAGpE6kTTkg9fvtbeOyxVM+E//xPOOWUVJhw5pmpE7VMqq6uZvz4Mrp2PadF9D6oqoK1
a2HVqlRQsP2joAC6dk2dzO5KjPVvqzm1qWt5CHWfpG95Lipq+In8lnn1ndArOQYIkiRJknbQujX8
+7+nHqtXw/33w29+A5dfnuqRMGIEHH98Zk725s59kWXLujJgQMnerywDYoRNm3YeEJSXpy716NLl
k0e/fqnQoHNnaNMm6T2QGocBgiRJkqRd6tIlFRxcfjksWZK6o8M3vwnr16eChEsugYP3cNzDyspK
7rlnGt26Dc9s0fWoqUn1IqgrIFi1KtWmdkDQpw8cemhqulMnvyVXbjJAkCRJktRg/fvDVVfBj38M
L7+cGi/h85+Hnj1TYcJFF6VOthvquefmsGJFXwYM6JvxWjdv3jYUqB0SrFuXusRgS6+Brl3hoIM+
CQyKipK7G4XUXGUkQAgh3AJ8AfgwxnhYJtYpSZJySwjhdOBGIA+4JcZ4fR1tfgucAWwAvhxjnNfQ
90rKrBDg8MNTj+uug2nTUmHCIYfAoEGpXglf/CJ06LDzdWzevJn77ptJjx6j9qiGGFO9IOoKCFav
Tg3KV7sXQY8ecMABqenOnVPX3UtquEz9k/kr8DvgjgytT5Ik5ZAQQh5wE3AysByYE0J4KMa4oFab
M4D9Y4yfCiEcA/wRGNKQ90pqXPn5MGxY6nHzzfDII6nBF6+8MjXo4ogRcNppqQHyanv66edYs2Y/
BgzosdN1V1bWfZnB6tWwZk1qvIHaIcHAgannLYMY2otAypyMBAgxxqdDCMWZWJckScpJg4GFMcZ3
AUIIdwPnALVDgHNIf1kRY5wVQugUQugJDGjAeyU1kaIiuOCC1GPFCrj3XvjlL+ErX0nNu+QSOOYY
2LRpIxMmzKJnz8spL9/5WAQbN6Z6C9QOCfbb75NeBIWFSe+xlDvstCNJkpqDvsB7tV4vJRUq1Nem
bwPfKykB3bvDN76RerzzDtx5J4waBdXVsM8+63njja9TXt5x620Pt4QCxcVwxBGp1x06OGCh1Fw0
aYAwduzYrdOlpaWUlpY25eYlSUpcWVkZZWVlSZeRLfaoY7LHI1Iy9tsPfvpT+MlPYO5c+J//eZH+
/T/NgAEdve2h1MT29HgkxBgzUkD6EoZHdjaIYgghZmpbkiQI4wJxTHb/Xs2JfQyBGGPOX6EbQhgC
jI0xnp5+PRqItQdDDCH8EZgaY7wn/XoBcBKpSxh2+d5a6/B4RGom5s9/lRtumEZJyRXk5eUnXY60
U0uX/p3Ro4cwcODApEtpNA09HslkZ6DAHn4TIEmSct4cYGAIoTiEUAgMBx7ers3DwEjYGjisiTF+
2MD3SmpmDjnkYAYPbs/7789OuhRJDZSRACGEcCfwDPDpEMKSEMJlmVivJEnKDTHGauDbwGTgVeDu
GOPrIYQrQghfS7d5DFgUQngL+BPwzV29N4HdkLQbQghcdNFZwAw2b16XdDmSGiBTd2G4OBPrkSRJ
uSvGOAk4YLt5f9ru9bcb+l5JzV+3bt0477xB3HnnEwwYcH7S5Uiqh+OZSpIkSUrMsGEn0Lv3Mlav
fifpUiTVwwBBkiRJUmJatWrFl798BqtXT6SmpirpciTtggGCJEmSpEQdeOABDB3ajWXLnk26FEm7
YIAgSZIkKXEXXHAG+fnPsGnTmqRLkbQTBgiSJEmSEtelSxcuvHAI778/KelSJO2EAYIkSZKkZuGk
k4bSr99HrFz5ZtKlSKqDAYIkSZKkZqGgoIAvf/lM1q17nOrqyqTLkbQdAwRJkiRJzcbAgQMpLe3N
8uVPJ12KpO0YIEiSJElqVr74xdMoLJzDxo2rki5FUi0GCJIkSZKalU6dOjF8+FDef/8xYoxJlyMp
zQBBkiRJUrNz/PFD2H//taxYsSDpUiSlGSBIkiRJanby8/MZNeosyssnUV1dkXQ5kjBAkCRJktRM
lZSU8PnPF7Ns2bSkS5GEAYIkSZKkZuzcc0+lqOhFNmz4V9KlSDnPAEGSJElSs9W+fXtGjDiJDz6Y
6ICKUsIMECRJkiQ1a0OGHM2BB27io4/mJ12KlNMMECRJkiQ1a3l5eYwceRYbN06mqmpT0uVIOcsA
QZIkSVKz169fP04/fSDLlpUlXYqUswwQJEmSJLUI//Zvp9C+/SuUl3+QdClSTjJAkCRJktQitGvX
jpEjh/HRRw6oKCXBAEGSJElSizFo0FEcemgNH344L+lSpJxjgCBJkiSpxQghcMklZ1FR8RSVlRuT
LkfKKQVJFyBJmVK2uIyyxWVbp0tLSgEoLSndOi1Jklq+Pn368IUvHMQjjzxFcfEXki5HyhkGCJKy
Ru2gIIwLlH25LNF6JElS4znjjGFMn34z69YdSceOfZMuR8oJXsIgSZIkqcUpKipi1KhTWLFiIjHW
JF2OlBMMECRJkiS1SEcccThHHFHA++/PTboUKScYIEiSJElqkUIIjBhxFtXVZVRUbEi6HCnrGSBI
kiRJarF69uzJuecexvLl/0y6FCnrGSBIkiRJatFOPbWU7t3fYe3aJUmXImU1AwRJkiRJLVrr1q0Z
NepUVq50QEWpMRkgSJIkSWrxDj30EAYPbsfy5bOTLkXKWgYIkiRJklq8EALDh59JjNPZvHl90uVI
WckAQZIkSVJW6N69O+ed91nef39y0qVIWckAQZIkSVLWGDbsBHr1eo/VqxclXYqUdQwQJEmSJGWN
wsJCRo06ndWrJ1JTU510OVJWMUCQJEmSlFUOPPAAjjuuC8uXP5t0KVJWMUCQJEmSlFVCCFxwwRmE
MJNNm9YmXY6UNQwQJEmSJGWdrl27cuGFx/D++5OSLkXKGgYIkiRJkrJSaenx7Lvvh6xcuTDpUqSs
YIAgSZIkKSsVFBTw5S+fwdq1j1NTU5V0OVKLZ4AgSZIkKWt96lOf4qSTerJs2dNJlyK1eAYIkiRJ
krLaeeedTqtWs9m4cVXSpUgtmgGCJEmSpKzWqVMnhg8/jvfff5wYY9LlSC2WAYIkSZKkrHfCCcey
335rWLnyjaRLkVosAwRJkiRJWS8/P59Ro85k/fpJVFdXJF2O1CIZIEiSJEnKCQMGDOCUU/qxfPmM
pEuRWiQDBEmSJEk549xzT6V167l8/PGKpEuRWhwDBEmSJEk5o0OHDowYcSLvvz/RARWl3WSAIEmS
JCmnHHvsYA444GP+9a9Xky5FalEMECRJkiTllLy8PEaOPIuPP36CqqrNSZcjtRgGCJIkSZJyTv/+
/Tn99IEsW1aWdClSi2GAIEmSJCkn/du/nUL79i9TXv5h0qVILYIBgiRJkqSc1K5dOy699HN89JED
KkoNYYAgSZIkKWcNGnQUBx9cxYcfvpR0KVKzV5B0AZKk3bflW5KqqqptXteermte0sv35D1VVVUU
FPjnSpLUOFIDKn6Bn/zkTiorD6BVq6KkS5KaLY/IJGk7MUZqamqorq7e5lFVVbXDvIa2qaqqprIy
9aioqKKi4pPXlZWfLK/9XFFRRVVV9U4flMDll/8yXXVI/TcEtpyDhxBq7dWOy7fM2376k/fVvfyT
6YYv37LOGHe9/trLYwSKYd68eQwaNAhJkhpLnz59+MIXDuTRR6dQXHxW0uVIzZYBgqQWrbKykvLy
ctavX095eTnl5eWsWbMegFtvvS99gl5V54l67ceWNltO9kPIB/J3eK79CKFg63SM+dtMb3mdek61
y8trRQj55OXl7+S5oM5leXn5tGmzfZs8YCwlJdc0+WfetL5JdXV10kVIknLAmWeezIwZN7N+/ZF0
6NAn6XKkZskAQVKzE2Nk48aN24QC69eXs2rVelasKGfVqnJWrlzPmjXlbNxYTX5+B0JoT4ztqalp
D3SAEnj++QPrOBkv2GZefn4+BQX5tG277Yn7tt/eS5KkbFdUVMTIkSdz440Tad/+q+mwXlJtGQkQ
QginAzeSGpTxlhjj9ZlYb0ty003wm99Aq1apR2HhJ9O1Hzubvyfv2Ztt5Pn7UAmoqqpiw4YN2wQD
a9euZ+XK8q3BwKpV61m7dgM1NYXk5XUAPgkG8vM7UVjYl8LC9rRu3YFu3dqTn996pyf7PXoc2rQ7
KGmPhBC6APcAxcBi4IIY49o62tV5vBFCGAP8B/BRuunVMcZJTVC6pCxz5JFHcPjhL/DGGy/Qp4+X
z0nb2+sAIaSiuZuAk4HlwJwQwkMxxgV7u+6WZMQIOPVUqKxMPSoqPpne/rGzZbXnf/zx7rXf3W3k
5e1dGFFQsO3zzqYzPa++5X5p3PRijGzevHmbUKC8fMfeAqtXl/PxxxWE0I4QagcDHSgs7E1hYfv0
owN9+7YjL88OUlIOGQ08GWO8IYRwFfBf6XlbNeB441cxxl81ZdGSsk8IgREjzuLqq/9GRcVBFBa2
S7okqVnJxBH6YGBhjPFdgBDC3cA5QE4FCF26pB4tQYxQXb3nYURV1Y7Tu5r38ce7btfQ9TRkXu1g
JNPhRGOFIg1tn5/ftAFJTU3NDr0F1q3bsbfAmjXlVFXlb9NbIMb2hNCBwsKeW3sLdO7cnu7dizJ6
acCWwQBj3PZRQzVQRHnckLFtNU9tKaecmq2jItZxVwPiLl/X2SZs3+aTtttvq0HrZdv31NRq8//b
u/fgKgszj+O/51ySkEASCCAI1ZQiBbVVFBGQS1qxIlKgVmupo7LtzLo7te10O85i66zY6R+1reyu
tnZ2266123W6jlysovUyGly3YhW5CdSl0xBBIaBJiCaQ67N/nBNJIORCzjlvznu+n5kzeW/nfZ83
t/Oc33kvfa4n8rHT7TzCZZmkBcnhhyVV6qQAQX33G0TIAFJi3LhxWrbsU1q//nmVly8LuhxgSElF
gDBB0v4u4weUeJHHEGWWeGMai0nDQnSXmq7ByGCCiJ7mn27esWNSQ0P/lx/MtPb2Ez+3wYYVUpuO
HWtWS0virgHNze3JR+LuAC0tHWpr61DiIoBxuRdLGqWOjli3iwomhiOSIt3ewHf+PHp6pHJeJ7MT
D0nS2Vulm0332dj0/tINAfdpXOJtk590Z4OTp1mXeX7SeE/TThq33tZ7ynZOWs/J49Zlfb2ux6TW
4f34LiAExrp7jSS5+yGzHv94++o3bjezmyW9Luk7PZ0CAQD9tWjRZ7Rp00919Oh+lZQQZgOdMnqM
8OrVqz8arqioUEVFRSY3j5DrGoyEUUdH9yNHzjSYaGuT3nhjl/7yl2o1NBxXe3uHIhFPnq5iisdL
FIuVKj+/RPF4QTJ4iCsez1c8XqBoNPEN7vqm/eQ38Jma1zn9VDN0jzXp7m6fdIfPPWY5sY9hU1lZ
qcrKyqDLyDgze07SWV0nKXEIyl09LD7QX+wHJX3f3d3MfiBpjaSvnW5h+hEAfcnPz9fKlZ/TT36y
UcXFf8sFFRE6Z9qPmA+y+TSzWZJWu/ui5PgqSX7yhRTNzAe7LQCp1Xm3g6amJjU2Nn70tbGxSfX1
jaqra1JdXaPq6xvV0NCkDz5oUnt7TGaFMiuSe6GkIrW3FyoWK1I8XqR4vFB5eYmv8XiRotF4IPuW
K2+uc2EfNy/arMsvvzzoUtLGzOTu4UtKBsDM9kiqcPcaMxsn6UV3n3bSMv3tN86V9IS7f/o026If
AdAv7q4HHviN3nxzqs4+O7yvQ+jbgQO/1apVszR58uSgS0mb/vYjqfis9jVJk5Mv2AclfVnSihSs
F0CamZkKCwtVWFio0aNH97l85wUTu4cNicDh6NEG1dYeUn19o+rrm3T0aKPef79Jra2mSKRIZkWS
CuVepI6OQkUip4YNeXlFikTi3EIRyD2/l7RS0r2SbpX0eA/LnLbfMLNx7n4oudx1kt5Md8EAws/M
tGLFYt1550Nqbj5f+fkjgi4JCNygAwR3bzez2yU9qxO3Vdoz6MoADDlmpoKCAhUUFKisrKzP5d1d
LS0t3QKHpqYmffhhoxoaGlVbe1h1dY06ejQRONTUNKmlxRWJJMKGzqMc3BMBRGfQ0DV46O02jgCy
xr2SHjWzr0qqlvQlSTKz8ZJ+4e5L+ug3fmRmF0vqUOI2kLdlegcAhNOYMWN03XWX6NFHn1N5+XVB
lwMELiVniyfvtfzJVKwLQHiYmfLz85Wfn69Ro0b16zktLS09nFKROIWitvY91dcnTqtoaGjSkSON
am5uTx7hkDidojNwULl04MBmmUUViUSTX2Ndhk/9GonEepxnFiGkANLI3WslLexh+kFJS7qM99hv
uPstaS0QQE5buHC+Kit/pvr6fSotLQ+6HCBQIb3cHIBslZeXp7y8PJWWlvZr+dbW1lMCh6amJv36
WWnJkjq1trZ/9GhrS3xtaWnrNt7WdmI4Md7WbXp7e8dHd50wi0k6cSeKzuET0xLz3ROPzuknhmPq
6Og5wOgryDg5CFG+1NZ2/JTvycDO7x7YueDpWvdp11swgM0BAJAGeXl5WrlykX74w40qLv67xGsw
kIYNLY4AAA43SURBVKMIEABktXg8rpKSEpWUlHSf8ay0fPk1KdmGu6u9vb3bo62t7ZRp/Z2fCCba
1Nx8vFvA0TXUSDzauk3vHnK0S/lSbe2/DGhfBnIkRSQysKMuBrLufi9boFN/tgAAZNi0aVM1e/YW
bdmyWRMnXhF0OUBgCBAAoA9mplgsptgQu0fo/ffcoQcfXBV0GWl1/z13aOrUqUGXAQDIcWamG29c
rK1bf6njxy9UQQHhNnITNzQFAAAAgD6MGjVKN9wwUwcPPhN0KUBgCBAAAAAAoB8qKq7QhAkHVVv7
l6BLAQJBgAAAAAAA/RCPx7Vy5WLV1z+ljo62oMsBMo4AAQAAAAD6acqU8zR//li9887/Bl0KkHEE
CAAAAAAwANdfv0ix2Ks6dqwu6FKAjCJAAAAAAIABKC0t1YoVs3Xw4NNBlwJkFAECAAAAAAzQvHlz
VF5eq/feeyvoUoCMIUAAAAAAgAGKRqNauXKxPvjgabW3twZdDpARBAgAAAAAcAYmTZqkK6+cqHfe
+Z+gSwEyggABAAAAAM7Q8uWfU37+62pqej/oUoC0I0AAAAAAgDNUXFysm26ap0OHNsrdgy4HSCsC
BAAAAAAYhNmzZ+q88xp15MjuoEsB0ooAAQAAAAAGIRqN6tZbr1VT0zNqa2sOuhwgbQgQAAAAAGCQ
zjnnHF199SS9++6moEsB0oYAAQAAAABSYOnSq1RYuF2NjYeDLgVICwIEAAAAAEiBoqIi3XxzhWpq
uKAiwokAAQAAAABS5LLLLtX557eqpmZH0KUAKUeAAAAAAAApEolEdPPN16q5+Xm1tR0PuhwgpQgQ
AAAAACCFJkyYoMWLp+jAgReCLgVIKQIEAAAAAEixa6+9UqNH71Z19R/U3NwQdDlAShAgAAAAAECK
FRYW6u67b9N115nq6n6u6uqNOn68PuiygEEhQAAAAACANBgxYoQ+//mrdd99t+uGG/J19Oi/ad++
x3XsWG3QpQFnhAABAAAAANKoqKhIixcv1Jo139RNNxWrsfGX2rdvnRobjwRdGjAgsaALAAAAAIBc
MGzYMF111Wc0b95sbd78mtav/7WOHCnX6NHzNHz4uKDLA/pEgAAAAAAAGVRQUKCKinmaM+dyvfrq
61q//r9UVXW2ysrmq7h4QtDlAadFgAAAGFIq91Wqcl+lJGnBuQu0unK1JKmivEIV5RWB1QUAQKrl
5eVp3rw5mjXrMm3ZslWPPfbfqqoaq1Gj5quk5JygywNOQYAAABhSCAoAALkmHo9r1qyZmjHjEm3b
tl2PPbZOVVUjVVo6X6Wl5TKzoEsEJBEgAAAAAMCQEIvFNGPGpZo+/WLt2LFTa9c+qaqqQpWWLtDI
kZ8gSEDgCBAAAAAAYAiJRqOaPv1iXXTRp7Vr126tW/es/vrXmEaMmK+ysk8SJCAwBAgAQoNz5wEA
QJhEIhF96lMX6sILL9CePX/Whg2b9NZbL6qoaL7GjJkms0jQJSLHECAACA2CAgAAEEZmpvPPn6Zp
06Zq79692rDhJe3a9aIKC+dr7NgLCRKQMQQIAAAAAJAFzExTpkzRHXecp6qqKj3++CZt316p/Py5
OuusixSJRIMuESFHgAAAWYTTNAAAgJlp0qRJ+va3J6m6ulpPPPGSXn/9JeXlXaFx46YrEuFtHtLD
3D0zGzLzTG0LAIBsYWZyd66GlSH0IwDC6sCBA9q48SW98spBxeNXaNy4SxWNxoMuKxQOHPitVq2a
pcmTJwddStr0tx8hmgIAAACALDdx4kTddttXtHTpQT311Et6+eWXFYnM0vjxlykWyw+6PIQEV9sA
AAAAgJAYP368vva1G3XvvbdowYIavfvu/dq/f5Pa2o4HXRpCgAABAAAAAEJm7NixuuWWL+rHP/6q
Fi6s06FD9+vtt19Qa2tT0KUhi3EKAwAAAACEVFlZmVasWK5Fi+r0/PMv65lnHlB7+3SNHz9HeXnD
gy4PWYYjEAAAAAAg5EaOHKkbbvi81qz5ey1b1q733vuZqqufVnNzQ9ClIYsQIAAAAABAjiguLtby
5ddozZqv64tfjKqu7ueqrn5Sx47VBV0asgABAgAAAADkmOHDh2vJks9pzZpv6MYbh+mDD/5d+/Zt
UFPT+0GXhiGMayAAAAAAQI4qLCzUokVXasGCOfrjH/+kDRt+pcOHP6ExY+apqGhs0OVhiCFAAAAA
AIAcN2zYMF155QLNnTtLr7zymtavf1iHD5+r0aPnacSI8UGXhyGCAAEAAAAAIEnKz89XRcVczZkz
U3/60xatW/eIqqrGq6xsgYqLJwRdHgJGgAAAAAAA6CYvL09z587WrFmXacuWrVq79lFVVY3WyJHz
VVp6btDlISAECAAAAACAHsViMV1++WWaMeMSbdu2XWvXblBVVYlKS+ertPTjMrOgS0QGESAAAAAA
AHoVjUZ16aWXaPr0i7Vjx06tW/eU9u0rUHHxfBUWjpZ7R/LhXYY7JHUf7zq/t3mnzj8xbNYhM/9o
WEos2zncOS8xnJiXWObEsj0PnxjvfL7kikQ+VCw2N5Pf7iHL3D0zGzLzTG0LAIBsYWZydz6+yRD6
EQBIjY6ODu3evUdPPvmK6uqaFImYotGIotGIIpFIt3GzE8OJ+dbjcE/zYrGe55lZcjuJR2/jg50X
jUY1fPjwUB9t0d9+hAABAIAAESBkFv0IAACn6m8/EslEMQAAAAAAILsRIAAAAAAAgD4RIAAAAAAA
gD4RIAAAAAAAgD4RIAAAAAAAgD4RIAAAAAAAgD4NKkAws+vN7E0zazezS1JVVLaqrKwMuoS0Yx/D
gX0MB/YRYWFmI83sWTN7y8yeMbOS0yz3KzOrMbMdZ/L8XJELfzfsYziwj+HAPuaWwR6BsFPSFyRt
SkEtWS8XfrHYx3BgH8OBfUSIrJL0vLt/UtILku48zXIPSbp6EM/PCbnwd8M+hgP7GA7sY24ZVIDg
7m+5+15JlqJ6AABA7lkm6eHk8MOSlve0kLu/LKnuTJ8PAAAGh2sgAACAoI119xpJcvdDksZm+PkA
AKAfzN17X8DsOUlndZ0kySV9z92fSC7zoqTvuPsbvayn9w0BAJCj3D30R/L10k/cJenX7j6qy7Lv
u3vZadZzrqQn3P3TXabVDuD59CMAAPSgP/1IrB8ruSpTxQAAgHDqrZ9IXhjxLHevMbNxkg4PcPX9
fj79CAAAZy6VpzDwggwAAM7E7yWtTA7fKunxXpY1ndpzDOT5AADgDPV5CkOvTzZbLukBSaMl1Uva
5u7XpKg2AACQA8xslKRHJX1MUrWkL7l7vZmNl/QLd1+SXO4RSRWSyiTVSLrb3R863fMzvycAAITb
oAIEAAAAAACQGwK5C4OZfcfMOpKfGISKmX3fzLab2VYz+0PyXMxQMbMfmdkeM9tmZmvNrDjomlLN
zK43szfNrN3MLgm6nlQys0Vm9mcz+z8z+8eg60k1M/tV8nzqHUHXki5mNtHMXjCzXWa208y+GXRN
qWZm+Wb2avJ/6U4zuzvomtLFzCJm9oaZ/T7oWnIN/Uh2ox/JbvQj2Y9+JFz6249kPEAws4mSrlLi
EMMw+pG7X+Tu0yVtlBTGX7JnJV3g7hdL2ivpzoDrSYedkr4gaVPQhaSSmUUk/VTS1ZIukLTCzKYG
W1XKPaTE/oVZm6R/cPcLJM2W9PWw/RzdvVnSZ5L/Sy+WdI2ZzQy4rHT5lqTdQReRa+hHQoF+JEvR
j4QG/Ui49KsfCeIIhH+WdEcA280Id/+wy2iRpI6gakkXd3/e3Tv3a7OkiUHWkw7u/pa771X4Lg46
U9Jed69291ZJv5O0LOCaUsrdX5ZUF3Qd6eTuh9x9W3L4Q0l7JE0ItqrUc/em5GC+EncNCt05d8k3
sYsl/TLoWnIQ/UiWox/JavQjIUA/Eh4D6UcyGiCY2VJJ+919Zya3m2lm9gMze1vSVyT9U9D1pNlX
JT0ddBHotwmS9ncZP6AQ/qPPJWZWrkQi/mqwlaRe8lC6rZIOSXrO3V8LuqY06HwTG7pmZCijHwkl
+pHsQj8SMvQjWa/f/Ugs1Vs2s+ckndV1UrKQuyR9V4nDBbvOyzq97OP33P0Jd79L0l3J87m+IWl1
5qscnL72MbnM9yS1uvsjAZQ4aP3ZR2AoM7Phkh6T9K2TPm0MheQni9OT5zVvMLPz3T00h/qb2bWS
atx9m5lVKEtfE4cq+hH6kWxBP4JsRz+S3Qbaj6Q8QHD3q3qabmYXSiqXtN3MTInDzLaY2Ux3P5zq
OtLpdPvYg0ckPaUsfMHuax/NbKUSh7l8NiMFpcEAfo5h8o6kc7qMT0xOQ5Yxs5gSL9b/6e6hvue9
uzeY2YuSFilc1wq4QtJSM1ssaZikEWb2G3e/JeC6QoF+pBv6kSGMfkQS/UjWoh8JhQH1Ixk7hcHd
33T3ce4+yd0/rsShStOz7cW6L2Y2ucvociXOBQoVM1ukxCEuS5MXFgm7rPxk6jRekzTZzM41szxJ
X5YUxiu/m8L1c+vJf0ja7e7/GnQh6WBmo82sJDk8TIlPi/8cbFWp5e7fdfdz3H2SEn+LLxAepB/9
SHjQj2Q1+pHwoB/JcgPtRwK5jWOSK5x/UD80sx1mtk3SQiWuZhk2D0gaLum55K0+Hgy6oFQzs+Vm
tl/SLElPmlkozqt093ZJtytx5epdkn7n7qFqKs3sEUl/lDTFzN42s78JuqZUM7MrJN0k6bPJ2wq9
kWykw2S8pBeT/0tflfSMuz8VcE0IJ/qR7EU/kqXoR8KBfiQ3mTvXbQIAAAAAAL0L8ggEAAAAAACQ
JQgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAnwgQAAAAAABAn/4f
STfmKmb+uQ4AAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Finally, when we look at a 3-day horizon, we start getting some incredible outliers. Stocks have a potential to move over ~300% up, and the standard deviation width is again, incredible. The results for a 3-day horizon follow the same pattern we've seen in the 5- and 8-day horizons.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Event-Type-2:-Trending-up-for-N-days">Event Type 2: Trending up for N days<a class="anchor-link" href="#Event-Type-2:-Trending-up-for-N-days">&#182;</a></h1><p>We're now going to repeat the analysis, but do it for uptrends instead. That is, instead of looking at stocks that have been trending down over the past number of days, we focus only on stocks that have been trending up.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[10]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="k">def</span> <span class="nf">does_trend_up</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">event</span><span class="p">,</span> <span class="n">horizon</span><span class="p">):</span>
<span class="c1"># Figure out if the `event` has an uptrend for</span>
<span class="c1"># the `horizon` days preceding it</span>
<span class="c1"># As an interpretation note: it is assumed that</span>
<span class="c1"># the closing price of day `event` is the reference</span>
<span class="c1"># point, and we want `horizon` days before that.</span>
<span class="c1"># The price_data.hdf was created in the second appendix code block</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">ticker_data</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_hdf</span><span class="p">(</span><span class="s1">&#39;price_data.hdf&#39;</span><span class="p">,</span> <span class="n">ticker</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">ticker_data</span><span class="p">[</span><span class="n">event</span><span class="o">-</span><span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="p">):</span><span class="n">event</span><span class="p">]</span>
<span class="n">midpoints</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;Open&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span> <span class="o">+</span> <span class="n">data</span><span class="p">[</span><span class="s1">&#39;Close&#39;</span><span class="p">]</span><span class="o">/</span><span class="mi">2</span>
<span class="c1"># Shift dates one forward into the future and subtract</span>
<span class="c1"># Effectively: do we trend down over all days?</span>
<span class="n">elems</span> <span class="o">=</span> <span class="n">midpoints</span> <span class="o">-</span> <span class="n">midpoints</span><span class="o">.</span><span class="n">shift</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="n">elems</span><span class="p">)</span><span class="o">-</span><span class="mi">1</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">elems</span><span class="o">.</span><span class="n">dropna</span><span class="p">()[</span><span class="n">elems</span> <span class="o">&gt;=</span> <span class="mi">0</span><span class="p">])</span>
<span class="k">except</span> <span class="ne">KeyError</span><span class="p">:</span>
<span class="c1"># If the stock doesn&#39;t exist, it doesn&#39;t qualify as trending down</span>
<span class="c1"># Mostly this is here to make sure the entire analysis doesn&#39;t </span>
<span class="c1"># blow up if there were issues in data retrieval</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="n">study_trend</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="n">does_trend_up</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>100% (47578 of 47578) |###########################################################| Elapsed Time: 0:22:51 Time: 0:22:51
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8FfW9//H352RfIISAiEACIiBCuIAKiBai1rUtWFtv
UduqV6+9fdRrb3u7aBcBH+391S7Wtrbeayt13+pStXVBLUEWpYhsYZE17AQiCRCWLOd8f3/MSTiE
hAQ4yZzl9Xw85pEzM9+Z+ZwJy5n3+X5nzDknAAAAAACA4wn4XQAAAAAAAIh9BAgAAAAAAKBNBAgA
AAAAAKBNBAgAAAAAAKBNBAgAAAAAAKBNBAgAAAAAAKBNBAgAgLhlZteYWcjMBrej7U1mdnrE/MNm
dnbHVhg9ZhY0s4/MbLGZ/bUd7YvMbHkn1fZzM1tlZkvM7EUz6xqxboSZzTezMjNbambp4eWjzWyZ
ma0xswci2qeb2bNmttbM3jezws54Dy28p8nx9OcDAIDOQIAAAIhnUyTNkXR9O9reLKlP44xz7nbn
3OoOquuUmFlKC4sPOOdGO+dGOeeuaeeuXDTrOo6ZkoY550ZKWivpB1LT+3hC0u3OueGSSiTVh7d5
SNKtzrnBkgab2RXh5bdK2uOcGyTpAUk/76T30Nw1kob5dGwAAGISAQIAIC6ZWY6kC+VdcF7fbN33
w99uLzaz/zGzL0g6T9KT4W/xM81slpmNDre/Ptx+mZn9LGI/+83sJ+Fv1uebWc8W6sg3s5fD367P
N7Ph5tnY7Jv4NWbW08x6mNkLZrYgPF0QXj/VzB43s7mSHm/pLbfjnJwbrnWxpG9ELC8ys/fM7MPw
NC68/DEzmxTR7kkz+5yZnROu7aPw/gYe77jOuXecc6Hw7Ac6EtRcLmmpc64s3K7KOefCPUG6OOcW
hts9Lu+CXZImS3os/PoFSZe28l5vjKjxITMLmNnXzOznEW1uMrPfttLewsuP+R2HfyeTJP083H6A
md1pZivC7Z4+3vkAACBRESAAAOLVZElvOufWSao0s1GSZGZXSvqcpPOdc6Mk/dw596KkhZJuCH+L
f7hxJ2bWW9LP5H07PlLS+REX1TmS5oe/WZ8j6d9bqGO6pI+cc/8i6YeSnnDOOUl/lfT58DHGSCp3
zu2W9BtJ9zvnxkr6oqRHIvY1VNIlzrkbWzhORvjif76ZTW7lnMyQ9I3w+460S9KnnXPnyeu18bvw
8kck3RKusaukCyT9XdJ/SHrAOTdaXvCyNdzm7xYxDKQV/ybp9fDrweHt3gzX/t3w8j6N+wzbqiOh
Qx9JWyTJOReUVG1m3SMPEB5a8CVJ48M1hiTdIOlFhc952JckPdtK+8ZzfMzv2Dn3vqRXJX03/Odl
o6TvSxoZbvcfbZwDAAASUqrfBQAAcJKul9fFXZKeC88vlvRpSX92ztVKknOuOtzG1PK3+OdLmuWc
2yNJZvaUpAnyLiDrnHONF8OLwvtu7iJJ14aPNcvMuptZrqTnJd0j79v0KeEaFd7H0MZvwCXlmll2
+PWrzrm6Vt5vkXNuh5kNkPQPM1sWvrBVuO48SXnOuXnhRU9IujL8Ok3S/5nZSElBSYPC9b5nZr83
swJ5YcaLzrmQmb0v6Ydm1lfSy+GQRs65z7RSW2MNP5RU75x7JrwoVV4vkfMkHZb0rpl9KGnf8fbT
fLctLLtU0mhJC8PnMVNShXOu0szWhwObdZKGOOfmm9k3Wmi/M7yv9vyOJWmppKfNu/9Em/egAAAg
EREgAADijpnlS7pE0nAzc5JS5I33/97J7rKV5fURr4Nq+f/N5vcZMElyzr1vZgPNrIe87vn3Rqwf
65yrP2ojL0840FqBzrkd4Z8bzaxU0ihJG1tr38y3JO10zo0w774EhyLWPS7pK/JCjpvDx3jGzD6Q
9FlJr5vZ7c650uMdwMxulnS1vN9Lo62S3nPOVYXbvC7vQv4pSf0i2vWVtC38elt43fZwrV0bw53I
w0l6zDn3wxZKeVZeb4PVkl5uR/vIwKa137EkfUZesDRJXrgyPGLYBgAASYEhDACAeHSdpMedcwOc
c2c654okbTSziyS9LekWM8uSmsIGyfvWu2sL+/qnpAnhngMp8noylJ5ALXMkfTl8rBJJu51zNeF1
L0u6X9LKiJ4QMyV9s3FjM/uXtg5gZt3syNMLekgaL2llZBvn3F553f3Hhxd9OWJ1nqQd4ddflRe4
NHpM0n95u/BuKmlmA5xzG51zv5P0iqQRbdR3paTvSprU2PMj7C1JxebdcyJV0kRJK5xzOyXtNbMx
4R4BXw0fR/J6ftwUfn2dpH+0cMh3JX3RwvekMO8+FI1Pa/irvOEtU+SFCa21bwwwWguP9iv85yVc
Y6Fzbraku8LLc493TgAASEQECACAePQlHfl2udFLkq53zr0l6TVJH5rZR5L+O7z+MUn/G74pXqbC
PQfCF7N3yQsNFkv60Dn3t/A27XmKwXRJ55rZUkn/oyMXv5I3jOFGHbmQlbzw4DzzbrpYJulr7TjG
0PD7WSzvYvj/tfIEiX+T9Ifw+46s/Q+Sbg5vP1gRPR2cc7skrZL054j2/2reYxcXy3sSwePSce+B
8Dt5F9Rvh8/vH8L7rpYXoHwo6SN55/bN8DbfkHcPhjWS1kYsf0RSDzNbKy/YuKv5wZxzqyT9SNLM
8HmfKen0iGOuknfB/+Fx2vdu3F0L70fyfmffNbNFks6SdwPOZfKGOfzGOXciwzAAAEgI5t3nCQAA
JKPw/ReWShrtnNvvdz0AACB20QMBAIAkZWaXyhsK8VvCAwAA0BZ6IAAAAAAAgDbRAwEAAAAAALSJ
AAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEA
AAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAA
ALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALSJAAEAAAAAALQpagGCmQXM7CMz
ezVa+wQAAMnDzK40s9VmtsbMvt/C+iFmNt/MDpvZt5utKzezpWa22Mz+2XlVAwCQPFKjuK9vSlop
qWsU9wkAAJKAmQUkPSjpUknbJS00s1ecc6sjmn0i6T8lXdPCLkKSSpxzVR1eLAAASSoqPRDMrK+k
qyX9KRr7AwAASWeMpLXOuU3OuXpJz0qaHNnAOVfpnFskqaGF7U0MzQQAoENF6z/aX0v6riQXpf0B
AIDk0kfSloj5reFl7eUkvW1mC83s36NaGQAAkBSFIQxm9hlJFc65JWZWIu8bgJbaES4AANAC51yL
/3fihFzonNthZj3lBQmrnHNzmzfi8wgAAC1rz+eRaPRAuFDSJDPbIOkZSReb2eOtFMTUzmnq1Km+
1xBPE+eL88X5ip2J83ViE5psk1QYMd83vKxdnHM7wj93S3pZ3pCI1toytXPi7zPni/MVOxPni/PV
kVN7nXKA4Jz7gXOu0Dl3pqQpkv7hnPvqqe4XAAAklYWSzjKzIjNLl/eZ4nhPdmr6lsTMss0sN/w6
R9Llkso6slgAAJJRNJ/CAAAAcFKcc0Ezu0PSTHlfcDzinFtlZl/zVruHzayXpA8ldZEUMrNvSjpH
Uk9JL4eHJ6RKeso5N9OfdwIAQOKKaoDgnJstaXY095msSkpK/C4hrnC+Tgzn68Rwvk4M5wsnyzn3
pqQhzZb9X8TrCkn9Wti0RtLIjq0uOfH3+cRwvk4M5+vEcL5ODOerY9iJjHc4pQOZuc46FgAA8cLM
5LiJYqfh8wgAAMdq7+cR34cw9O/fX5s2bfK7DLShqKhI5eXlfpcBAECH4PNI5+DzBADEN997IIST
jk6pASeP3xMAdAx6IHQuPo/4i/MMALGpvZ9HovEYRwAAAAAAkOAIEAAAAAAAQJsIEAAAAAAAQJsI
EAAAAAAAQJsIEAAAAAAAQJt8f4xjS+655wFt3lzdYfsvLOyme+/9rw7bf2e45ZZb1K9fP917771+
lwKgE5WWl6q0vLTpdUn/EklSSf+SptcAooPPI23j8wgAJJeYDBA2b65W//7TOmz/5eUdt29J+v3v
f69HH31Uy5cv1w033KAZM2Z06PEAJI/IoMCmm0pvLvW1HiCR8XkEAICjMYThBNx3333tatenTx/9
+Mc/1q233trBFQEAgGTD5xEAgF8IEE5AbW1tu9pdc801mjRpkrp3795m2/vuu099+/ZV165dNXTo
UM2aNavFdosXL9a5556rvLw8TZkyRYcPHz6h2gEAQGLg8wgAwC8ECCfAORfV/a1Zs0a///3vtWjR
Iu3bt09vvfWW+vfvf0y7+vp6ff7zn9dNN92kPXv26LrrrtOLL74Y1VoAAEB84PMIAMAvMXkPhFix
fv16vfDCCzIzOec0b948/fznP5dzTmamsWPHauLEiSe9/5SUFNXV1amsrEwFBQUqLCxssd0HH3yg
hoYG3XnnnZKkL3zhCzr//PNP+rgAACB+8HkEABArCBCOY+DAgfr+97/fNF9bW6vvfe97Ud3/Aw88
oGnTpmnlypW64oor9Ktf/Uq9e/c+qt327dvVp0+fo5YVFRVFrQ4Ax+JpB4mB3yMSAZ9HAACxggDB
Z1OmTNGUKVNUU1Oj22+/XXfddZcee+yxo9r07t1b27ZtO2rZ5s2bddZZZ3VmqUBS4WkHiYHfI9A+
fB4BALQH90A4Ae0dcxgMBnX48GEFg0E1NDSotrZWwWDwmHZr1qzRrFmzVFdXp/T0dGVlZSkQOPZX
csEFFyg1NVW/+93v1NDQoJdeekn//Oc/T/n9AACA+MPnEQCAX2KyB0JhYbcOfTZyYWG3drX7+OOP
9eyzzzaNOZw9e7buvffepjGHF1xwgS677LJjtvvJT36i6dOny8wkSU899ZSmTp2qe+6556h2tbW1
uuuuu7R69WqlpaVp/PjxevjhhyVJV199tSZMmKC77rpLaWlpeumll3TbbbfpRz/6ka6++mp94Qtf
OGpfke0BAMCp4/MIn0cAAEezaN/Jt9UDmbmWjtX4nyFiG78nJDObbnJTY+/Pf6zWFati9XyF/301
v+tIFnwe8RfnGQBiU3s/jzCEAQAAAAAAtCkmhzAAAOILTzsAAABIfAQIAIBTxtMOAAAAEh8BAgBf
8c01AAAAEB8IEAD4im+uAQAAgPjATRQBAAAAAECb6IEAAACSXlFRkcx4mmZHKyoq8rsEAMApiMkA
IRpjohlXDQAA2qu8vNzvEgAAiHkxGSBEY0w046qP9fWvf119+/bVD3/4Q79LAQAAAICkUVtbq8rK
Su3Zs0eDBg1SZmam3yWdlJgMEGJF//79tXPnTm3fvl3du3dvWj5q1CgtXbpU5eXlKiwsjOox6+rq
dNttt+lvf/ub0tPTdf311+vXv/51VOp86KGHolorAAAAAMDjnNP+/ftVWVmpyspKbdtWqY0bd2vL
lkpVV9cqEChQbe0+/fjH6RoyZIjf5Z4UAoTjMDMNGDBAzzzzjL7xjW9IksrKynTo0KEOGyf56KOP
asmSJSovL1daWpr++c9/xmSdAAAAAJCMgsGgqqqqVFlZqV27dmvz5kpt2lSprVsrdfhwqgKBngqF
eiglpYeyswcrO7unCgu7ysy0deszfpd/SngKQxu+8pWv6LHHHmuaf+yxx3TTTTcd1eb111/X6NGj
lZeXp6KiIk2fPr1p3fPPP68zzzxTNTU1kqQ33nhDvXv31ieffNLi8dLS0pSXl6euXbsqKytLEydO
jFqdt9xyi+655x5J0uzZs9WvXz/df//96tWrl/r06aNHH320XccCAAAAgERXW1urbdu2aenSpZo5
8109/PBz+uEPH9Ttt/8/fe97T+sXv/hIM2Yc0pw5/VVZeaW6d/8vFRV9V/363ayios+qb99x6t79
LGVm5iXMF7v0QGjDuHHj9MQTT+jjjz/WoEGD9Nxzz2nevHlH3UcgNzdXTzzxhIYNG6aysjJddtll
GjVqlCZNmqR//dd/1WuvvaY777xTv/zlL3XbbbdpxowZKigoaPF4o0eP1u23365p06Zp2rRpUa2z
uZ07d2r//v3avn27Zs6cqS9+8Yv6/Oc/r7y8vHYfFwAAAADilXNONTU1qqys1O7du7VtW6XKy73e
BHv2HJJZgaSecq6HsrKGKzu7h/r0KVAgkJyX0nHxrm26v2lN47f7EydO1NChQ3XGGWcctX7ChAlN
r4cPH64pU6Zo9uzZmjRpkiTpwQcf1IgRI1RSUqLJkyfrqquuavE4VVVVmjRpkv7+979r6tSpMjNN
nTpVktSvXz+9+eabGjZs2EnX2Vx6erp+/OMfKxAI6KqrrlJubq4+/vhjjRkzpl3nBQAAAADiQSgU
0p49e8JBQaU2b65Ueflubd1aqdraVJn1CA876BkedtBDhYWJ03MgWuIiQHBT3Sltf6oBxJe//GVN
mDBBGzdu1Fe/+tVj1i9YsEB33323ysrKVFdXp7q6Ol133XVN6/Py8nTdddfp17/+tV566aVWj/OX
v/xF55xzji6//HKdd955mjBhgsxMN910k4LB4HHDg/bU2VxBQYECgSOjWLKzs5uGWgAAAABALAkG
g2poaGia6uvrW3zdOF9ZWaXyci8s2LmzSqFQF5n1VDDYQxkZhcrOHq3u3XsoLS3b77cWN+IiQPBb
YWGhBgwYoDfeeEMzZsw4Zv2NN96oO++8U2+99ZbS0tL0rW9966h7HCxZskQzZszQ9ddfr//8z//U
G2+80eJxGv+gS1L37t31zjvvaPz48Xr66af1ne9855TrBAAAAIBocc7pwIEDqq2tbdcFfUNDg+rq
GnT4cL1qaxsipnrV1R1ZV1/f0DRfV+etq69vUDDoFAikSUqVWarMvNfefJqc8157P9PkXF7TsIMz
zkjeYQfRxBlspxkzZqiqqkpZWVkKBoNHraupqVF+fn7TUxOefvppXXHFFZKkw4cP6ytf+Yp+9rOf
6eabb9b555+vhx56SF//+tePOcbVV1+tu+++W3/84x91yy23KCUlRePHj9czzzyj7Oz2pWLHqxMA
AAAA2ss5p8OHD6uqqkrV1dXas6dKFRXV2r69Wjt2VKmycq8aGtJllqnGC3lv8i7sj1zQH5k3S1Mg
kKlAIDU8pUW8TlVKypH5tLQ0ZWSkRqxP8fFsQCJAOK7I8S4DBgzQgAEDWlz3hz/8Qd/+9rd1xx13
aOLEifrSl76k6upqSdIPfvADFRUV6fbbb5ckPfHEE7rkkkt0+eWXa+DAgUcdr3///nrjjTf0ve99
T9/5znfUpUsXTZkyRbNmzdLnPvc5nXnmmbr88stPus4Teb8AAAAAEl9dXZ2qq6tVXV2tqqoq7d5d
ra1bq7RzZ7UqKqp06JCUkpIv57rJuXylpPRQVtYgZWZ2U69e3ZSSku73W0AnIkA4jg0bNrS4PCUl
5ahv96+99lpde+21Lba9//77j5ofMWKEKisrWz3m+PHjNXfu3GOW792795Tr/POf/9z0euLEidq8
eXO79gMAAAAgPgWDQe3du7epF0FlZZW2bfN6EFRUVGvfvloFAt1klq9QqJsCgXxlZvZTZmY3de+e
r9TUTL5oRJOYDBBKy0tVWl4qSZpYNFHTSqdJkkr6l6ikf0mn7QMAAAAAYlkoFNL+/fubehDs2VOt
7durtH17tSoqqrVnT43MujQFBFK+MjMHKzMzXzk53ZSfn0tAgHaLyQAhGhf5BAUAAAAAEoFzThUV
FaqsrFRVldd7YPv2au3cWaXKyn0KhbIkeeFAKNRNGRn9lZnZTZmZ3cKPIgy0dQigXWIyQAAAAACA
ZLZv3z6tX79eS5eu16JFG1RTk61A4DQFg92Ulna6MjPPVlZWvnr3zlNKSprf5SJJECAAAAAAgM/q
6+u1adMmrVq1XgsXrteWLfslnan09IHKz79MBQV5fpcIECAAAAAAQGdrHJawdu16LVq0XitWbFUw
2FvSQHXrNlmFhb0ZeoCYQ4AAAAAAAJ2gpqZGGzZs0LJl6/Xhh+u1d2+6pIHKyRmrXr2+pNTUDL9L
BI7L9wChqKiIu37GgaKiIr9LAAAAAOJKQ0ODNm/erNWrvWEJ5eXVkgYoLW2g8vNLVFSU73eJwAnx
PUAoLy/3uwQAAAAAOGXOOVVWVmrduvVatGidli3brPr602R2lvLyPqPCwj4MS0Bc8z1AAAAAAIB4
dfDgQW3YsEHLl3vDEvbsCci5gcrJGa2ePb+gtLQsv0sEooYAAQAAxAQzu1LSA5ICkh5xzt3XbP0Q
SX+WNFrSD5xz97d3WwCIlmAwqK1bt2r16nVauHC91q//RGb9lZIyUPn5F6mwsDtDtJGwCBAAAIDv
zOvT+6CkSyVtl7TQzF5xzq2OaPaJpP+UdM1JbAsAJ8U5pz179mjduvVavHi9liwpV11dgZwbqLy8
y9WvXz8FAil+lwl0CgIEAAAQC8ZIWuuc2yRJZvaspMmSmkIA51ylpEoz++yJbgsAJ+Lw4cPasGGD
ysq8YQm7d4fk3EBlZxeroGCy0tKy/S4R8AUBAgAAiAV9JG2JmN8qLxjo6G0BoIlzTjNm/EXz5q2T
c4UKBAaqe/dxKizswbAEQAQIAAAgyUybNq3pdUlJiUpKSnyrBUBs2bVrl+bM2abCwu8pEOBSCYmr
tLRUpaWlJ7wdfysAAEAs2CapMGK+b3hZ1LeNDBAAINLSpStkNozwAAmveYA+ffr0dm3HQ0gBAEAs
WCjpLDMrMrN0SVMkvXqc9pF9iU90WwA4hnNOpaVlys8f5ncpQMwiWgMAAL5zzgXN7A5JM3XkUYyr
zOxr3mr3sJn1kvShpC6SQmb2TUnnOOdqWtrWp7cCIE7t3LlT27c7FRWd4XcpQMwiQAAAADHBOfem
pCHNlv1fxOsKSf3auy0AnIjFi8tkNoybJQLHwRAGAAAAAEnNOafZs1eooGC436UAMY0AAQAAAEBS
2759uyoqUpST08vvUoCYdspDGMwsQ9J7ktLD+3vBOde+WzgCAAAAgM8WLy5TIMDwBaAtp9wDwTlX
K+li59woSSMlXWVmY065MgAAAADoYN7TFxi+ALRHVIYwOOcOhl9myOuF4KKxXwAAAADoSFu2bFFl
ZYZyck7zuxQg5kUlQDCzgJktlrRT0tvOuYXR2C8AAAAAdKSPPlqhQIDeB0B7ROUxjs65kKRRZtZV
0l/N7Bzn3Mrm7aZNm9b0uqSkRCUlJdE4PAAAcaO0tFSlpaV+lwEAkBQKhfTeeyvVo8dNfpcCxIWo
BAiNnHP7zGyWpCslHTdAAAAgGTUP0KdP577DAOCXzZs3q6oqR0VFPfwuBYgLpzyEwcx6mFle+HWW
pMskrT7V/QIAAABAR/KGLwzzuwwgbkTjHgi9Jc0ysyWSFkh6yzn3ehT2CwAAAAAdIhQKafbslerR
gwABaK9THsLgnFsuaXQUagEAAACATlFeXq59+/KUn9/d71KAuBGVpzAAAAAAQDz58EOGLwAnigAB
AAAAQFIJBoOaM2eVevYkQABOBAECAAAAgKSyceNG1dR0V2ZmN79LAeIKAQIAAACApLJwYZlSUuh9
AJwoAgQAAAAASaOhoUFz537M8AXgJBAgAAAAAEgaGzZs0MGDPZWR0dXvUoC4Q4AAAAAAIGksWFCm
1NThfpcBxCUCBAAAAABJoaGhQfPnr1HPnuf4XQoQlwgQAAAAACSFtWvX6vDh05Wenut3KUBcIkAA
AAAAkBQWLFihtDSGLwAniwABAAAAQMKrr6/X+++vVY8eQ/0uBYhbBAgAAAAAEt6aNWtUV9dX6ek5
fpcCxC0CBAAAAAAJ74MPVig9fZjfZQBxjQABAAAAQEKrra3VggXrGb4AnCICBAAAAAAJzRu+UKi0
tCy/SwHiGgECAAAAgIT2/vsrlJnJ8AXgVBEgAAAAAEhYhw8f1sKFG9Wjx9l+lwLEPQIEAAAAAAlr
9eqPVV/fX6mpmX6XAsQ9AgQAAAAACWv+/DJlZQ33uwwgIRAgAAAAAEhIhw4d0qJFm1VQMNjvUoCE
QIAAAAAAICGtWrVaweCZSk3N8LsUICEQIAAAAABISPPmlSk7m+ELQLQQIAAAAABIOAcOHNCSJdtU
UDDI71KAhEGAAAAAACDhrFy5SsHgWUpJSfe7FCBhECAAAAAASDhz565QTs4wv8sAEgoBAgAAAICE
UlNTo+XLd6h797P8LgVIKAQIAAAAABLKihUrFQoNVkpKmt+lAAmFAAEAAABAQpkzZ4Vycxm+AEQb
AQIAAACAhLFv3z6tXLlL3bsP9LsUIOEQIAAAAABIGGVlKxUKDVEgkOp3KUDCIUAAAAAAkDDee69M
XbowfAHoCAQIAAAAABJCdXW1Pv54j/Lzz/S7FCAhESAAAAAASAhlZSvl3NkKBFL8LgVISAQIAAAA
ABLC7Nllyssb7ncZQMIiQAAAAAAQ9/bs2aO1a/eqW7f+fpcCJCwCBAAAEBPM7EozW21ma8zs+620
+a2ZrTWzJWY2KmJ5uZktNbPFZvbPzqsaQKxYtmyFzM6RGZc4QEfh2SYAAMB35n3if1DSpZK2S1po
Zq8451ZHtLlK0kDn3CAzGyvpIUnjwqtDkkqcc1WdXDqAGPHeeyuUl3el32UACY14DgAAxIIxktY6
5zY55+olPStpcrM2kyU9LknOuQWS8sysV3idic81QNL65JNPtHHjAeXlFfpdCpDQ+I8WAADEgj6S
tkTMbw0vO16bbRFtnKS3zWyhmf17h1UJICYtXVomieELQEdjCAMAAEgEFzrndphZT3lBwirn3Fy/
iwLQOWbPXqFu3T7rdxlAwiNAAAAAsWCbpMi+x33Dy5q36ddSG+fcjvDP3Wb2srwhES0GCNOmTWt6
XVJSopKSklOrHICvdu3apU2bDquoqF/bjQFIkkpLS1VaWnrC2xEgAACAWLBQ0llmViRph6Qpkq5v
1uZVSd+Q9JyZjZNU7ZyrMLNsSQHnXI2Z5Ui6XNL01g4UGSAAiH9Ll66Q2TCZmd+lAHGjeYA+fXqr
/20ehQCb51/6AAAgAElEQVQBAAD4zjkXNLM7JM2Ud4+mR5xzq8zsa95q97Bz7nUzu9rM1kk6IOmW
8Oa9JL1sZk7eZ5unnHMz/XgfADqXc06zZ69Qfv41fpcCJAUCBAAAEBOcc29KGtJs2f81m7+jhe02
ShrZsdUBiEUVFRXatq1BhYXN77kKoCNwm1IAAAAAcWnJkhWSGL4AdBYCBAAAAABxxzmn0tIyde8+
3O9SgKRBgAAAAAAg7uzYsUM7d5pyc0/3uxQgaRAgAAAAAIg7ixfz9AWgsxEgAAAAAIgrjU9fKChg
+ALQmQgQAAAAAMSVbdu2adeuVOXknOZ3KUBSIUAAAAAAEFc++qhMgcBwhi8AnYwAAQAAAEDc8IYv
rFRBwTC/SwGSDgECAAAAgLixZcsW7dmTpZycnn6XAiQdAgQAAAAAcWPRojKZ0fsA8AMBAgAAAIC4
EAqFNHv2SvXoQYAA+IEAAQAAAEBc2LRpk/bu7aLs7AK/SwGSEgECAAAAgLiwaNEKBQL0PgD8QoAA
AAAAIOaFQiHNmbOK4QuAj045QDCzvmb2DzNbYWbLzezOaBQGAAAAAI02btyoffu6KSsr3+9SgKSV
GoV9NEj6tnNuiZnlSlpkZjOdc6ujsG8AAAAA0IcfMnwB8Nsp90Bwzu10zi0Jv66RtEpSn1PdLwAA
AABIUjAY1Ny5q9WzJwEC4Keo3gPBzPpLGilpQTT3CwAAACB5bdiwQTU1BcrMzPO7FCCpRWMIgyQp
PHzhBUnfDPdEOMa0adOaXpeUlKikpCRahwcAIC6UlpaqtLTU7zIAIK4sXLhCKSnD/S4DSHpRCRDM
LFVeePCEc+6V1tpFBggAACSj5gH69OnT/SsGAOJAQ0OD5s37WD17Xup3KUDSi9YQhhmSVjrnfhOl
/QEAAACA1q9fr4MHT1NGRhe/SwGSXjQe43ihpBslXWJmi83sIzO78tRLAwAAAJDsFiwoU2oqwxeA
WHDKQxicc/MkpUShFgAAAABoUl9fr/nz16pnzyv8LgWAovwUBgAAAACIlrVr16q29gylp+f6XQoA
ESAAAAAAiFELFqxQWtowv8sAEEaAAAAAACDm1NXV6YMP1qlnz6F+lwIgjAABAAAAQMxZs2aN6ur6
KS0t2+9SAIQRIAAAAACIOe+/v0Lp6QxfAGIJAQIAAACAmFJbW6uFCzeoR4+z/S4FQAQCBAAAAAAx
5eOPP1Z9fZHS0rL8LgVABAIEAAAAADFl/vwVyswc7ncZAJohQAAAAAAQMw4fPqxFi8pVUDDE71IA
NEOAAAAAACBmrFq1WvX1A5SamuF3KQCaIUAAAAAAEDPmzStTdjbDF4BYRIAAAAAAICYcPHhQixdv
UUHBYL9LAdACAgQAAAAAMWHVqtUKhc5SSkq636UAaAEBAgAAAICYMHdumbKzh/ldBoBWECAAAAAA
8N2BAwe0bNl2de8+yO9SALSCAAEAAACA71asWKlgcJBSUtL8LgVAKwgQAAAAAPhu7twVys1l+AIQ
ywgQAAAAAPhq//79KiurUPfuZ/ldCoDjIEAAAAAA4KsVK1bKucEKBFL9LgXAcfA3FAAAAICv5sxZ
odzci/wuA2iVc1JDg1Rbe/RUV3fsspaWN85nZ1+q7363yu+3c9IIEAAAAAD4Zu/evVq5crf69Rvo
dylIQMFg+y74m69rqV1KipSRIaWnez8jp8hlubmtt6usnC1phN+n5aQRIAAAAADwTVnZSjl3tgKB
FL9LQQdxTgqFvG/w2zPV17e/7fH2UVvrHbulC/nmF/h5ea23a2ybEoU/ovv2NZz6TnxEgAAAAADA
N3PmrFDXrhf7XUbCaOxqHwweO0VrefM27ZnMpNTUk58yMqScnGOXp6Udf5vUVO/YiA4CBAAAAAC+
qK6u1po1VerXb4DfpXSKYPBI1/jIn60ti5yvr2/fxb5z3jflKSnexXPj68jpeMsDgWPbZGQcf9vj
XcQ3TgFu358QCBAAAEBMMLMrJT0g7ylRjzjn7muhzW8lXSXpgKSbnXNL2rstgNizfPkKOTdUZrF5
dXkqF/wttQmFju46n55+7OvG+ZycY5e3JwQIBPjGHR2HAAEAAPjOvKuHByVdKmm7pIVm9opzbnVE
m6skDXTODTKzsZL+V9K49mwLIDbNnl2mrl0v79BjhELSoUPedPDgkdctzR86JB0+fOSCv3H8fORF
fksX++npR1/wtxQONH6Lz8U94hkBAgAAiAVjJK11zm2SJDN7VtJkSZEhwGRJj0uSc26BmeWZWS9J
A9qxLYAYs2fPHq1fv1+FhUXtah8KeRf3bQUAzZfX1UlZWUem7Oyj57t2PXp5ZiYX/EBrCBAAAEAs
6CNpS8T8VnmhQltt+rRzWwAxpL5eevPN9dq9+wLV1wfaFQjU1noX9c0DgMapR4+Wg4KMDEIAIFoI
EAAAQLw6qUuCadOmNb0uKSlRSUlJlMoBcDwbNkhvveVNpaWS2dlKT09Xbu7RoUB+vnTGGccGBZmZ
3IgPiJbS0lKVlpae8HYECAAAIBZsk1QYMd83vKx5m34ttElvx7ZNIgMEAB2npkaaNetIaLB/v3T5
5dJ110kPPyw9/fRLWrt2jHr2HOp3qUDSaR6gT58+vV3bESAAAIBYsFDSWWZWJGmHpCmSrm/W5lVJ
35D0nJmNk1TtnKsws8p2bAugg4VC0tKlRwKDDz+Uzj9fuuIK6S9/kUaMOLoHwac+VawlS5YRIABx
hAABAAD4zjkXNLM7JM3UkUcxrjKzr3mr3cPOudfN7GozWyfvMY63HG9bn94KkFR27ZJmzvQCg5kz
pW7dvF4G//3fUkmJlJvb+rbDhp2jtLS3VF9/SGlpWZ1WM4CTR4AAAABignPuTUlDmi37v2bzd7R3
WwDRV1cnzZ9/pJfBhg3SJZd4vQzuvVcaMKD9+8rMzNQFFwzUggWr1Lv36I4rGkDUECAAAAAAaNW6
dUcCg9mzpSFDvMDgt7+Vxo6V0tJOft8XXFCsOXMWSCJAAOIBAQIAAACAJvv2HX3zw0OHvMDghhuk
GTO8xyVGy6BBg5Sd/aoOH96rzMy86O0YQIcgQAAAAACSWCgkffTRkcBg8WJp3DgvNPjrX6XhwyU7
qYemti01NVUTJgzV22+XqW/fCzvmIACihgABAAAASDI7dhy5+eHbb3u9Cq64Qrr7bmniRCk7u/Nq
GTt2hN544w1JBAhArCNAAAAAABJcba00d+6RXgabN0uXXuqFBj/7mVRY6F9tRUVF6tnzsGpqKpSb
28u/QgC0iQABAAAASEB79kgvvCC98oo0Z440bJj3iMWHHpLGjJFSY+RKwMx08cXD9Ze/LCdAAGJc
wO8CAAAAAETHwYPSc89Jkyd7j1R85x3pppuk8nLp/fel6dOl8eNjJzxodO65I+Tccjnn/C4FwHHE
2D8dAAAAAE5EQ4P07rvSU09Jr73m9S644QbpiSekrl39rq59evXqpQEDMlVVtVnduhX5XQ6AVtAD
AQAAAIgzzkkffCDdeafUt690zz3SeedJq1Z59zi46ab4CQ8alZQUq7p6md9lADgOeiAAAAAAcWL1
aq+nwdNPe8MQbrzRuzniWWf5XdmpGzmyWGb/q1DoKgUCXKYAsYi/mQAAAEAM27ZNevZZLzTYsUO6
/nrp+eel0aMlM7+ri568vDwVF/fShg3r1KPH2X6XA6AFBAgAAABAjKmull580ettsGSJ9PnPS7/4
hTRxopSS4nd1HWfChGItX76MAAGIUQQIAAAAQAw4fFj629+8ngbvvitddpl0xx3S1VdLmZl+V9c5
hg07R6mpM9XQcFipqUnypoE4QoAAAAAA+CQYlGbN8noavPKKNyzhxhulGTOkbt38rq7zZWVlaezY
M7Vw4Sr17j3K73IANEOAAAAAAHQi56QPP/R6Gjz7rPcUhRtukH76U+mMM/yuzn/jxxdr3ryFkggQ
gFhDgAAAAAB0grVrjzxBwTmvp0FpqTRkiN+VxZbBgwcrO/s11dbuU0ZGnD2LEkhwAb8LAAAAABLV
jh3SAw9I558vfepT3s0Rn3xSWrNGmjaN8KAlqampmjBhqHbtKvO7FADNECAAAAAAUbR3r/TnP3s3
QTznHO8pCv/zP9LWrV6YMGZMYj1+sSOMGVOsUGiZ32UAaIYhDAAAAMApqq2VXn/dG6Lw9tvSJZdI
t98uvfqqlJXld3Xxp3///iooOKgDB3YpJ+c0v8sBEEYPBAAAAOAkHDok/fWv0pe/LJ1+uvTb30pX
XimVl0svvyxddx3hwckyM5WUDNcnnyz3uxQAEQgQAAAAgHY6eFB68UXp+uul3r290ODCC6VVq7zH
Md52m5Sf73eVieG880bIueVyzvldCoAwhjAAAAAAx1FT4w1PeOEF6a23vHsYXHed9JvfSKfRu77D
9OrVS4WF6dq3b4vy8gr9LgeA6IEAAAAAHGP/fumZZ6Rrr5X69JFmzJCuuEJav967x8HttxMedDQz
08UXF6u6mpspArGCAAEAAACQ9/SEJ5+UJk/2QoMnn5QmTZI2bpTefFO69VapRw+/q0wuI0cWS1qp
UCjodykAxBAGAAAAJLGqKumVV7zhCe+9J118sfTFL0qPPSZ16+Z3dejWrZuGD++pjRvXqUePIX6X
AyS9qPRAMLNHzKzCzOhfBAAAgJj2ySfSI49IV10l9e/vPWrxhhukrVu9MOErXyE8iCUTJhTrwAEu
M4BYEK0eCH+W9DtJj0dpfwAAAEDU7N7tPVrxhRekBQukyy+Xbr5Zev55qUsXv6vD8QwfPkwpKW+r
oaFWqakZfpcDJLWoBAjOublmVhSNfQEAAADRsHPnkdBg0SLpyiu9mx++/LKUk+N3dWivrKwsjR07
QIsWrdLpp4/0uxwgqXEPBAAAACSM7dull17yQoMlS6TPfEa64w4vPMjK8rs6nKzx44s1f/4iSQQI
gJ86NUCYNm1a0+uSkhKVlJR05uEBAPBdaWmpSktL/S4DSChbthwJDVaskD77Wenb3/aGKWRm+l0d
omHw4MHKzHxNtbX7lZHBmBPAL74FCAAAJKPmAfr06dP9KwaIY5s2SS++KP3lL9KaNd7jFu++W7r0
UimDYfIJJy0tTRMnDtU775Spb98L/C4HSFrRDBAsPAEAAABR5Zy0erX3xIQXX5Q2bJCuuUaaNs17
9GJ6ut8VoqONGVOst956WxIBAuCXqAQIZva0pBJJBWa2WdJU59yfo7FvAAAAJKeGBmnePC80ePVV
6fBhr6fBT38qlZRIaWl+V4jO1L9/f+Xn1+jAgd3KyenpdzlAUorWUxhuiMZ+AAAAkNz27ZPeessL
DF5/Xerf3wsNnn9eGjlSMvq7Jq1AIKBLLinWSy8tV07OJX6XAySlgN8FAAAAILlt3iz9/vfSFVdI
ffpIM2ZI48d7T1FYtEiaOlUaNYrwANK55xYrFFom55zfpQBJicc4AgAAoFM5Jy1eLL3yitfTYMsW
73GLt9/uPUmhCzfZRytOP/10FRamad++LcrLK/S7HCDpECAAAACgw9XWSrNmHbmfQXa2NHmy9Nvf
ShdcIKXyqRTtYGa6+OJiPf74cgIEwAf8Uw0AAIAOUVnp3cfg1Veld96Riou9+xm8+640ZIjf1SFe
jRxZrMcf/6NCoSsVCKT4XQ6QVAgQAAAAEDVr1hzpZbB0qfTpT3uhwUMPST25cT6iID8/X+ec00Ob
N69XQcFgv8sBkgoBAgAAAE5aMCi9//6R0GD/fulzn5Puvlu6+GIpM9PvCpGIJk4s1h/+sIwAAehk
BAgAAAA4ITU10syZXmDw9797T06YNEl68klp9GgpwHO+0MGGDx+m1NR31dBQq9TUDL/LAZIGAQIA
AADatG2b9NprXmgwd640bpwXGkyfLhUV+V0dkk12drbOP79Iixev1umn/4vf5QBJgwABAAAAx3DO
u4dB49CEjRulq66Sbr5ZeuYZKS/P7wqR7C68sFgffLBYEgEC0FkIEAAAANBk+3bp0UelGTO8EGHy
ZOmXv5QuvFBKS/O7OuCIIUOGKDPzb6qrq1F6eq7f5QBJgRFqAAAASa6+XnrlFe/mh8OGSeXl0tNP
S+vWSfffL5WUEB4g9qSlpelTnzpbu3aV+V0KkDTogQAAAJCk1q6VHnlEeuwxaeBA6dZbveEJuXyZ
izgxdmyx3n77XUnj/C4FSAoECAAAAEnk4EHphRe84GD1aumrX5X+8Q9p6FC/KwNO3IABA9St2z4d
PFip7OwefpcDJDyGMAAAAF+ZWb6ZzTSzj83sLTNr8fZ8Znalma02szVm9v2I5VPNbKuZfRSeruy8
6uODc9KiRdLXvy717Ss9+6z0zW9KW7ZIv/gF4QHiVyAQ0CWXFKuycrnfpQBJgQABAAD47S5J7zjn
hkj6h6S7mzcws4CkByVdIWmYpOvN7OyIJvc750aHpzc7o+h4UFUlPfigNGqU9MUvSmec4T1Z4fXX
pWuvldLT/a4QOHXnnlusUGiZnHN+lwIkPAIEAADgt8mSHgu/fkzSNS20GSNprXNuk3OuXtKz4e0a
WceWGD9CIW9Iwo03SgMGSPPmeU9RWL9e+vGPpX79/K4QiK7evXurX78U7du31e9SgIRHgAAAAPx2
mnOuQpKcczslndZCmz6StkTMbw0va3SHmS0xsz+1NgQi0W3bJv30p9KgQdJ//Zc0dqwXGjzzjPTp
T0sBPvUhQZmZLr64WFVVDGMAOho3UQQAAB3OzN6W1CtykSQn6UctND/Rfsh/kHSvc86Z2U8k3S/p
1tYaT5s2rel1SUmJSkpKTvBwsaO+Xvr736U//UmaP1+67jrv/gbnnScZfTKQREaNGqEnnviTQqEr
FAik+F0OEPNKS0tVWlp6wtsRIAAAgA7nnLustXVmVmFmvZxzFWZ2uqRdLTTbJqkwYr5veJmcc7sj
lv9R0mvHqyUyQIhXa9YcefzioEHe4xefe07KyfG7MsAf+fn5Gjq0u7ZsWa+CgsF+lwPEvOYB+vTp
09u1HZ3ZAACA316VdHP49U2SXmmhzUJJZ5lZkZmlS5oS3k7h0KHRtZLKOq5U/xw44AUGEyZ4k3NS
aak0Z450882EB8DEicXav59hDEBHogcCAADw232Snjezf5O0SdK/SpKZ9Zb0R+fcZ51zQTO7Q9JM
eV+APOKcWxXe/udmNlJSSFK5pK919hvoKI2PX/zTn6Tnn5cuuED61rekz35WSkvzuzogtgwfPkyp
qf9QMFinlBQeMQJ0BAIEAADgK+fcHkmfbmH5DkmfjZh/U9KQFtp9tUML9MGePdKTT3rDFPbvl/7t
36Rly6S+ff2uDIhdOTk5OvfcQi1btlq9eo3wuxwgITGEAQAAIAaEQtK770o33CCdeab0wQfS/fdL
69ZJP/oR4QHQHhddVKxDh5b5XQaQsOiBAAAA4KOtW6VHH5VmzJC6dJFuu0168EGpe3e/KwPiz5Ah
Q5SZ+XfV1dUoPT3X73KAhEOAAAAA4KNf/Uo6dMi7x8G55/L4ReBUpKen66KLhmj27BXq02es3+UA
CYcAAQAAwEe//rXfFQCJZdy4Yr377ixJBAhAtHEPBAAAAAAJ48wzz1Re3l4dPPiJ36UACYcAAQAA
AEDCCAQCuuSS4aqsXO53KUDCIUAAAAAAkFDOPbdYodAyOef8LgVIKAQIAAAAABLKGWecoT59TPv3
b/O7FCChECAAAAAASChmpksvHaGqKoYxANFEgAAAAAAg4YwcWSznyhQKBf0uBUgYBAgAAAAAEk73
7t119tn5qqra4HcpQMIgQAAAAACQkEpKirV/P8MYgGghQAAAAACQkIqLhyslZY2CwTq/SwESAgEC
AAAAgISUk5Ojc8/tp8rK1X6XAiQEAgQAAAAACeuii4p16BDDGIBoIEAAAAAAkLDOPvtsZWZuUV3d
Ab9LAeIeAQIAAACAhJWenq4LLxys3btX+F0KEPcIEAAAAAAktHHjitXQsMzvMoC4R4AAAAAAIKEN
HDhQXbtW6dChPX6XAsQ1AgQAAAAACS0QCOjii4dr925upgicCgIEAAAAAAnvvPOKFQotk3PO71KA
uEWAAAAAACDh9enTR2ec4bR//3a/SwHiFgECAAAAgIRnZrr00hGqqmIYA3CyCBAAAAAAJIWRI4sl
lcm5kN+lAHGJAAEAAABAUigoKNDgwXmqqtrgdylAXCJAAAAAAJA0Jk4s1r59DGMATgYBAgAAAICk
MWLEcKWkfKxgsM7vUoC4Q4AAAAAAIGnk5uZq1Ki+qqz82O9SgLhDgAAAAAAgqVx0UbEOHWIYA3Ci
CBAAAAAAJJVzzhmqjIzNqqs74HcpQFwhQAAAAACQVNLT03XhhYO0e/cKv0sB4kqq3wUAAJKbc67F
KRQKHXf+RNtIUm1trTIyMnx+xwCAWDBuXLFmzZojaYzfpQBxgwABQFxovBBsbQoGg8ddf7LtgsGQ
JGnmzHfDNXhT5OvI+dbaHG/9yf6UpKlTH2o6R43LIs9ZpFNd3+72edK3vvWrplqDwVDExbyL+F0e
uciX7KjJLNCuZVJAZkfmnWupXXi+UFq8eLHGjRsnAAAGDhyorl1f0aFDVcrKyve7HCAuECAA8EUo
FFJVVZUqKiq0Y8curV9fIUn65jd/2XTh7k1BBYPexaZ3YRiQWUBmKfIuDL155wJN671lR9ZHTs5F
zqe0uNy5xvnw+gHSM8+kN12oxspPdf0PHTjw+fAZtaPOr9fmqCUnvP7oJkfPm5lSUlrb/r+Vmfnv
arzoP7b+lpY1r6cj3KpQKNQJxwEAxIOUlBRNnDhMf/vbchUWTvC7HCAuECAA6HAHDhxQRUWFKip2
qby8QuvWVWjLlt1qaMiR1Euh0GnKzh4m9ZKys7+mQCAlfJF5ZOq8i8yWFRV9yrdjH09u7ul+l9Ci
jIyufpcAAECbzj+/WK+++oqc+5SvnzOAeEGAACBq6uvrtXv3blVUVGjbtl1au7ZC5eUV2rs3qECg
l5zrpbS0PsrJGa3TTjtNqanHjkXPyOjiQ+UAACAZ9e3bV6efHlRNzQ516XKG3+UAMS8qAYKZXSnp
AXn9fx9xzt0Xjf0CiE3OuabhBzt3esMP1q+vUEXFXkkFknpJOk05ORcoN7eXunXrQqoPAABijpnp
0ktH6OmnlxMgAO1wygGCeX2LH5R0qaTtkhaa2SvOudWnum8A/jt48GA4KKjQ5s27tG5dhTZv3q36
+ixJveTcacrMHKrc3BL17VugQCClzX0CAADEilGjivXUU/+/vTsPkuMs7zj+e+baS5a0knZWQgq2
iG0ZyzLGFQ5zxOsQFRQhmBxFYVIVrn+SQCAJRXGZkrZCVTBFDhL+SYwxkAoBQg4wFQimYF2FU6QA
IyyD41jS6iztzmolraxdaY+ZJ390z+zsMdvTu7PTs9rvp6qru99+u/vd1mr2eZ/p7vfzct8fPjYJ
oJZG3IHwUknPuvsJSTKzL0u6VxIJBGANmZmZmfP4wZEjwxocHNbFi9OVxw8ymR3asOEO9fTklcm0
J91khEqV0RE8Yr2eOvWtS7OjLnhYNjtKwyaN+uiccrfyaAs+51juLq+azx6vXM/nnKdSP6wz27b5
2xYeX6mblrqMAIB1atu2bbrppo0aHh7Uli2/nHRzgJbWiATCTkmnqtZPi8FUsc65S8WiND0tzczM
zsvTaq7XU3dyckYTExO6cmVSzz03qfHxSV29OiP3nKS83H9J6XSb0uk2pVIZuVvl54qaL7fO9LYn
pNfcqI/bXqmqc+jmc9ZVY93Ng6Lydqvu8M5bt7mdzEX3sapzaKP6talquzT3/HWUzSlfQdmcY0v9
ZnMHQPBw3cuF89cXK1vGenk2v0647TN+U7Ds1eVVIy6U9ysvl0eWmHMOk8lm65TrV+pZ5by24Biz
9SvbiiS9AACLu+ee2/Xgg4dJIAARmvoSxYMHD1aW+/r61NfX18zTY40pd8Cnp6WpqdnlpaZyver6
88uaVSeVkrLZYMpkgqnWciPXOzqi6z/55FM6fPioisWiUilp69bt2rBhpzo6NqmtbaPS6eCjwar6
bNXLteYrqTOT2qOHXPod/0rQbax0BqVUeai/cL28vbIedjDDkqCuV62FncjKexjcKsdU+chedczy
PmEH9W/tev2JTs6eq6K6fRFl0rzyZZb5bNmfW0oHNDehMP+UNddXUb+ZDniNdiWov0XewzEwMKCB
gYGkmwEAqHL77bfJbEDF4rTS6WzSzQFaViMSCGckPb9qfVdYtkB1AgGN5T7biS1/y7xay/V24lc6
SbMd8GxWyuXmrs+fqreXl2vNy8vt7dF16jnOYvNUCz9C99a33qFS6XZduHBBIyMjGhoq6PjxQxoc
LOjMmVGVStdJyqtUyqujo0ddXXl1dm5TKrWaOccuyY7ohX7bKp5jmeySNvmmpFuxkEm18gdoXfMT
6P39/ck1BgAgSdqwYYNe/OKdevrpZ5TPt2AsArSIRvQGfiTpRjO7XtJZSW+RdF8DjpuI8q3nU1PN
m8qd7sXK6+3Ql0pzv2Wu/ua7upNda1vc5Y4OaePG+jrzy53SvItvVaVSKW3dulVbt27VLbfcUikv
lUo6f/68CoWChodHdOzYMzpx4gc6c+a83DdJ6glfnFhOLGxd5cQCAADA6nvVq/bpJz85LIkEAlDL
iqN+dy+a2XskfUezwzg+veKWNcFf/qX0qU8t7MinUkEHuNFTZ+ds5zpqitvpT6dnbwUHViKVSmnb
tm3atm2bbr1VuueeoLxYLFYSC0NDIxocfFqDg4/pzJmLct+scmKhoyOvrq4edXQwIgMAAFg7br31
hcrlvqXp6Qlls51JNwdoSQ352tDdvy1pTyOO1Uzvepd0330LO+588w0slE6n1dPTo56eHu3dO1s+
MzOj0dFRjYyM6OzZggYHn9LgYEGnT49J6lbwKET5boUedXRsIbEAAABaTltbm17xipv0+OM/186d
Lxm2AvAAAA6USURBVEm6OUBLWtf3HW/eHEwAli+Tyai3t1e9vb26reqOv5mZGZ07d66SWDh27Ekd
P17QqVOXZLZFwWgPPerszKurK6+Oju6mvugPAABgvrvu2qfHHntcEgkEYDHrOoEAYPVkMhlt375d
27dv1759s+XT09M6d+6cCoWCzp4d0dGjP9XJkyM6efKydIN06tTDMkuFQ0eagiejFi6711defZzy
slmqMspDedkspfIQgwuWd0jDw0+GP0HVaA5VIzbMXW5OPW2ULl8emnPdfcHoB77C7fGPoW7p4sXj
VQXzf5aEyrgbFQAQ4cYbb1Q+/02dPPmQSqW8stledXUFX3bwWANAAgFAk2WzWe3YsUM7duzQi140
Wz41NaXP/8X9+tjH7lGpVJK7y90bvlwquYrFokqloHxmZra8erlYLFXq/P0R6WUve1aSVCoFneVy
vVpl5U52+RhL1VvOPmVdXf8uaX7HWYuWpVIWa/uyjzEu7do1sGh7V1JWXg7+TVXXPvPLuru7F/yM
SJ6ZdUv6iqTrJR2X9GZ3H1uk3kOS3iBp2N1vj7s/AERJp9Pq73+3hoaGNDQ0rJMnh3Xs2GGdOFHQ
1as5mQWjVLW391Yez2TYR6wntvi3TatwIjNv1rkArE3Wb/IDrfc5QbvioV3xmJk8uD1m3TKzBySN
uvsnzeyDkrrd/UOL1HuVpMuSvjgvgVDX/mFd4hEAsbm7xsbGwlGqCjp6dLhq+OtNCh7NzKuzszd8
NHNLeEcjMNfp0/+sD3zgTu3Z01qvEKw3HuEOBAAAkLR7Jd0dLn9B0oCkBQkAd/9BOGz0svYHgOUy
M23evFmbN2/WzTffrFe/OigvFosaHR0NH80s6MiRn+n48YJOnrwss21yz8ssrw0bgsRCLnfdoncN
AmsFCQQAAJC0vLsPS5K7D5lZvsn7A8CypNNp5fN55fN53XabtH9/UD41NaVCoaBCoaDTpws6cuSI
TpwoaGioJLPgboVMZjaxkMm0J/uDAHUigQAAAFadmT0qqbe6SMEbOO9fpPpKnzFYcv+DBw9Wlvv6
+tTX17fC0wHAXLlcTrt27dKuXbt0552z5ePj4yoUCuH7Fc7q6NGf6cSJgqam2pVK9apYzKu9PUgs
dHZuUypFdw2rY2BgQAMDA7H34zcSAACsOnffX2ubmQ2bWa+7D5vZdkmFmIePtX91AgEAmqmrq0u7
d+/W7t27ddddQZm76+LFi+FjEMMaHHxWg4OP68yZ83LfLLNelUp5dXbm1dZ2nbLZTmWzXUqnczwO
gWWbn0Dv7++vaz8SCAAAIGnfkPR2SQ9Iepukry9Rd3ac0+XtDwAtxczU3d2t7u5u7dmzR+U+XbFY
rAx9febMsAYHD2l09LLGxsZ17tyEJieLMuuUWaeCsYo7VSp1yr0rTDIsnLijASvFbxAAAEjaA5K+
ambvlHRC0pslycx2SHrQ3d8Qrn9JUp+krWZ2UtIBd3+41v4AsJal02n19vaqt7dX+/btW7B9ZmZG
ExMTC6bnnhvX2NiILlyY0MWLE7p0KZhGRiZULGbmJB3cg0nqVC63MPGQyXS0xF0O7iWVSkWVSjML
JvfFy0ulolKptNLpNqXTOWUywbx6nZEy4iOBAAAAEuXu5yX9+iLlZyW9oWr9rXH2B4BrWSaT0caN
G7Vx48a66ru7JicnF006XLo0oYsXL+j8+XGNjZXXJzQxMSmpXalUl8p3ObgHdzqk07OJBklLduql
GZkF81SqKGmmxhRscw+m8rKZK5vNKJvNKJNJK5cLlnO5uVMmk1ZbWybcntb0dFHj45O6cmVK4+OT
unp1ShMTwfzKlUlJGZnlJLVV5lJO7rNz94WJh8XWU6lsSyRbVhsJBAAAAAC4xpmZ2tvb1d7eri1b
ttS1T6lU0pUrVyqJhvHx8XA+obGxMV24cFZjYxOSVOnElzvwbW3BlM2mlc22KZPpUiaTqUzpdHrO
+lLbUqlUwzvn7q7p6WlNTU1pcnKy5nxyckrj489pfPycxsenKgmJiYlgfvlykJCYmioqlcpJysks
SEBUJyTcg/nVq+ca+nM0GwkEAAAAAMACqVRKXV1d6urqSropDWdmyuVyyuVy2rBhw4qPVyqVqpIO
SyUk9up5z3teA36CZJBAAAAAAABgBVKpVOUOj2sZb40AAAAAAACRSCAAAAAAAIBIJBAAAAAAAEAk
EggAAAAAACASCQQAAAAAABCJBAIAAAAAAIhEAgEAAAAAAEQigQAAAAAAACKRQAAAAAAAAJFIIAAA
AAAAgEgkEAAAAAAAQCQSCAAAAAAAIBIJBAAAAAAAEIkEAgAAAAAAiEQCAQAAAAAARCKBAAAAAAAA
IpFAAAAAAAAAkUggAAAAAACASCQQAAAAAABApEzSDQAArH0Dxwc0cHxAknT39Xfr4MBBSVLfDX3q
u6GPdgEAAFwDzN2bcyIzb9a5AKxN1m/yA633OdFK7aruEA8cH6h0gukQr11mJne3pNuxXhCPAACw
UL3xCHcgAMAaQqIAAAAASeEdCAAAAAAAIBIJBAAAAAAAEIlHGAAkipfcAQAAAGsDL1EEgEXwskI0
Cy9RbC7iEQAAFqo3HiGBAABAgkggNBfxCAAAC9Ubj/AOBAAAAAAAEIkEAgAAAAAAiEQCAQAAAAAA
RCKBAAAAAAAAIpFAAAAAAAAAkUggAAAAAACASCQQAAAAAABAJBIIAAAAAAAgEgkEAAAAAAAQiQQC
AAAAAACIRAIBAAAAAABEIoEAAAAAAAAikUAAAAAAAACRSCAAAAAAAIBIJBAAAAAAAEAkEggAAAAA
ACASCQQAAAAAABBpRQkEM/tdM3vKzIpmdmejGgVpYGAg6SasKVyveLhe8XC94uF6IS4z6zaz75jZ
M2b2X2a2qUa9h8xs2MyenFd+wMxOm9kT4fS65rT82sf/53i4XvFwveLhesXD9VodK70D4bCk35L0
WAPagir8wsfD9YqH6xUP1yserheW4UOSvuvueyR9T9KHa9R7WNJra2z7K3e/M5y+vRqNXI/4/xwP
1yserlc8XK94uF6rY0UJBHd/xt2flWQNag8AAFh/7pX0hXD5C5LetFgld/+BpAs1jkEsAgDAKuMd
CAAAIGl5dx+WJHcfkpRfxjHeY2aHzOyztR6BAAAAK2PuvnQFs0cl9VYXSXJJH3X3R8I635f0fnd/
YonjLH0iAADWKXe/5r89XyKeuF/S5919S1XdUXffWuM410t6xN1vryrrkXTO3d3MPi5ph7u/q8b+
xCMAACyinngkU8dB9jerMQAA4Nq0VDwRvhix192HzWy7pELMY49UrT4o6ZEl6hKPAACwTI18hIE/
yAAAYDm+Ient4fLbJH19ibqmeTFHmHQo+21JTzWycQAAILDSYRzfZGanJL1c0jfN7FuNaRYAAFhH
HpC038yekfQaSZ+QJDPbYWbfLFcysy9J+m9JN5vZSTN7R7jpk2b2pJkdknS3pD9tbvMBAFgfIt+B
AAAAAAAA0PRRGMzsj83saTM7bGafaPb51yIze7+ZlcxsS3Tt9cvMPhn+bh0ys381s41Jt6kVmdnr
zOx/zez/zOyDSbenlZnZLjP7npn9PPzMem/SbVoLzCxlZk+Y2TeSbkurM7NNZvYv4WfXz83sZUm3
ab0gHomPeKQ+xCP1IR6pH/HI8hCP1C9OPNLUBIKZ9Un6TUn73H2fpE818/xrkZntkrRf0omk27IG
fEfSXne/Q9Kzkj6ccHtajpmlJH1G0msl7ZV0n5ndkmyrWtqMpD9z972S7pL0bq5XXd4n6RdJN2KN
+LSk/3T3F0p6kaSnE27PukA8Eh/xSCzEIxGIR2IjHlke4pH61R2PNPsOhD+U9Al3n5Ekdz/X5POv
RX8t6QNJN2ItcPfvunspXP2hpF1JtqdFvVTSs+5+wt2nJX1Z0r0Jt6llufuQux8Kly8r+DDdmWyr
WlvYyXi9pM8m3ZZWF34r+Wp3f1iS3H3G3S8l3Kz1gngkPuKROhGP1IV4JAbikfiIR+oXNx5pdgLh
Zkm/amY/NLPvm9mvNPn8a4qZvVHSKXc/nHRb1qB3SuKlngvtlHSqav20+ANUFzO7QdIdkv4n2Za0
vHIngxfsRNst6ZyZPRzeYvkPZtaRdKPWCeKRGIhHVoR4ZHHEI8tEPFI34pH6xYpHMo0+u5k9Kqm3
ukjBP9z94fm63f3lZvYSSV+V9IJGt2EtibheH1Fwu2D1tnVtiev1UXd/JKzzUUnT7v6lBJqIa5CZ
bZD0NUnvCzP/WISZ/YakYXc/FN4ivu4/syJkJN0p6d3u/mMz+xtJH5J0INlmXRuIR+IhHomHeARJ
IB6pD/FIbLHikYYnENx9f61tZvYHkv4trPej8EU8W919tNHtWCtqXS8zu03SDZJ+Zmam4Pa3n5jZ
S9290MQmtpSlfr8kyczeruB2pV9rSoPWnjOSnl+1vissQw1mllHwx/of3X2psekhvVLSG83s9ZI6
JF1nZl90999PuF2t6rSCb3V/HK5/TRIvEmsQ4pF4iEfiIR5ZMeKRmIhHYiEeiSdWPNLsRxj+Q+EH
qZndLCm7nv9YL8Xdn3L37e7+AnffreAf9sXr+Y91FDN7nYJbld7o7pNJt6dF/UjSjWZ2vZnlJL1F
Em+mXdrnJP3C3T+ddENanbt/xN2f7+4vUPC79T3+WNfm7sOSToV/DyXpNeJlT81CPFIn4pH4iEfq
QjwSH/FInYhH4okbjzT8DoQID0v6nJkdljQpiX/I+rm4/SbK30nKSXo0+JJEP3T3P0q2Sa3F3Ytm
9h4Fb4hOSXrI3Xnrew1m9kpJvyfpsJn9VMH/w4+4+7eTbRmuIe+V9E9mlpV0TNI7Em7PekE8snzE
I9GIRyIQj8RDPIImqDseMXfeKwEAAAAAAJbW7EcYAAAAAADAGkQCAQAAAAAARCKBAAAAAAAAIpFA
AAAAAAAAkUggAAAAAACASCQQAAAAAABAJBIIAAAAAAAg0v8DKqxIkSzxlWUAAAAASUVORK5CYII=
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The patterns here are very similar. With the exception of noting that stocks can go to nearly 400% after an earnings announcement (most likely this included a takeover announcement, etc.), we still see large min/max bars and wide standard deviation of returns.</p>
<p>We'll repeat the pattern for stocks going up for both 8 and 3 days straight, but at this point, the results should be very predictable:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[11]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="n">study_trend</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="n">does_trend_up</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>100% (47578 of 47578) |###########################################################| Elapsed Time: 0:20:51 Time: 0:20:51
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8nGW9///XZyaTvU1XkjZtlhZFEKpUyqqlLLJ9QUBE
iorQI+rhAXLU4xeKG63Hs+DvezwcF1Q8lE3ZBFQUWpYjKSAUSqGUQte0aZq2SemWNNtkluv3xz1J
JmnSps0kd5J5P33czr1cc9+fmSntPe+57us25xwiIiIiIiIiIkcq4HcBIiIiIiIiIjK8KVwQERER
ERERkX5RuCAiIiIiIiIi/aJwQURERERERET6ReGCiIiIiIiIiPSLwgURERERERER6ReFCyIiklbM
7DIzi5vZh/vQ9lozK0pavtvMPjKwFaaOmd1hZqvN7D0zu7MP7UvN7N1Bqu12M6sxs7cS0wWJ9ePM
7G9mtt/MfpbUPt/M3k60fdvMPjCznw5GrT3UfpsfxxURERnKFC6IiEi6mQu8DFzdh7bXAcXtC865
rznn1g5QXf1iZsFuy6cBpzvnjgeOB042s9l92JUbiPp68VPn3MzEtCSxrhX4PvDPXYpyrtE5d2Ki
7YnAFuCJQaw12Xd9Oq6IiMiQpXBBRETShpnlAWcAX6FbuGBmt5rZqsSv4v9mZlcAJwG/S/xanm1m
L5rZzET7qxPtV5nZfyTtZ7+Z/djMVprZq2Y2sYc6xprZH83snUSb482z2cxGJ7Vbb2YTzWyCmT1u
Zq8nptMS2283swfM7BXggW6HcUC2mWUDOUAGUNdDLZ9I1Po2cGPS+lIze8nM3kxMpybW329mn0lq
9zszu8TMjkvU9lZif9P78pF0X+Gca3bOvQqEe32S1+tkonPu7z1syzWze8xsmZmtMLNLEutfM7Nj
k9q9aGYzD9L+WjN7wswWm9m69s/YzP4dyEm8zgcTz/9r4s/NKjO7sg+vW0REZMRRuCAiIunkUmCJ
c24jsMvMTgRIdMm/BJiV+FX8J865J4DlwBcSv5a3tu/EzCYB/wHMAT4OzEr6wp0HvOqc+zheD4mv
9lDHQuAt59zHgO8BDzrnHPAn4PLEMU4GqpxzHwD/jfcr/ynA54B7kvZ1LHC2c+6LyQdwzi0DKoAd
wDbgWefcuh5qWQTcmHjdyXYC5zrnTsLr7fHzxPp7gHmJGkcDpwFPA/8I3Omcm4kXytQk2jydfGlJ
Nzclgoj/MbOCXtr05Crg0V62fQ/4X+fcqcDZwP8zsxzgkcTzSNRT5Jx76yDtAT4GXAnMAOaaWbFz
7jagOfFn4hrgAmBbolfFDGAJIiIiaUjhgoiIpJOr8b5kgvfltL33wrnAvc65MIBzbl9ivdHDr+vA
LOBF59we51wc+D3QfslBm3PumcT8CqCsh+d/EngwcawXgXFmlg88hvdFnsRj+xfoc4FfJHoXPAXk
m1luYttTzrm27gdI9Bz4CDAZ79KOc8zsjG5tCoCCpB4ADyZtDgH/Y2argD/ghRg4514Cjjaz8Xjv
3xOJ9+A14Htm9n+BsqT38v8452p7eA/uAqYlQpha4HDGT5gLPNzLtvOA+Yn3qgLIBEoSr+FziTaf
Bx4/RHvwQofGxGt5Hyjt4XjvAp82s383s0865/YfxusQEREZMTL8LkBERGQwmNlYvF+mjzczBwTx
Lh245Uh32cv6SNJ8jJ7/re0+roEBOOdeM7PpZjYBuAz4UdL2U5xzkS5PMgNo6qWOy4FlzrmWRNvF
eL0MDriUoBffAmqdczMS4zm0JG17ALgG70v+dYnaHzazZcDFwDNm9jXnXEVvO0/0yGj3W+AvfSnK
zGYAQefc2wdpdoVzbkMPz91lZifg9WD4+sHaJy4DSb40I/mz7PjsnXMbEpfKXAT82MxecM79uC+v
RUREZCRRzwUREUkXVwIPOOfKnXPTnHOlwGYz+yTwPDCvvTt8IogAaABG97CvN4DZ5t3ZIIj3C37F
YdTyMvClxLHmAB845xoT2/6I9yv++0k9KJ4D/qn9yWb2sT4coxo408yCZhYCzgTWJDdwztUD+8zs
9MSqLyVtLsC7pALgy3hhTLv7gW96u/AGuDSzcufcZufcz4E/411K0Ktul0p8FljdU7Me1l1N770W
AJ4Fbk46zseTtj2KFyaNds6t7kP73rQlPvf2S2RanHMPAf8fMLMPzxcRERlxFC6IiEi6uArvi3uy
J4GrnXPP4v1y/qaZvUXnnQruB36dGLwvm0SPg0Q3//l4gcLbwJvOub8mntOXuy0sBD5hZu8A/wZc
m7TtMeCLdF6+AV6wcJJ5A0Cupuuv7r15HNiE123/beBt59zTPbT7B+CuxOtOrv0u4LrE5QIfJqmH
hHNuJ15QcW9S+8+bd9vLt4GPkhhg8iBjLvwkMQDiSrzg41vtG8xsM/CfwLVmVm1db/95JQcPF34M
hBL7fpfO3h/g3V2i+3gNye1Xd2ufLPm9uRt418weBE4A3ki87h8m9iciIpJ2zBs/SkRERKRvEuM9
vAPM1BgDIiIiAuq5ICIiIofBzM7BG9zwZwoWREREpJ16LoiIiIiIiIhIv6jngoiIiIiIiIj0i8IF
EREREREREekXhQsiIiIiIiIi0i8KF0RERERERESkXxQuiIiIiIiIiEi/KFwQERERERERkX5RuCAi
IiIiIiIi/aJwQURERERERET6ReGCiIiIiIiIiPSLwgURERERERER6ReFCyIiIiIiIiLSLwoXRERE
RERERKRfFC6IiIiIiIiISL8oXBARERERERGRflG4ICIiIiIiIiL9onBBRERERERERPpF4YKIiIiI
iIiI9IvCBRERERERERHpF4ULIiIiIiIiItIvKQkXzOwCM1trZuvN7NaDtJtlZhEz+2wqjisiIiLp
51DnHWZ2jJm9amatZvbtw3muiIiIHBlzzvVvB2YBYD1wDrAdWA7Mdc6t7aHd80ALsMg592S/Diwi
IiJppy/nHWY2ASgFLgP2Oud+2tfnioiIyJFJRc+Fk4ENzrktzrkI8AhwaQ/tvgE8DuxMwTFFREQk
PR3yvMM5t8s5twKIHu5zRURE5MikIlwoBrYmLdck1nUws8nAZc65XwGWgmOKiIhIejrkeccAPVdE
REQOImOQjnMnkHxdY68Bg5n17zoNERGREco5p4B+EOhcREREpHe9nY+kIlzYBpQkLU9JrEt2EvCI
mRkwAbjQzCLOuad6KTYFZUmqLFiwgAULFvhdhvhAn3360mc/9Hj/hAp9O+/o93N1LjL06O+l9KXP
Pn3psx96DnY+kopwYTlwtJmVAjuAucDVyQ2cc9OSirkX+EtvwYKIiIjIQRzyvKOb5LOgw32uiIiI
9FG/wwXnXMzMbgKewxvD4R7n3Boz+7q32d3d/Sn9PaaIiIikp76cd5hZIfAmMAqIm9k/Acc55xp7
eq5PL0VERGREScmYC865JcAx3db9ppe2/5CKY8rgmTNnjt8liE/02acvffYylB3qvMM5VwdM7etz
ZXjQ30vpS599+tJnP7zYULum0MzcUKtJRETEb2amAR0Hic5FREREenaw85HBultEv5WVlbFlyxa/
y5BDKC0tpaqqyu8yREREUk7nIoND5xIiIsPTsOm5kEhIfKhIDoc+JxGRgaGeC4NH5yL+0vssIjJ0
Hex8JDDYxYiIiIiIiIjIyKJwQURERERERET6ReGCiIiIiIiIiPSLwgURERERERER6ReFCyIiIiIi
IiLSL8PmVpTd/fCHd1JdvW/A9l9SMoYf/eibA7b/wTJv3jymTp3Kj370I79LERERGXF0PtI3Oh8R
ERn5hm24UF29j7KyBQO2/6qqgdt3u1/+8pfcd999vPvuu3zhC19g0aJFA35MERERSR2dj4iIyEBw
zhGNRgmHw7S2thIOhw+Yb2lppakpzP79rTQ2hjnppI9w4okzfKt52IYLQ9kdd9zBrbfeesh2xcXF
/OAHP+DZZ5+lpaVlECoTERGRdKHzERER/0UiET744AOampq6hAMtLWEaGrxwoLHRe2xqCtPc3Epz
s7c9GjUCgSwgC7NsIAvIxrmsxJRNMDiKjIyJNDRsIy9vs8KFkSYcDvep3WWXXQbA8uXL2bZt20Hb
3nHHHfz85z+noaGB4uJi7rrrLs4666wD2r399ttcf/31bNy4kQsvvBAzO/wXICIiIsOezkdERAaP
c47GxkZqa2upra1j48ZaKivr2L59LzAOGIWZFwzE415QkJExjoyMbILBLDIyssnIyCIYzGLUqGzG
js0iEDjcr+tbU//CDoPChQHgnEvp/tavX88vf/lLVqxYQWFhIdXV1cRisQPaRSIRLr/8cr797W9z
44038qc//Ymrr76a+fPnp7QeERERGfp0PiIiMjBisRi7du2itraWmpo61q+vpaqqjoYGh1khzhWR
lXU0+fmfZMqUCUcQEgxP6fEqB1hlZSWPP/44ZoZzjr///e/85Cc/wTmHmXHKKadw5plnHvH+g8Eg
bW1trF69mvHjx1NSUtJju2XLlhGNRrn55psBuOKKK5g1a9YRH1dERHpXUVVBRVVFx/ycsjkAzCmb
0zEvMph0PiIiknotLS3U1tayY0ctmzd7PRJqanYTixUAhUAReXmnkp9fxJgxo9K6p5bChRSYPn16
l2saw+Ewt9xyS0r3f+edd7JgwQLef/99zj//fP7zP/+TSZMmdWm3fft2iouLu6wrLS1NWR0iIsPB
YH3pT96fLTQqrqtI2b5FjoTOR0REjlw8Hmfv3r3U1taybVstGzbUsWlTLXv2hBO9EQoJhaaSnz+L
oqKjCAZDfpc85ChcGCbmzp3L3LlzaWxs5Gtf+xrz58/n/vvv79Jm0qRJB1wrWV1dzdFHHz2YpYqI
+Epf+kUGjs5HRGQkqaur45VX3mTduh1s2bKTSCQXKMK5InJzTyQ/v4iSkjFp3RvhcAT8LmAk6us1
jrFYjNbWVmKxWMdtRnq6dnH9+vW8+OKLtLW1kZmZSU5ODoHAgR/daaedRkZGBj//+c+JRqM8+eST
vPHGG/1+PSIiIjL86HxERKRnu3fv5oEHHmf+/Ad55pnR7Nz5aSZO/DYlJd+kpGQupaVzmDjxWHJy
xipYOAzDtudCScmYAb33c0nJmD63XbduHY888kjHNY5Lly7lRz/6Ucc1jqeddhqf/vSnD3jej3/8
YxYuXNjxB/b3v/89t99+Oz/84Q+7tAuHw8yfP5+1a9cSCoU4/fTTufvuuwG46KKLmD17NvPnzycU
CvHkk09y/fXX8/3vf5+LLrqIK664osu+ktuLiIhI/+h8ROcjIjJ87Nu3jyVLlvLcc+swO40pUz5D
MJjpd1kjhqV6JOH+MjPXU03t/1DK0KbPSUSGEltouNsH/u+kwThO4u9X/XwyCHQu4i+9zyKSavv3
7+eFF17m6affJR6fxeTJp5ORke13WSm1Y8dbnHnmVr7whUsH9DgHOx8Ztj0XRERERERERHrT3NzM
iy/+naeeeou2to8zadJNZGbm+V3WiKVwQUREREREREaMcDjMyy+/xh//+AbNzcdRVHQDWVmj/S5r
xFO4ICIiIiIiIsNeJBLhtdfe4PHHX6Wh4WgKC7/KxIlj/S4rbShcEBGRQVNRVUFFVUXHfPstI5Nv
HykiIiJyOKLRKG+++RaPPfYyu3dP5aijrqOsbKLfZaUdhQsiIjJokkMEW2hUXFfhaz0iIiIyfMXj
cVaufIfHHlvKjh0TmTDhC5SXT/K7rLSlcEFEBp1+vT48g/V+6XMRERGR4cA5x+rV7/GHP1SwZUs+
48Z9lvLyEr/LSnsKF0Rk0OnX68MzWO+XPheRgystLcVMdwMdaKWlpX6XICJDlHOO9evX84c/vMiG
DUEKCi6krGya/m4eIoZ1uJCKX9n0S52IiIj0RVVVld8liIikrU2bNvHEE39j9eoIo0adTVnZhxUq
DDHDOlxIxa9s+qXuQDfccANTpkzhe9/7nt+liIiIiIhIGtu6dSt//OPfWLGigdzcOZSVHa9QYYgK
+F3ASFBWVkZ2djZ79uzpsv7EE08kEAhQXV2d8mO2tbXx5S9/mXHjxlFUVMS3vvWtlNX5q1/9SsGC
iIiIiIj4IhaLsXnzZn7zm4f4/vcf5733TqCs7EYKC09QsDCEDeueC0OFmVFeXs7DDz/MjTfeCMDq
1atpaWkZsD/89913HytXrqSqqopQKMQbb7wxJOsUERERERE5lObmZjZs2MBbb61n+fJKWlvHEwx+
jNLSzxMI6GvrcKCeCylyzTXXcP/993cs33///Vx77bVd2jzzzDPMnDmTgoICSktLWbhwYce2xx57
jGnTptHY2AjA4sWLmTRpErt37+7xeKFQiIKCAkaPHk1OTg5nnnlmyuqcN28eP/zhDwFYunQpU6dO
5ac//SmFhYUUFxdz33339elYIiIiIiIiPXHOUVdXR0XFy9xxxz184xs/484717Js2dGMGXMTJSVf
pbj4ZAULw4jChRQ59dRT2b9/P+vWrSMej/Poo4/ypS99CedcR5v8/HwefPBB6uvrefrpp/n1r3/N
U089BcDnP/95zjjjDG6++Wb27NnD9ddfz6JFixg/fnyPx5s5cybLli1jwYIFKa+zu9raWvbv38/2
7dv5n//5H2688Ubq6+sP67giIiIiIpLeotEoGzZs4Mknn+aWW+5k/vxHuP/+RrZtm0Nx8XcoLb2K
SZNOJDMz3+9S5QiMqBjIFvrbtb+9V8CZZ57Jsccey+TJk7tsnz17dsf88ccfz9y5c1m6dCmf+cxn
APjFL37BjBkzmDNnDpdeeikXXnhhj8fZu3cvn/nMZ3j66ae5/fbbMTNuv/12AKZOncqSJUv46Ec/
esR1dpeZmckPfvADAoEAF154Ifn5+axbt46TTz65T++LiIiIiIikJ++HzfW8+eZ63n67ikikCLMP
M27clygpmaDLs0eQERUuuNt7//W9L/obTnzpS19i9uzZbN68mS9/+csHbH/99de57bbbWL16NW1t
bbS1tXHllVd2bC8oKODKK6/kv/7rv3jyySd7Pc4f/vAHjjvuOM477zxOOukkZs+ejZlx7bXXEovF
Dhos9KXO7saPH08g0NnJJTc3t+PyDZGhbDBuNavb2YqIiIh0cs6xfft21qxZz2uvrWfTpn3A0WRn
H8+ECZcRCuX4XaIMkBEVLvitpKSE8vJyFi9ezKJFiw7Y/sUvfpGbb76ZZ599llAoxLe+9a0uYyqs
XLmSRYsWcfXVV/ONb3yDxYsX93icaDRKJBIBYNy4cbzwwgucfvrpPPTQQ3znO9/pd50iI8Vg3GpW
t7MVERGRdBcOh9m0aRPvvLOeZcs20NCQg3MfpqDgAkpKpmKmq/HTgcKFFFu0aBF79+4lJyeHWCzW
ZVtjYyNjx47tuLvDQw89xPnnnw9Aa2sr11xzDf/xH//Bddddx6xZs/jVr37FDTfccMAxLrroIm67
7TZ++9vfMm/ePILBIKeffjoPP/wwubm5/a5TRERERETkYPbu3cu6det54431vPtuDbHYFAKBDzN+
/GxKSsb6XZ74QOFCCiRfJ1ReXk55eXmP2+666y6+/e1vc9NNN3HmmWdy1VVXsW/fPgC++93vUlpa
yte+9jUAHnzwQc4++2zOO+88pk+f3uV4ZWVlLF68mFtuuYXvfOc7jBo1irlz5/Liiy9yySWXMG3a
NM4777wjrvNwXq+IiIiIiIx8zjk++OADVq16j5dfXsOWLU3Ah8nLO4nCws+TkZHld4niM4ULKbBp
06Ye1weDwS69Aj772c/y2c9+tse2P/3pT7ssz5gxg127dvV6zNNPP51XXnnlgPUHu4tDX+u89957
O+bPPPNMqqur+7QfEREREREZOZxz7Ny5k3feeY+XXnqfmpoIZscxZswllJZO0Y+O0sWwDheSB1I7
s/RMFlQsAA5vILVU7ENERERERGQkcM5RV1fXEShs3x4DjmPs2MspLZ2sQEF6NazDhVQEAAoRRERE
REQknTnnqK2tZeVKL1CorXXAcYwbdwUlJZMUKEifDOtwQURERERERA5f+y0j33nnfV566X3q6gwv
ULiSkpIiBQpy2BQuiIiIiIiIpAHnHNu2bWPlSi9Q+OCDIHAc48dfRUlJoQIF6ReFCyIiIiIiIiOU
c46ampqOQGHXrhBmxzFu3NWUlBylQEFSRuGCiIiIiIjICOKcY+vWrR2Bwu7dWcBxTJjwRUpKJipQ
kAExbMKF0tJS/UcwDJSWlvpdgoiIiIhIWtq5cyevvrqCl156nz17cggEjmP8+GsoLZ3od2mSBoZN
uFBVVeV3CSIiIiIiIkOKc47NmzezZMmrLF9eC3yCCRO+TFmZAgUZXMMmXBARERERERFPLBZj9er3
+MtfXmXDhhjZ2acxdepcAgF9xRN/pORPnpldANwJBIB7nHN3dNv+BeDWxOJ+4Abn3LupOLaIiIiI
iEi6aG1t5Y03VvDUU6/zwQfjGT36HMrKjtYl5OK7focLZhYAfgGcA2wHlpvZn51za5OabQJmO+fq
E0HEb4FT+3tsERERERGRdLBv3z5efvl1nnlmJS0tH2L8+KspL5/kd1kiHVLRc+FkYINzbguAmT0C
XAp0hAvOuWVJ7ZcBxSk4roiIiIiIyIi2fft2nn/+VZYurcS5Eyks/EcKCwv8LkvkAKkIF4qBrUnL
NXiBQ2+uBxan4LgiIiIiIiIjjnOO9evX8/TTr7Jq1T5CoVOZPPkSMjKy/C5NpFeDOtqHmZ0FzAM+
ebB2CxYs6JifM2cOc+bMGdC6REREhpqKigoqKir8LkNERAZRJBLhnXdW8ec/v0Z1dYjc3NMpKTmO
QCDod2kih5SKcGEbUJK0PCWxrgszmwHcDVzgnNt7sB0mhwsiIiLpqHu4vnDhQv+KERGRAdXU1MRr
ry3nL39ZTn19MWPGXExZWakGaZRhJRXhwnLgaDMrBXYAc4GrkxuYWQnwBHCNc64yBccUEREREREZ
1nbt2kVFxTKee241bW0fZeLE6ygrm+h3WSJHpN/hgnMuZmY3Ac/ReSvKNWb2dW+zuxv4ATAOuMu8
+C3inDvYuAwiIiIiIiIjjnOO6upqnn32VV57rQazkygquonMzHy/SxPpl5SMueCcWwIc023db5Lm
vwp8NRXHEhERERERGW7i8Tjvvfc+f/3rq6xbFyYz8zSmTPkcwWDI79JEUmJQB3QUERERERFJJ845
1q5dx0MPPU91dR6jRs2mtPQYjacgI47CBRERERERkQGwY8cOHnvsWVasaKKg4ALKyo5WqCAjlsIF
ERERERGRFGpoaOCvf/1fnn++klBoDuXlMzEL+F2WyIBSuCAiIiIiIpIC4XCYioq/8+STy4lETqK4
+BtkZGT5XZbIoFC4ICIiIiIi0g/xeJwVK97m4Ycr2LOnnKKifyQ7u8DvskQGlcIFERERERGRI1RZ
Wcnvf/8sGzfmMGHCXMrKiv0uScQXChdEREREREQO086dO3n88edYtmwPo0Z9mvLyj2iwRklrChdE
RERERET6qLGxkcWLX2Tx4rUEg5+irGwWgUDQ77JEfKdwQURERERE5BAikQivvPIajz32Gq2tH2fy
5JsIhXL8LktkyFC4ICIiIiIi0gvnHKtWvcvvf/+/1NUVU1T0VQoLx/ldlsiQo3BBRERERESkB1u2
bOHhh5/l/feNceM+S3l5qd8liQxZChdERERERESS7N69mz/+8XlefnkHubnnUl5+vAZrFDkEhQsi
IiIiIiJAc3Mzzz23lL/+9V3gdEpKriAYDPldlsiwoHBBRERERETSWjQaZdmy5TzyyMs0NX2USZNu
JDMzz++yRIYVhQsiIiIiIpK2nHP85Ce/Ze3a0RQWzmPChIl+lyQyLClcEBERERGRtFVXV8eGDVGm
Tfui36WIDGsBvwsQERERERHxy/r1G3Fuut9liAx7ChdERERERCRtrVhRSX6+wgWR/lK4ICIiIsOK
mV1gZmvNbL2Z3dpLm5+Z2QYzW2lmJyatrzKzd8zsbTN7Y/CqFpGhqK2tjfff38aYMWV+lyIy7GnM
BRERERk2zCwA/AI4B9gOLDezPzvn1ia1uRCY7pz7kJmdAvwKODWxOQ7Mcc7tHeTSRWQI2rJlC7HY
ZDIysvwuRWTYU88FERERGU5OBjY457Y45yLAI8Cl3dpcCjwA4Jx7HSgws8LENkPnPyKSsGZNJWa6
JEIkFfSPq4iIiAwnxcDWpOWaxLqDtdmW1MYBz5vZcjP76oBVKSLDwhtvbGTMGIULIqmgyyJEREQk
nZzhnNthZhPxQoY1zrlX/C5KRAZffX0927Y1U1Iyye9SREYEhQsiIiIynGwDSpKWpyTWdW8ztac2
zrkdiccPzOyPeJdZHBAuLFiwoGN+zpw5zJkzp/+Vi8iQsnFjJc5Nw8z8LkVkyKqoqKCioqJPbRUu
iIiIyHCyHDjazEqBHcBc4OpubZ4CbgQeNbNTgX3OuTozywUCzrlGM8sDzgMW9nSQ5HBBREamd96p
JDv7Q36XITKkdQ/YFy7s8Z9NQOGCiIgMAc454vE40WiUaDRKLBbrmO/rFInEaGuLEg5HOx4BfvOb
R4nF4oljOJxzxGLxjvl43PW4PXk5uU37cjzeuQ/G+/wGphHnXMzMbgKewxs76h7n3Boz+7q32d3t
nHvGzC4ys41AEzAv8fRC4I9m5vDOgX7vnHvOj9chIv6Kx+O89dYmxo493+9SREYMhQsiIpJS0WiU
pqamLtP+/Y3U1zexZ4837dvXBAY33ngHkUiUSCSKc4ZZRsfk/ROVAQST5r3JuZ4fA4FcAoGMxBSE
SbBq1YxEl1fDzPDuZGiHWBfosj15nZkRDHY+Z//+bcAtg/wupzfn3BLgmG7rftNt+aYenrcZ+PjA
Viciw8H27dtpbh7FhAmj/S5FZMRQuCAiIgflnKOlpeWAwKChobEjLNi71wsMGhqaaGmJEgjk4fU6
z8O5POLxPILBUYRCRWRm5hEK5cHoGxgz5hsdYYD3ZT31Jk48dkD2266lJWdA9y8iIqm3fn0lzuku
ESKppHAqw5IWAAAgAElEQVRBRGQEi8VihMNh2traaGtr63W+uTlMc3Mbzc1tNDWFAbj99l+xb18T
+/c341wWgYAXFoAXFjiXT2bmJEKhvI7AYPz4PILBrD4PjhUK5Q7cixcREenFihWVjBo12+8yREYU
hQsiIkOIc45IJEI4HO5xAli69CVaW9toavKCgObmNlpavICgpaWN1lZvPhxuIxp1mGVhlolZJpAF
ZOKcN+9cJs5524NBLxgIBjOhEJqaLic3N4+CglzvEgMREZERoLW1lbVra5k8udTvUkRGFIULIiIp
4JwDoKGhoddgoLU1TFOTNzU2hhPBQPu6VlpawrS2thGPBwkEsjDLwgsDvMm5LCiFe++NYJZFMDiK
jAwvDPCmzvkxY7x5s+AR32IrP78oZe+PiIjIUFFVVYVzUwkGQ36XIjKiKFwQEekmHo/T2tpKc3Mz
LS0tNDc3d8zv399MfX0Le/c2U1/fzP79LTQ0NNPY2AIl8M1v/rbHUMC5LOLxLDIy8gkGxydCgayO
x1Aoi+xsLxA4VC+BsrJzBuNtEBERGZHee28jZhpvQSTVFC6IyIgWj8dpbm4GvF8q2oOC5mYvFKiv
b2Hfvq5BQXNzGMgiEMgFcoBc4nHvEXIJhcYQCuUSCuWSkZFDbm4uBQU5wA8pKfln316riIiIHNry
5ZWMHTvL7zJERhyFCyIy7DjnaG1tpampicbGxo6pvr6RXbsa2b27kb17vamhoRnIgVL4l395EcjF
uRzi8dzEZQVHJYKCHEKhXMaMyWXChOwBu3OBiIiI+GfPnj3U1UUpKTnK71JERhyFCyIyZEQikS5h
QWNjIw0NXliwe3cje/Z4gUF9fRPRaJBAIB/wpnjce8zMHE9mZj6Zmfnk5OQzenT7YIS3MHXqPH9f
oIiIiPhq48ZKYPoRj0ckIr1TuCAivtm1axcA8+f/jPr6JlpaYgQC+Zh1BgZdb3fohQZFRfkahElE
REQO29tvV5Kd/VG/yxAZkRQuiMiga2tr429/e5nHH18BUyEe/wLjx+cTDGbplwQREREZELFYjJUr
qxg79hK/SxEZkRQuiMigcc6xdu067r9/CbW1U5k06QbgVnJzJ/hdmoiIiIxwNTU1hMNjyczM87sU
kRFJ4YKIDIq9e/fy2GOL+fvf9zB27KWUlZX7XZKIiIikkfXrK3FOt6AUGSgKF0RkQEWjUZYu/TuP
Pvo68fjplJVdlRhgUURERGTwLF9eSUHBp/0uQ2TEUrggIgNm48aN3HvvM9TUFDJp0tfJzi7wuyQR
ERFJQ83NzWzcuIspU6b4XYrIiKVwQURSrr6+nscfX8LSpbUUFFxEefmH/C5JRERE0timTZuAUgIB
ff0RGSj6r0tEUiYWi/HKK8t4+OG/E4mcTGnpZ3XLSBEREfHd6tWVBAIab0FkIClcEJGUqKqq4r77
nmbTpjFMmnQ9OTnj/C5JREREBOccb75ZybhxZ/hdisiIpnBBRPpl//79/OlPz/HCC9Xk519AeflH
MDO/yxIREREBYNeuXezZE2Dq1PF+lyIyoilcEJEjEo/Hee21N3jooZdoaZlJScmNBIOZfpclIiIi
0sXGjd4tKPXjh8jASkm4YGYXAHcCAeAe59wdPbT5GXAh0ARc55xbmYpji8jg27p1Kw888DTr1uVQ
WDiPiRMn+l2SiIiISI9WrNhIbu5Mv8sQGfH6HS6YWQD4BXAOsB1YbmZ/ds6tTWpzITDdOfchMzsF
+DVwan+PLSKDq7m5maeeep4lSzaSk3Me5eXH61eAYSbu4rTFIrTFwrTF2rzHeJhI3JuPxNuIuDbg
BJbzSuJZlvj/zs+6fb7r53947bCP8I5bkVjnutTpXOey676t23Lyc5Of5x3jo7zFMowAhmEWIEAA
MyNgAcASywECZt6SJbXtcV3i+Yl9NoYbIBZERESGnmg0yqpV1UyceIXfpYiMeKnouXAysME5twXA
zB4BLgXWJrW5FHgAwDn3upkVmFmhc64uBccXkQHmDYT0Fg888DcaG09gypSbyMjI8rusISvuHNF4
hLZYG+Fo55f3cCxMpP2LfNybj7o2b53z5qMuTJTEPGFihInhzcctDHyKn9s8YtZG3MLErY14IIxL
PMYDYVygDZd4JBjGBb1Hgm0QjEA8EywTLAsLZGIuCywTC2QRcFkYIXDwAvPB2r+sJ39pd4n/T1p3
kHad27oHA46/2tc6d5EUSmCA6yGQ6G25va112w+whG+CxcHi3vEtDsRx5oB4or44zuJezYm24Hpf
l7y+wMHOjyIiIkNPdXU10ehRhEI5fpciMuKlIlwoBrYmLdfgBQ4Ha7MtsU7hgsgQt337dn73u6dZ
vTrIUUddw/jxRYN6/LhztEZbaGproiXWREu0iZZoM61xbzkc96Y2mmlzTbTRRIQmItZE1JqIBZqJ
BZrBZnIH5ya+YMZ7eIwlfWmM9zAf6/Kc5MklthEYxcJgtvcl3oJgWZD85d2yElMmAcsiYFkYiXmy
CJBJEO8LfjAx3z5lMZoMl0WdraSET5Hhssggk5BlkeEyCeE9ZrosQi6TUOIxy2WRGc8iZJlkB7LI
iIcIBA0O8UP7QjNu694LIMUWmvG9QTjGdwf4GPv2beG/J5UN6DFEROTIrF3rjbcgIgNPAzqKpBnn
oKEB6uo6p9raA5d37nQ0NIRpbc0nELiWUCiEmWEGgQCYdU7Jy73N97StdcxK+Mip/L/AJcQCTcSC
TcSDTbiMJuIZTRBq9ibLgkAeFs8jYLkEAnkEXB5B86YMyyPD5ZJBHpnkkUchWeSRSS5ZLo9Ml8tL
9kM+yXzMJbq19/RIkED7MgECLtDRjT7gAgQDwaS2nf9rb/tLm8atbh+ZLpNAIOCNQhNK7ee30L7J
pe6l1O5URERkhFq+vJIxY/6P32WIpIVUhAvbgJKk5SmJdd3bTD1Emw4LFizomJ8zZw5z5szpb40i
I1r3wKCnsCB5ORiEoiIoLOyciopg5szO5XHjovz+90+yejVMmHAeOTkTcM47VjzOYc33tq05OJFK
Z8x0XyXL5ZHj8sh2eeTE88h1ud5jPJeMjGC//7Z6yS7mDHduat7w3th+sl32wB5D0kZFRQUVFRV+
lyEiMmw1NjZSVbWPkpJiv0sRSQupCBeWA0ebWSmwA5gLXN2tzVPAjcCjZnYqsO9g4y0khwsi6S4W
g23bYMsWb6qqgurqAwODjIwDw4LCws7AIDlMyMvry5FDLFw4l+XLV/DAA4tobPwExcWzCQZT+VN8
MYvtNc52n0nhPkVGhu7h+sKFC/0rRkRkGKqsrATK8cafF5GB1u9wwTkXM7ObgOfovBXlGjP7urfZ
3e2ce8bMLjKzjXi3opzX3+OKjBRtbbB1a2dwkBwibNkC27fDhAlQWupNZWVw4okwaVLXMKFvgcHh
CQQCnHLKLI477iM88cQS/va3XzF27MWMHTst9QcTERERSaFVqyoJhTTegshgScmYC865JcAx3db9
ptvyTak4lshw09zs9TToKTjYsgV27oTJk73QoD1AmD0brrnGm586FbJ8vjHDqFGjuO66KznttPXc
e+9TbN5cQnHx+WRmDkCiISIiItJPzjlWrKhk7Niz/C5FJG1oQEeRfmhshB07uk7btnWGB1VV3lgI
JSWdvQ5KS+HCCzvnJ0/2LmkYDo455sP86EdlPPdcBU8+eReh0DkUFZ2IWffbBIqIiIj4p66ujvr6
bEpLx/pdikjaGCZfaUQGj3Owd++BoUFPUyzmXZ6QPBUXw0kndfZCKCz07owwUmRmZnLxxedx0kkz
eOCBv7B69TsUFl5MXt5Ev0sTERERAWDDBt2CUmSwKVyQtBGLwQcfHDowqK2F7OwDQ4MpU2DWrK7r
Ro/2bquYjoqKivjOd77CsmXL+d3v7mXPnlkUF3+KQEB/rYiIiIi/3nxzI/n5p/pdhkha0bcAGRGa
m73LEZKnmpquy3V1UFBwYGhwzDFw1lmdy0VFkJvr9ysaHgKBAKeffgrHH38sf/jDYpYubR/wsdzv
0kRERCRNtbW18f772ygsLPO7FJG0onBBhjTnYNeuQwcHzc3e2AXFxV4Pg+JiKC+HT36yc92kSZCZ
6fcrGplGjx7NV75yFaefvpZ77/0TVVXlFBefRyiklEZEREQG15YtW4jFJpGR4fOI2CJpRuGC+CYc
9m6zuH1776HB9u1eL4Li4q7BwSmndF03fnz6Xp4wlBx77Ef4l38p59lnK/jTn+4iM/NcCgs/pgEf
RUREZNCsWVOJ2dF+lyGSdhQuSMrF497YBu3hQHJQkPzY0OD1Jpg82Zvag4OZMztDg8mTdYnCcJOV
lcVnPnM+J510Avff/xfWrHmHoqKLyc0d73dpIiIikgaWL69kzJjL/S5DJO0oXJDDsn9/72FB+2Nt
rTe2QXFx56UKkyfDySd3XTdhwsi6i4J0NXnyZG699au89tob/O5397B79ykUF5+hAR9FRERkwNTX
11NT00RJySS/SxFJOzrLF8Ab22DfPti69cCppqYzOIjHOy9HaA8Kpk+HT32qc3nSJMjSJW6CN+Dj
GWecyvHHH8tjjz3Dyy//mnHjLmHMmFK/SxMREZERaOPGSmCaLskU8YHChTTR1NRzcNA+VVd7vQhK
SmDq1M7p7LM7L1eYPDm9b70oR66goIDrr5/LGWesZdGiJ6iqOpri4k8TCuX4XZqIiIiMIKtWVZKZ
qfEWRPygcGEECIe9XgU9BQbt8y0tXkgwdWpngHDyyXDFFZ1BQkGB369ERjIz47jjjuVf/3Uaixf/
jT//+ZdkZ58HRX5XJiIiIiNBPB5nxYpNjBt3vt+liKQlhQtDnHOwZ48XFGzZ4k3t89XV3rRnj3cp
QnKPg+OOg/PP71yeMEE9DmRoyMrK4rLLLmTWrBncd99fIAqbN7+Y6L5omBlmgY75Qz32tS0ToaGh
hoyMbILBLDIysgkEMtRtUkREZITYsWMHzc2jmDBhtN+liKQlhQs+i0a98Qx6Cg/a5zMyvN4GpaXe
VFLi9TooKfGmoiIIBv1+JSKHp7i4mNtu+xrf/5cbmDfPiMcd8XiceNzhnEsse/PRaNf13bcnz8di
8QO2OedgF4wd+wzNzWGam1tpbg4TicQxy8YsC7NsIAvIxrksnMsmHs/qEkZkZBy4HAiEFFCIiIgM
AevWbcS56X6XIZK2FC4MsKamzh4GPYUHO3bAxImdoUFpKZxwAlx8cec6Xa4gI1UgcbuQOXPmDPix
blr4RX7wg691WReNRgmHw7S2thIOh7vMt7a20toaprFxP42Nu9i/v5WmpjCNjV4w0dTUSktLmLa2
WGc4UQpbt/4aSA4brMujmeFcz9v61L4Etm59oLO14YUnSctw4LrDbUMJVFc/Tjyeh1k+mZl5ZGbm
Ewp5j5mZebrzh4iIDCkrVlQyatRsv8sQSVs6M+ynSMQLCzZtOnDassULF6ZO7RoenHtu5/yUKZCZ
6ferEElPGRkZZGRkkJeXd8T7iMViHWHEvT//Jj/+8aVdvqS3zx9s3eG0X/Q7+O53z+jY1r3XRE+9
KI6kzaJ74VvfOobGxkYaGprYtWs3e/Y0sXdvI/v2NbFrVxOxWIhAIA/IB/KIx/NxrjN8SA4jgsHQ
AccUERFJldbWVtaurWXyZN2RSsQvChf6YO/erqFBZWXn/LZt3ngH06Z50/Tp8LnPQXm5Fx4cdZTG
OhAZyYLBILm5ueTm5gIwadLA31d7+vTB6fJ5wgkn9LrNOUdrayuNjY00NTV1PNbXN7Jnzzb27Gli
z55G6uubqK1tJBoNYJaPmRdGxON5UAbV1a9gFiQQyEhMnfN9Xe+NuyEiIumsqqoK56YqzBbxkcIF
vHEPtm49MDhoX45GvdBg+nQvQDjxRO8uC9OmeQGCeh6ISLoxM3JycsjJyWHixIkHbeuco62t7YAg
4r5n4KqrWgmHo4TDUSKRGG1t3nw06s23tXnrIxFvvn19JOLNRyJRnDMgiFkGZhkd85ABJVBTcy/O
BYDgAZNzAZxrn/cmMy+w8IKL4AGP3bc1Ne2EsQP7fouIyMG9/34lZhpvQcRPaRcuvP46LF3aNUio
qfEGRWzvfTBtGlx+eWeYMH68eh+IiBwpMyMrK4usrCzGjx/fueEZOP/8c/u1b2/QzjixWIxoNEo0
Gu0yv+juG/jBD84mFot1mdqf09P6SCRGNBpJhB0xotF4IsiIdTxGIjFisXjHOtr6+SaJiEi/vPHG
RsaOnet3GSJpLe3ChY0boa4OZsyAyy7r7H2QleV3ZSIicrjMjGAwSDAYJLOXbmSlpQN//e13F14/
4McQEZGe7dmzh7q6CCUlR/ldikhaS7tw4Ytf9CYRERERERn+Nm6sBKbr1tAiPtMoWCIiIiIiMmy9
/XYl2dlH+12GSNpTuCAiIiIiIsNSLBZj5coqxo6d5ncpImlP4YKIiIiIiAxLNTU1hMNjyczM87sU
kbSncEFERERERIal9esrcU63oBQZChQuiIiIiIjIsLR8eSWjRytcEBkKFC6IiIiIiMiw09zczMaN
uygomOp3KSKCwgURERERERmGNm/eDJQSCGT4XYqIoHBBRERERESGoXff3UggoEsiRIYKhQsiIiIi
IjKsOOd4881Kxo1TuCAyVChcEBERERGRYWXXrl3s3m3k5Iz3uxQRSVC4ICIiIiIiw8rGjZXA0ZiZ
36WISILCBRERERERGVbeequS3FxdEiEylChcEBERERGRYSMajbJqVTVjxpT7XYqIJFG4ICIiIiIi
w0Z1dTWRyERCoRy/SxGRJAoXRERERERk2Fi7thLndEmEyFCjcEFERERERIaNN9+sZMyYo/0uQ0S6
yfC7ABERERERkb5obGxk8+Z9lJQU+12KDCDnoKnJezTrnAKBgy8PBc51PrZPybWOZAoXRERERERk
WKisrATKMVMH7JGgrQ127/amXbu6PoZC3hfy9i/o8XjXL+zdl+HwgojkL/vd95O8fLjb2iUfq71N
KORNGRmd8z2tO9T2nta1tGQQjw/O59YbhQsiIiIiIjIsrFpVSSik8RaGE+egoaEzOEgOEZqbYdw4
mDABxo+HD30ITj3VW87KOvzj9DWISF6Grj0fkkOB7r0i+rqtJ/E4RCKdUzTadbm39U1NXdf19Lxo
FMLhYzn55B2H/wGlkMIFEREREREZ8pxzrFixibFjz/K7FOnBwXohZGV1BggTJnghwoQJUFDg9SBI
heQv9sFgavaZSoGA9z4cbmjSVzt2vMu4ca0Ds/M+UrggIiIiIiJDXl1dHQ0NWZSUjPW7lLTlHOzf
39kDoS+9EMaPh+xsvyuXwaBwQUREREREhrwNG3QLysESicCePQcGCLt2eb+8t/dAGKheCDI8KVwQ
EREREZEhb8WKSvLyTvG7jBGj/Y4M3cODXbu83gljx3YGCNOnwymnqBeCHJzCBRERERERGdLa2tp4
770aCguv8ruUYScWg717e+6FYNZ1LISyMu9x7Fj1QpDDp3BBRERERESGtC1bthCLTSIjY4BGwxuG
nPMGUWyfwmFv2reva4iwb593yUJ7gDB1Kpx4ojefm+v3q5CRROGCiIiIiIgMaWvWVGJ2tN9l9Itz
3lgG4XDXQKCnx77MRyKQkeGNgZCZ6U1ZWZ1BwowZXoAwbpzXTmSg6Y+ZiIiIiIgMacuXVzJmzOV+
l3FYIhGoroaqKm/avt27RWJ7CJAcCHSfz8vzQoHetmdlQSikSxdkaOlXuGBmY4FHgVKgCvi8c66+
W5spwANAIRAHfuuc+1l/jisiIiLpy8wuAO4EAsA9zrk7emjzM+BCoAm4zjm3sq/PFZGhpb6+npqa
JkpKivwu5aCiUaipgc2bvTBhxw4oKvLGMTjrLO9yhFDI7ypFBk5/ey7MB15wzv3EzG4FbkusSxYF
vu2cW2lm+cAKM3vOObe2n8cWERGRNGNmAeAXwDnAdmC5mf05+bzCzC4EpjvnPmRmpwC/Bk7ty3NF
ZOiprKwEpuH9Jzx0xGKwbVtnmLBtGxx1lBcmfOpTUFLi9TIQSRf9DRcuBc5MzN8PVNAtXHDO1QK1
iflGM1sDFAP6h1xEREQO18nABufcFgAzewTvfCT5vOJSvF6TOOdeN7MCMysEyvvwXBEZYt55p5LM
TP/HW4jHvUsb2sOEmhpvbIOyMjjtNCgt9S5XEElX/Q0XjnLO1YEXIpjZUQdrbGZlwMeB1/t5XBER
EUlPxcDWpOUavMDhUG2K+/hcERlCGhrivPZaDePGnT/ox47Hoba2M0zYuhXGjPHChFmz4HOfg5yc
QS9LZMg6ZLhgZs/jjZfQsQpwwPd7aO4Osp984HHgn5xzjQc75oIFCzrm58yZw5w5cw5VpoiIyIhS
UVFBRUWF32WMFHa4T9C5iIi/6uvhJz+BX/wCWlpuJBrNJCsLsrM7p+Tl7tt6Wn+owQ+dg7q6zjCh
uhpGjfLChBNPhMsv160bJf0czvnIIcMF59yne9tmZnVmVuicqzOzImBnL+0y8IKFB51zfz7UMZP/
QRcREUlH3b/QLly40L9ihpZtQEnS8pTEuu5tpvbQJrMPzwV0LiLil7Y2+PWv4V//FS66CF56aR93
3nk/U6Z8k7Y2o7WVLlM43DlfXw87d3JAm/Z2GRm9BxBNTV6gkJvrhQknnACXXAL5+X6/IyL+Opzz
kf5eFvEUcB1wB3At0FtwsAh43zn33/08noiIiKS35cDRZlYK7ADmAld3a/MUcCPwqJmdCuxL/BCy
qw/PFREfOAePPQbf/S4ccww8/zzMmAHOjWXcOEdb215ycsYd8WUIznnBRfdAon2aOhUuuABGj07t
6xJJJ/0NF+4AHjOzfwC2AJ8HMLNJeLecvNjMzgC+CLxrZm/jXTrxXefckn4eW0RERNKMcy5mZjcB
z9F5O8k1ZvZ1b7O72zn3jJldZGYb8W5FOe9gz/XppYhIQkUF3HKLN8bBb38LZ5/duc3M+MQnplFR
sYmcnHFHfAwzr4eCBlwUGTj9Checc3uAc3tYvwO4ODH/dyDYn+OIiIiItEv8QHFMt3W/6bZ8U1+f
KyL+WL0a5s+H99/3LoO46qqex0U4/vhpPP/8GuCkQa9RRPpuaN0sVkRERERERrSaGvjKV+Ccc+Dc
c2HNGrj66t4HXCwvLweqcC4+qHWKyOFRuCAiIiIiIgOuvt4bU+FjH4OjjoJ16+Cb3zz0pQqjRo1i
6tRR7N+/Y3AKFZEjonBBREREREQGTDgM//3f8OEPQ20tvPMO/Pu/w5gxfd/HSSdNY9++TQNXpIj0
m8IFERERERFJuXgcHnkEjj0WnnsOXngBFi2CKVMOf18f+cg0QOGCyFDW37tFiIiIiIiIdPG3v3l3
gDCDe+6Bs87q3/5KS0sxe5xYLEIwGEpNkSKSUuq5ICIiIiIiKfHuu3DRRfDVr8L//b/w+uv9DxYA
srKyOOaYIurrq/u/MxEZEAoXRERERESkX7ZuhXnzvLs/XHCBdweI3m4teaQ+8Ylp7N+vSyNEhiqF
CyIiIiIickT27YP58+HjH4dJk2D9erj5ZsjMTP2xPvShaZgpXBAZqhQuiIiIiIjIYYlE4L/+y7sD
xAcfeHeA+Ld/g4KCgTtmcXExWVl7iESaB+4gInLENKCjiIiIiIj02ZYtcPXVkJvrDdx4/PGDc9xg
MMiMGaW8++5mjjrqo4NzUBHpM/VcEBERERGRPnniCZg1Cy6/3Lu95GAFC+0+/vFptLTo0giRoUg9
F0RERERE5KBaWuCf/xmWLIG//AVOOcWfOqZPn4bZ6/4cXEQOSj0XRERERESkV2vWeGHC7t3w9tv+
BQsAEydOpKAgQkvLXv+KEJEeKVwQEREREZEDOAeLFsHs2d4dIB55ZGAHbOwLM2PmzGns3atLI0SG
Gl0WISIiIiIiXTQ0wD/+I6xaBRUV8NEhNH7iCSdM48UXNwCf8LsUEUmingsi8v+3d+/xUZUH/sc/
zySEcBMSJFykXAa8AEaB0JZaW7IWXddLbbu/9WVtvba2Vmtbu9XVX7srurv2uv7WbVf7a3Wr3W0r
Vavipd4q8V4FFQEVtCD3S1QCKJAEMs/+MYFGGq5DcjIzn/frldecOXOG802nhCdfn/McSZKkHWbP
hokT4aCD4Pnnu1axAJBOp4nxTWKMSUeR1IblgiRJkiQyGbjuOjjpJPjud+GnP83ebrKrOeiggxg6
tBfvvbcm6SiS2vCyCEmSJKnIvfUWnHtudtHG556DkSOTTrR7NTVp7r13MX36DE46iqRWzlyQJEmS
itjMmTBhAlRXw5NPdv1iAWDMmDQxLko6hqQ2nLkgSZIkFaFt2+Caa+Cmm+CWW+CEE5JOtPeGDx9O
CHfS0rKVkpJuSceRhOWCJEmSVHSWL4czz4QePeDFF2HQoKQT7Zvy8nIOPXQgq1cvp6IinXQcSXhZ
hCRJklRU7rkHJk2Ck0+GBx/Mv2Jhu0mT0mzcuDjpGJJaOXNBUqerW1JH3ZI6AKYMn8K0umkA1I6o
pXZEbWK5JEkqZI2NcPnlcO+9cPfd8JGPJJ0oN4cemiaEh5KOIamV5YKkTmeJIElS51q4EM44A0aN
gpdegn79kk6Uu6FDh1JW9g5bt26hW7ceSceRip6XRUiSJEkF7Je/hGOPhQsvhNtvL4xiAaCkpITq
6mGsX/9m0lEk4cwFSZIkqSC9+y5cfDHMng2PPZa91WShmTAhzezZi4GxSUeRip4zFyRJkqQC8+KL
UFMD3bvDrFmFWSwAjBqVBlzUUeoKLBckSZKkAtHUBN/7Hpx4IlxzDfz859CrV9KpOk5VVRV9+zbT
2Lg+6ShS0bNckCRJkgrAAw9kZyg88ww891x2AcdCF0JgwoSRNDQ4e0FKmuWCJEmSlMf+9Cc45RS4
9FK4/nqYMQNGjkw6Vec56qg0W7daLkhJs1yQJEmS8tB778GVV8LkyTBlCsybB3/zN0mn6nzpdJoY
F/xkO/QAABznSURBVBNjTDqKVNQsFyRJkqQ8EiP86ldwxBGwalW2VLjsMigrSzpZMvr27cuQIT3Y
tGlt0lGkouatKCVJkqQ88dJLcMkl0NgIt98OH/lI0om6hpqaNPffv5jevQclHUUqWs5ckCRJkrq4
t9+GCy/MXvZw3nnw/PMWC22NGZO9NEJScpy5IEkCoG5JHXVL6gCYMnwK0+qmAVA7opbaEbWJ5ZKk
YrZtG/z0p9nbSp55JixYAP36JZ2q6xkxYgRwF5nMNlIpf8WRkuDfPEkSYIkgSV3NzJnwta9BVVV2
e9y4pBN1XT169GD06AHU16+gX78RSceRipLlgiR1cc4okKTismwZfOtb2UsfrrsOPv1pCCHpVF1f
TU2a6dMXWy5ICbFckKQcdMYv/pYIklQctmyBH/0Irr8+O2Ph1luhR4+kU+WPww8fBTwCHJd0FKko
WS5IUg78xV+SlKsY4e674ZvfhEmT4IUXYPjwpFPln6FDh1Ja+hZbt26hWzdbGamzWS5IkiRJCXn1
Vfj612H1arj5ZjjO/+i+30pLS6muHsaCBUsYMGBM0nGkomO5IKlguVaBJKmr2rABpk2D//kf+Kd/
gq98BUodmedswoQ0L764GLBckDqbP8IkFSxLBElSV5PJwC23wLe/Daeemp25MGBA0qkKx+jRaeD2
pGNIRclyQZIkSeoEL78MF1yQnaFw331QU5N0osIzcOBA+vTZQmPjBsrL+yYdRyoqqaQDSJIkSYVs
yxa44go44QS48EJ4+mmLhY4SQmDixDQNDYuTjiIVHcsFSZIkqYM89hhUV8OSJTB3Lpx/PoSQdKrC
Vl2dprnZckHqbF4WIUmSJB1g69bBt74Ff/gD3HADnHxy0omKx6hRaWL8AzFGgk2O1GmcuSBJkiQd
IDHCbbfBuHHQpw/Mn2+x0Nn69evH4MHd2bSpPukoUlHJaeZCCKECmA4MB5YAp8cYN+zi2BQwG1gR
Y/xkLueVJEmSupply+Cii2DpUrjrLpg8OelExaumJs3vf7+Y3r0HJh1FKhq5zly4Ang0xng48Bhw
5W6O/Trwao7nkyRJkrqUlhb4j//ILtI4eTK88ILFQtLGjk0To+suSJ0p13LhNODW1u1bgU+1d1AI
YShwEnBTjueTJEmSuox58+CjH4U774SnnoLvfAfKypJOpZEjRwLLyGRako4iFY1cy4WqGONagBjj
GqBqF8f9P+AyIOZ4PkmSJClxjY3ZIuG44+ALX4CZM+Hww5NOpe169OjBqFH92bhxRdJRpKKxxzUX
QgiPAG0vVgpkS4LvtHP4X5QHIYSTgbUxxjkhhNrW9+/WtGnTdmzX1tZSW1u7p7dIklRQ6urqqKur
SzqGpHY8/jh86UvZW0zOnQuDByedSO2pqUkzffpi+vUbnnQUqSjssVyIMR6/q9dCCGtDCANjjGtD
CIOA9pZk/SjwyRDCSUAPoE8I4ZcxxrN39ee2LRckSSpGO5frV199dXJhJAGwfj1cfjn8/vfwk5/A
aaclnUi7c9hhaUKYCfxV0lGkopDrZREzgHNbt88B7tn5gBjj/40xDosxpoEzgMd2VyxIkiRJXUmM
cMcd2dtLlpZmby9psdD1DRs2jNLStWzb1ph0FKko5HQrSuD7wG9DCOcDS4HTAUIIg4GfxxhPyfHP
lyRJkhKzciVcfDG8/jr89rfZxRuVH0pLSxk3bihvvLGUgw92QQypo+U0cyHGuC7GODXGeHiM8YQY
4/rW/avbKxZijI/HGD+ZyzklSZKkjpbJwA03wPjxMGECvPSSxUI+mjAhzaZN3pJS6gy5zlyQJEmS
Csqrr8IFF2S3H38cxo5NNo/23+jRaeB3SceQikKuay5IkiRJBaGpCaZNgylT4POfhyeftFjId4MG
DaJXr000NW1MOopU8CwXJEmSVPSeeip7+cOcOdlLIL7yFUg5Us57qVSKiRPTNDR4aYTU0fyRKUmS
pKL1zjvwxS/CGWfAP/8z3HUXDB2adCodSEcdlaapyXJB6miWC5IkSSo6McIvf5m9vWTPntl1Fv72
byGEpJPpQBs1Kg0sJsaYdBSpoLmgoyRJkorKwoVw0UWwfj3cdx9MmpR0InWkiooKqqq6sXnzW/Tq
VZV0HKlgOXNBkiRJRaGxMbtg40c/CqeeCs89Z7FQLGpqXHdB6miWC5IkSSp4M2fC0UfD3LnZRRu/
8Q0odQ5v0Rg3Lk0mY7kgdSR/pEqSJKlgvfUW/P3fw+OPw49/DJ/8ZNKJlISRI0cS4wwymRZSqZKk
40gFyZkLkiRJKjiZDNx8c3bBxqoqeOUVi4Vi1rNnT9LpSt59d2XSUaSC5cwFSZIkFZRXX4Uvfxma
m+Hhh2H8+KQTqSuoqUlzxx2L6dt3WNJRpILkzAVJkiQVhC1b4NvfhilT4LOfhWeesVjQnx1+ePaW
lJI6huWCJEmS8t5DD8GRR8Kf/pRdtPGii6DES+vVxrBhwygpWcO2bU1JR5EKkpdFSJIkKW+tWQOX
Xpq9reQNN8CJJyadSF1Vt27dGDPmEN58cyn9+x+WdByp4DhzQZIkSXknk4Ebb4TqahgxAubPt1jQ
ntXUpHnvPS+NkDqCMxckSZKUV+bOzS7YWFICM2dmL4eQ9sbo0WlCuCfpGFJBcuaCJEmS8sKmTXD5
5TB1Kpx/PjzxhMWC9s3gwYPp2fNdmpreTTqKVHAsFyRJktTl3XcfjBsHq1dnL4G44AJIOZLVPkql
Uhx99AjWr38z6ShSwfGyCEmSJHVZb7+dvfPDSy/BTTdlZy1IuTj66DTPPLMIOCrpKFJBse+VJEl5
IYRQEUJ4OISwMITwUAih7y6OOzGEsCCE8HoI4R/a7L8qhLAihPBi65fL/3VxM2bAUUfB8OEwb57F
gg6MUaPSwGJijElHkQqK5YIkScoXVwCPxhgPBx4Drtz5gBBCCvgJ8NfAOOCzIYQj2hxyXYxxYuvX
g50RWvtuwwY477zsLSanT4cf/hDKy5NOpUJRWVnJwQen2Lz57aSjSAXFckGSJOWL04BbW7dvBT7V
zjEfAt6IMS6NMW4Fbmt933ahYyMqV3/4Q3a2Qnk5vPwyfOxjSSdSoQkhUFOTpqHBW1JKB5LlgiRJ
yhdVMca1ADHGNUBVO8ccAixv83xF677tvhpCmBNCuGlXl1UoGZs3wyWXwLnnws9+BjfeCL17J51K
hWrcuDSZjOWCdCC5oKMkSeoyQgiPAAPb7gIi8J12Dt/XC6ZvAK6JMcYQwr8A1wFfaO/AadOm7diu
ra2ltrZ2H0+lffHss3DOOfDhD8PcuVBRkXQiFbp0Og3cT4wZsldTSWpPXV0ddXV1e3Ws5YIkSeoy
YozH7+q1EMLaEMLAGOPaEMIgoL6dw1YCw9o8H9q6jxjjW232/xy4d1fnalsuqOM0NcG0afCLX8AN
N8BnPpN0IhWLXr16MXx4P9avX0nfvh9IOo7UZe1csF999dW7PNaaTpIk5YsZwLmt2+cA97RzzCxg
dAhheAihDDij9X20FhLbfQaY33FRtSdz5sAHPwgLFmRnK1gsqLPV1KTZsMFLI6QDxXJBkiTli+8D
x4cQFgKfAL4HEEIYHEK4DyDG2AJ8FXgYeAW4Lcb4Wuv7fxBCmBtCmANMAS7t7G9AsG0b/Ou/wgkn
wGWXwe9+B1XtrZ4hdbAjjsjeklLSgeFlEZIkKS/EGNcBU9vZvxo4pc3zB4HD2znu7A4NqD1auBDO
Phv69oUXXoAPOBtdCRo2bBip1GpaWpopKSlLOo6U95y5IEmSpA6VycD118Oxx2YXbnzoIYsFJa+s
rIwxY4awfv3SpKNIBcGZC5IkSeowS5bAeedBc3P2rhCjRyedSPqziRPTzJ+/mP79D006ipT3nLkg
SZKkAy5GuPnm7KKNJ50ETzxhsaCu59BD04TgugvSgeDMBUmSJB1Qq1fDBRfAqlUwcyYceWTSiaT2
DRkyhPLyDTQ3v0dZWe+k40h5zZkLkiRJOmCmT4fx42HiRPjjHy0W1LWlUimOPnoEDQ1vJh1FynvO
XJAkSVLO3nkHLroI5s6F++7LXg4h5YPx49M8++xioDrpKFJec+aCJEmScnL//XDUUTB0KLz4osWC
8suoUWlgERs3rmTz5rdpatrItm1NxBiTjiblFWcuSJIkab+89x584xvw2GPw61/DlClJJ5L2Xf/+
/Zk6dSSLF9/Hli3NbNnSxJYtzTQ1bSWEboTQnRDKgO5A9jHG7sRYRozZfaWl3SkpKaOkJPuYfd52
u4xUyl+9VNj8f7gkSZL22axZcOaZ8PGPw8svQ58+SSeS9k8Igc9//tN/sT+TybB161aamppobm5+
32Pb7S1bmtm0qYHNm5vZtKmJzZub2by5aUdRsWFDM42NTWzbBiEMpqSkmqqqcS4gqYJjuSBJkqS9
lsnAD38I//Zv8J//CX/3d0knkjpGKpWie/fudO/e/YD8edu2bWPJkiU899x8nnpqJo2Nh1BWdiQD
BoyhtLT8gJxDSpLlgiRJkvbKypVw9tmwbRvMng3DhiWdSMofpaWljB49mtGjR3P66Vt54403ePrp
eTz//INs3ZqmV69qKisPpaSkW9JRpf1iuSBJkqQ9uvtu+PKX4WtfgyuugJKSpBNJ+atbt26MHTuW
sWPHctZZjbz66ms8+eRsXn55BjEeQZ8+1VRUjCQE199X/rBckCRJ0i5t3gzf/CY88gjccw9Mnpx0
IqmwlJeXM3HiBCZOnMC7777LvHmv8Pjjj/H66xuAcVRUVNOnzyGEEJKOKu2W5YIkSZLaNWcOfPaz
MGkSvPQSHHRQ0omkwtanTx+OOWYyxxwzmXXr1jFnzjxmzrybZctagCM5+OBqevWqSjqm1C7LBUmS
JL1PJgPXXw/XXgv//u/wuc8lnUgqPpWVlRx33BT+6q8+zpo1a3jhhXnU1f0PS5b0oKSkmgEDjqS8
vF/SMaUdLBckSZK0w5o1cO65sGEDPPccpNNJJ5KKWwiBwYMHc8opgzn55ONZtmwZs2bN4/HHf8ba
tQdTWlrNgAFjKSvrlXRUFTnLBUmSJAHwwAPwhS/ABRfAP/4jdHPReqlLCSEwfPhwhg8fzqc//Tcs
WrSIP/5xHk8//ShNTR+gvLya/v0PpaSkjBBSLgipTmW5IEmSVOQaG+Hyy7MLNk6fDh//eNKJJO1J
SUkJhx12GIcddhhnnNHMwoULeeqpecyd+wBbt26jpSVDjAApQigBUjttl+x4HuP7H9u+Dtn925/H
uH0/QAaIhBDftx3j9u3sY/arvdf/vL399bbbLS2DGTiwlh49Kjr6f04dAJYLkiRJReyVV7KLNh5x
RHYBxwrH8FLeKSsro7q6murq6vftz2QyZDIZWlpa9ulxb44BSKVShBB2PO5qe0+v7+rYefNe4847
f0Z9/dEMHvwxL/3o4nIqF0IIFcB0YDiwBDg9xrihneP6AjcBR5Ktoc6PMT6Xy7klSZK0/2KEG2+E
q66CH/wgu86Cd7qTCksqlSKVSlFamp//TXngwIFMnjyJhx9+ggce+E9inMyQIZMpKSlLOpraketF
OFcAj8YYDwceA67cxXHXAw/EGMcARwOv5XheSZIk7ae334bTToP/+i94+mk47zyLBUldU+/evfnM
Z07iBz/4IlOmvMWKFT9m1apZZDItSUfTTnItF04Dbm3dvhX41M4HhBAOAj4WY/wFQIxxW4xxY47n
lSRJ0n549FEYPx7GjIFnnoHDDks6kSTtWWVlJWef/bdce+2ZHHXUApYuvYH6+leI2YUl1AXkOj+m
Ksa4FiDGuCaEUNXOMSOBt0MIvyA7a2E28PUY45Yczy1JkqS91NwM3/42/OY3cMstMHVq0okkad8N
HjyYr371LBYtWsT06Y+yYMEzVFRMpaJiZNLRit4ey4UQwiPAwLa7yC7h+Z12Dm+vNioFJgIXxxhn
hxD+nezlFFft6pzTpk3bsV1bW0ttbe2eYkqSVFDq6uqoq6tLOoYKxMKFcOaZMHRodtHGgw9OOpEk
5WbUqFFceWWa+fNf4Te/mcGbb/ZnwICp9O49KOloRSvkMo0khPAaUBtjXBtCGATMbF1Xoe0xA4Fn
Y4zp1ufHAv8QYzx1F39mdGqLJBW+cHUgXtWxP+874xyddZ4QAjFGr4rvBIU0Fokxu67CFVfANdfA
hRe6toKkwtPS0sKsWS9w221PsH59mkGDjqO8vF/SsTrV6tUvMmXKcs4887QOPc/uxiO5XhYxAzgX
+D5wDnDPzge0Fg/LQwiHxRhfBz4BvJrjeSVJkrQbDQ3wpS/B669DXR2MG5d0IknqGCUlJUye/CEm
TDiaJ598ljvu+P80NR3NkCEfp1u3nknHKxq5Luj4feD4EMJCsqXB9wBCCINDCPe1Oe5rwK9CCHPI
rrtwbY7nlSRJ0i7Mnw8f+hAMGgTPPWexIKk4dO/enalTa/nRjy7m1FMzrF37E5Yvf4KWluakoxWF
nGYuxBjXAX+xHFCMcTVwSpvnLwMfzOVckiRJ2rM778xe/nDddXDWWUmnkaTOt/32lbW1k7n33seY
OfPHlJVNYdCgCaRSJUnHK1i5XhYhSZKkLqClBa66Cv77v+HBB6GmJulEkpSsyspKzjnn/3D88au4
885HmT37WXr3/gQHHzyG4AI0B5zlgiRJUp5bvx4+9znYtAlmzYKq9m4OLklFasiQIVxyydltbl/5
NJWVx9Ov34ikoxWUXNdckCRJUoJefTW7vsKoUfDIIxYLkrQr2dtXfonLLvsIPXvew+LFv2LjxpXE
mEk6WkFw5oIkSVKeuuuu7B0hfvQjOOecpNNIUtcXQqC6+kjGjh3DrFkvMGPG71i2bAOp1MHEWAVU
0atXFT17DqC8vJ+XT+wDywVJkqQ8k8nAtGlwyy3wwAPwQZfNlqR9sv32lZMnf4jm5mbefvtt6uvr
WbmynkWLnmfp0nqWLWskhAHEWEUqlS0devWqoqyst6VDOywXJEmS8siGDfD5z2cfZ82CgQOTTiRJ
+a2srIwhQ4YwZMgQxo//8/7Gxkbq6+upr69n+fJ6Fi1ayNKl9bz3XiSEKmKsorR0e+kwgG7deib3
TXQBlguSJEl54rXX4FOfguOPz95qsqws6USSVLjKy8sZNmwYw4YNY9KkP+/ftGkT9fX1rF1bz7Jl
a1i8eC5Ll9bT2NiNEKrIZKro3v3Pl1eUlnZP7pvoRJYLkiRJeeCee+CCC+D734fzzks6jSQVr169
ejFy5EhGjhzJ5MnZfTFGNm7cuKN0WLJkKW++OZvly99i27ZeQCUxVhBCJT16VFBeXkGPHhWUlpYn
+r0cSJYLkiRJXVgmA9dcAzffDPfeCx/+cNKJJEk7CyHQt29f+vbty6GHHsqxx2b3ZzIZ1q9fz7p1
62hoaKC+voEVK1awenUDa9c20NiYIpWqACrIZCro1q1iR/nQvftBpFIliX5f+8JyQZIkqYvauBHO
OgveeSe7vsKgQUknkiTti1QqRWVlJZWVlX/xWoyRLVu20NDQQENDA+vWNbBq1UpWrpzPmjUNrFjx
LnAQIVQQY7aA2D7jobw8O+uhKy0sabkgSZLUBS1YkF1f4bjj4PbbXV9BkgpNCIGePXvSs2dPDjnk
kL94vaWlhQ0bNuwoH+rrG1i5chWrVjWwZs06GhvDjlkP69c3An07/Xtoy3JBkiSpi7n3Xjj/fPju
d+GLX0w6jSQpCSUlJbud9dDY2Pi+WQ/tFRSdyXJBkiSpi8hk4F/+BX72s2zBsH2hMEmS2goh0KNH
D3r06MGQIUOSjgNYLkiSJHUJGzfCOedAfX12fYXBg5NOJEnS3kslHUCSJKnYvf569i4QAwfCzJkW
C5Kk/GO5IEmSlKD774djj4VLL4Wf/tSFGyVJ+cnLIiRJkhKQycC118KNN8Ldd8MxxySdSJKk/We5
IEnSfqhbUkfdkjoApgyfwrS6aQDUjqildkRtYrmUH959F849F1atyq6v0EXW4pIkab+FGGPSGd4n
hBC7WiZJ0oHR9hfyuiV1O34J76hfyMPVgXhVYfybEkIgxhiSzlEMOmMscvrp0Lcv/OQn0L17h55K
kqQDZnfjEcsFSVLBslzQ/uiMsciGDdlyQZKkfLK78YgLOkqSJHUyiwVJUqGxXJAkSZIkSTmxXJAk
SZIkSTlxzQVJUkHp7EUjO4trLnQexyKSJLXPBR0lScpzlgudx7GIJEntc0FHSZIkSZLUYSwXJEmS
JElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElS
TiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwX
JEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmSJElSTiwXJEmS
JElSTiwXJEmSJElSTnIqF0IIFSGEh0MIC0MID4UQ+u7iuEtDCPNDCHNDCL8KIZTlcl51rrq6uqQj
KCF+9sXLz15d0T6MO24OIawNIczdn/era/LnUvHysy9efvb5JdeZC1cAj8YYDwceA67c+YAQwhDg
EmBijPEooBQ4I8fzqhP5l7p4+dkXLz97dVF7HHe0+gXw1zm8X12QP5eKl5998fKzzy+5lgunAbe2
bt8KfGoXx5UAvUIIpUBPYFWO55UkScVnr8YdMcangIb9fb8kSdp3uZYLVTHGtQAxxjVA1c4HxBhX
Af8GLANWAutjjI/meF5JklR89jju6OD3S5KkXQgxxt0fEMIjwMC2u4AIfAe4JcZY2ebYd2KM/Xd6
fz/gTuDvgA3AHcDtMcZf7+J8uw8kSVKRijGGpDN0tFzHHW1eGw7c23pJ5vZ96/bm/Y5FJEnatV2N
R0r34o3H7+q11sWSBsYY14YQBgH17Rw2FVgcY1zX+p7fAccA7ZYLxTBwkiRJ7TsA447d2av3OxaR
JGnf5XpZxAzg3Nbtc4B72jlmGTA5hFAeQgjAJ4DXcjyvJEkqPnsz7tgutH7t7/slSdI+2ONlEbt9
cwiVwG+BDwBLgdNjjOtDCIOBn8cYT2k97iqyd4jYCrwEfDHGuDXX8JIkqXjsw7jj10At0B9YC1wV
Y/zFrt7f+d+JJEmFJ6dyQZIkSZIkKdfLIlQkQghXhRBWhBBebP06MelM6jghhBNDCAtCCK+HEP4h
6TzqPCGEJSGEl0MIL4UQnk86jyS15XikuDgeKV6OR/KTMxe0V1ovbXk3xnhd0lnUsUIIKeB1suuj
rAJmAWfEGBckGkydIoSwGKiJMTYknUWSduZ4pHg4HilujkfykzMXtC9cPbs4fAh4I8a4tHVtlNuA
0xLOpM4T8N8GSV2b45Hi4HikuDkeyUN+YNoXXw0hzAkh3BRC6Jt0GHWYQ4DlbZ6vaN2n4hCBR0II
s0IIFyQdRpLa4XikODgeKW6OR/KQ5YJ2CCE8EkKY2+ZrXuvjqcANQDrGOB5YAzgdUSpMH40xTgRO
Ai4OIRybdCBJxcXxiCQcj+Sl0qQDqOuIMR6/l4f+HLi3I7MoUSuBYW2eD23dpyIQY1zd+vhWCOEu
stNSn0o2laRi4nhErRyPFDHHI/nJmQvaKyGEQW2efgaYn1QWdbhZwOgQwvAQQhlwBjAj4UzqBCGE
niGE3q3bvYAT8O+6pC7E8UhRcTxSpByP5C9nLmhv/SCEMB7IAEuALycbRx0lxtgSQvgq8DDZAvLm
GONrCcdS5xgI3BVCiGT/ffhVjPHhhDNJUluOR4qE45Gi5ngkT3krSkmSJEmSlBMvi5AkSZIkSTmx
XJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTmxXJAkSZIkSTn5XwGz
SIQHpzdOAAAAAElFTkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[12]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="n">study_trend</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="n">does_trend_up</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_subarea output_stream output_stderr output_text">
<pre>100% (47578 of 47578) |###########################################################| Elapsed Time: 0:26:56 Time: 0:26:56
</pre>
</div>
</div>
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8FfW9//H352SBQEIIawIkAcG64QIuoFaI4kpVXKpC
a11ue+u9j1r7u23v1S4KWO99VB+33lqXtrZ1qbVVVFAUQaQQ9k0EJSyKLGFHCWtYspx8f3/MSTiE
hBPISeYsr+fjcR6ZM/Od73wmIWTmfb4zY845AQAAAAAAHE/A7wIAAAAAAEDsI0AAAAAAAAARESAA
AAAAAICICBAAAAAAAEBEBAgAAAAAACAiAgQAAAAAABARAQIAIG6Z2U1mVmNmX2tC27vNLDfs/fNm
dnrLVhgdZlZgZkvM7GMzW25m9zVhnUIzW95K9b0Wqu1jM1tvZh+H1XAwbNlzYes8ZmYbzWxfvb7u
NrMvw9b5l9bYh/rMbES8/PsAAKC1pPpdAAAAzTBS0mxJoySNjdD2HkklkrZLknPu+y1aWTOYWYpz
Lhg2a6ukwc65KjNrJ2mFmb3jnNseoSvXclWGbcS5kbXTZva/kvaELf7COTewgdUmSnpa0poGlr3m
nHsgulWesJskvSdptc91AAAQMxiBAACIS2bWXtKlkr4rL0AIX/agmX1qZkvN7H/M7FZJF0j6W+hT
7bZmNsPMBobajwq1/9TMfh3Wz/7QJ+XLzGyemXVtoI4cM5tgZp+E2vQ3z3oz6xDW7nMz62pmXczs
TTNbGHpdHFo+2sz+amZzJP01fBvOuWrnXFXobYYka+R7cn6o1qWSfhA2v9DMZpnZR6HX4ND8l83s
xrB2fzOzG8zszFBtH4f669uEH0mt2yX9I7yshho55xY553Y00keD6xzVwOzbYTX+3swCZnafmT0R
1uZuM/tdI+0tNP+Yn3HoZ3KjpCdC7fuY2QNmtiLU7u9N/F4AAJBQCBAAAPFqhKQpzrkvJO00swGS
ZGbXSrpB0oXOuQGSnnDOvSVpsaRvOecGOucO13ZiZnmSfi2pSNJ5ki4MO6luL2mec+48eSMd/rWB
OsZK+tg5d66kX0h6xTnnJL0t6ebQNi6StME595WkpyQ96ZwbJOmbkv4S1tcZkq5wzn27/kbMrJeZ
fSKpVNLjjYw+eEHSD0L7He5LSVc65y6QN2rj6dD8v0i6N9R/B0kXS5ok6d8k/TY0cuACSZtDbSZZ
2GUgDdR4maTtzrm1YbN7h07CZ5jZ1xtbt55bQoHMODPr1cB2Tpd0h6RLQjXWSPqWpLcU+p6H3CHp
tUba136Pj/kZO+fmyxsh8Z+hfy/rJT0o6bxQu39r4n4AAJBQCBAAAPFqlKTXQtOv68gohCslveic
q5Ak51ztcHpTw59sXyhphnNul3OuRtKrkoaEllU6594PTS+R1LuB9b8u6ZXQtmZI6mRmmZLGyTtZ
V+jr62H1PRMaJTBRUmbosgRJmuicq2xoZ51zm0MhRT9J99QfDWFm2ZKynXNzQ7NeCVucJunPZvap
pDfkBRVyzs2S1M/MOsv7/r0V+h7Ml/QLM/tPSb3DvpffiHDZxCgdPfpgq6SC0En7TyT9PfS9OZ6J
oW2eK2mapJcbaDNM0kBJi0PfxyskneKc2ylprZldZGadJJ3mnJvXSPs+ob6a8jOWpE9C9X9bUrCR
NgAAJDTugQAAiDtmliPvJLC/mTlJKfKu9/+vk+2ykflVYdNBNfx3s/59BkySnHPzzayvmXWRdz39
o2HLB4VdkuDN9EbUH4hUqHNuu5mVSLpM0vhI7UP+Q97IgHPMLEXSobBlf5X0HXkhxz2hbfzDzBZI
ul7S+2b2fedc8fE2EOr3Fnkn6rW1VknaHZr+2MzWSvqapI+Ps3+7w97+WdITDTQzSS87537RwLLX
5I02WC1pQhPahwc2jf2MJekb8oKlG+WFK/1DYQsAAEmDEQgAgHh0m6S/Ouf6OOdOcc4VSlofGiL/
oaR7zSxDqgsbJGmfpA4N9LVI0hAz6xQ6CR4lqfgEapkt6c7QtookfeWcKw8tmyDpSUkrw0ZCTJX0
o9qVzezcSBsws55m1jZsf74u6bPwNs65vZL2mNkloVl3hi3OlrQtNH2XvMCl1suS/p/XhVsd2kYf
59x659zTkt6RdE6kGiVdJWmVc25rWN1dzCwQmj5F3uiJdfV3r96+hl8iMULSyga29U9J36wdhWHe
fSgKQsveDq03UkdGqDTUPr+h7YfZr9C/l9D9EgqcczMlPRSaH2kkBQAACYcAAQAQj+7QkU+Xa42X
NMo594GkdyV9ZN7jBH8SWv6ypD+Ersdvq9DIgdCQ/IfkhQZLJX3knHsvtE5TnmIwVtL5ofsT/I+k
u8OWjZN3rf1rYfN+JOmC0DX+JZIiPpJR3iUHC0PD72fIu6/Digba/Yuk50L7HV77c/Iue1gqbwRA
3UgH59yXklZJejGs/e1mVhJqf5ZCN3WMcA+EO3T05QuS94n9p6F6xkm6rzZIMbPHzWyTpAzzHuf4
SGidB8K2fb9CoyLCOedWSfqlpKmh7/tUSbmhZXtC+1PgnPvoOO3zartrZH9ek/SfZrZEXvDxt9Al
IEskPeWc29fIegAAJCzz7vMEAACSUej+C59IGuic2+93PQAAIHYxAgEAgCRlZsPkXSLwO8IDAAAQ
CSMQAAAAAABARIxAAAAAAAAAEREgAAAAAACAiAgQAAAAAABARAQIAAAAAAAgIgIEAAAAAAAQEQEC
AAAAAACIiAABAAAAAABERIAAAAAAAAAiIkAAAAAAAAARESAAAAAAAICICBAAAAAAAEBEBAgAAAAA
ACAiAgQAAAAAABARAQIAAAAAAIiIAAEAAAAAAEREgAAAAAAAACIiQAAAAAAAABERIAAAAAAAgIgI
EAAAAAAAQERRCxDMLGBmH5vZxGj1CQAAkoeZXWtmq83sczN7sIHlp5nZPDM7bGY/rrdsg5l9YmZL
zWxR61UNAEDySI1iXz+StFJShyj2CQAAkoCZBSQ9I2mYpK2SFpvZO8651WHNyiT9UNJNDXRRI6nI
Obe7xYsFACBJRWUEgpn1kjRc0p+j0R8AAEg6F0la45wrdc5VSXpN0ojwBs65nc65JZKqG1jfxKWZ
AAC0qGj9of0/Sf8pyUWpPwAAkFx6StoU9n5zaF5TOUkfmtliM/vXqFYGAAAkReESBjP7hqQdzrll
ZlYk7xOAhtoRLgAA0ADnXIN/O3FCLnXObTOzrvKChFXOuTn1G3E8AgBAw5pyPBKNEQiXSrrRzNZJ
+oeky83sr40UlNCv0aNH+14D+8g+so/sYyK9kmEfUWeLpIKw971C85rEObct9PUrSRPkXRLRWNuE
fiXD7w37mBgv9jExXuxjYryaqtkBgnPu5865AufcKZJGSprunLuruf0CAICkslhSPzMrNLN0eccU
x3uyU92nJGbWzswyQ9PtJV0tqaQliwUAIBlF8ykMAAAAJ8U5FzSz+yVNlfcBx1+cc6vM7D5vsXve
zLpL+khSlqQaM/uRpDMldZU0IXR5QqqkV51zU/3ZEwAAEldUAwTn3ExJM6PZZzwpKiryu4QWxz4m
BvYxMbCPSDTOuSmSTqs3749h0zsk5Tewarmk81q2uviRDL837GNiYB8TA/uYXOxErndo1obMXGtt
CwCAeGFmctxEsdVwPAIAwLGaejzi+yUMvXv3Vmlpqd9lIILCwkJt2LDB7zIAAGgRHI+0Do4nACC+
+T4CIZR0tEoNOHn8nACgZTACoXVxPOIvvs8AEJuaejwSjcc4AgAAAACABEeAAAAAAAAAIiJAAAAA
AAAAEREgAAAAAACAiAgQAAAAAABARL4/xrEhjzzyW23cuKfF+i8o6KhHH/1/LdZ/a7j33nuVn5+v
Rx991O9SACCqijcUq3hDcd10Ue8iSVJR76K6aaA1cDwSGccjAJBcYjJA2Lhxj3r3HtNi/W/Y0HJ9
S9Kzzz6rl156ScuXL9e3vvUtvfDCCy26PQBIJOFBgY01Fd9T7Gs9SF4cjwAAcDQuYTgBjz/+eJPa
9ezZUw8//LC++93vtnBFAAAg2XA8AgDwCwHCCaioqGhSu5tuukk33nijOnXqFLHt448/rl69eqlD
hw4644wzNGPGjAbbLV26VOeff76ys7M1cuRIHT58+IRqBwAAiYHjEQCAXwgQToBzLqr9ff7553r2
2We1ZMkS7du3Tx988IF69+59TLuqqirdfPPNuvvuu7Vr1y7ddttteuutt6JaCwAAiA8cjwAA/BKT
90CIFWvXrtWbb74pM5NzTnPnztUTTzwh55zMTIMGDdLQoUNPuv+UlBRVVlaqpKREnTt3VkFBQYPt
FixYoOrqaj3wwAOSpFtvvVUXXnjhSW8XAADED45HAACxggDhOPr27asHH3yw7n1FRYX+67/+K6r9
//a3v9WYMWO0cuVKXXPNNfrNb36jvLy8o9pt3bpVPXv2PGpeYWFh1OoAED94QgGQfDgeAQDECi5h
8NnIkSM1e/ZslZaWSpIeeuihY9rk5eVpy5YtR83buHFjq9QHILYU9S7SmKIxGlM0RjNLZ9ZNEx4A
aA6ORwAATUGAcAKaes1hMBjU4cOHFQwGVV1drYqKCgWDwWPaff7555oxY4YqKyuVnp6ujIwMBQLH
/kguvvhipaam6umnn1Z1dbXGjx+vRYsWNXt/AABA/OF4BADgl5i8hKGgoGOLPhu5oKBjk9p99tln
eu211+quOZw5c6YeffTRumsOL774Yl111VXHrPfYY49p7NixMjNJ0quvvqrRo0frkUceOapdRUWF
HnroIa1evVppaWm65JJL9Pzzz0uShg8friFDhuihhx5SWlqaxo8fr+9973v65S9/qeHDh+vWW289
qq/w9gAAoPk4HuF4BABwNIv2nXwb3ZCZa2hbtX8MEdv4OQGxx8aa3OjE/r1Min30/n81v+tIFhyP
+IvvMwDEpqYej3AJAwAAAAAAiIgAAQAAAAAARESAAAAAAAAAIorJmygCwMko3lCs4g3FddO1jzYs
6l3EYw4BAACAZiJAAJAwwoMCG2sqvqfY13oAAACARMIlDAAAAAAAICJGIAAAgKRXWFgoM56m2dIK
Cwv9LgEA0AwxGSBE4zpmroUGAABNtWHDBr9LAAAg5plzrnU2ZOYa2paZ6Xg12FiTG928GqPRRyL4
93//d/Xq1Uu/+MUvTnjdSD8nINYkw+89+5gYQv+/8tF3K2nseAQAgGTW1OMR7oFwHL1791bbtm21
a9euo+YPGDBAgUBAGzdujPo2Kysrddddd6lTp07Kzc3Vf/zHf0Stzt///vcnFR4AAAAAAECAcBxm
pj59+ugf//hH3bySkhIdOnSoxa6TfOmll7Rs2TJt2LBB69ev10033RSTdQIAAAAAkgsBQgTf+c53
9PLLL9e9f/nll3X33Xcf1eb999/XwIEDlZ2drcLCQo0dO7Zu2bhx43TKKaeovLxckjR58mTl5eWp
rKyswe2lpaUpOztbHTp0UEZGhoYOHRq1Ou+991498sgjkqSZM2cqPz9fTz75pLp3766ePXvqpZde
atK2AAAAAADJhwAhgsGDB2v//v367LPPVFNTo9dff1133nnnUfcDyMzM1CuvvKK9e/dq0qRJ+sMf
/qCJEydKkm6//XZdeumleuCBB7Rr1y5973vf0wsvvKDOnTs3uL2BAwdqwYIFGjNmTNTrrG/79u3a
v3+/tm7dqj//+c/6wQ9+oL17957QdgEAAAAAySEmn8JQn431dxh+7af7Q4cO1RlnnKEePXoctXzI
kCF10/3799fIkSM1c+ZM3XjjjZKkZ555Ruecc46Kioo0YsQIXXfddQ1uZ/fu3brxxhs1adIkjR49
Wmam0aNHS5Ly8/M1ZcoUnXXWWSddZ33p6el6+OGHFQgEdN111ykzM1OfffaZLrrooiZ9XwAAAAAA
ySMuAoRoPIWhOe68804NGTJE69ev11133XXM8oULF+pnP/uZSkpKVFlZqcrKSt122211y7Ozs3Xb
bbfp//7v/zR+/PhGt/PGG2/ozDPP1NVXX60LLrhAQ4YMkZnp7rvvVjAYPG540JQ66+vcubMCgSOD
UNq1a1d3qQUAAAAAAOG4hKEJCgoK1KdPH02ePFm33HLLMcu//e1v66abbtKWLVu0Z88e3XfffUdd
OrBs2TK98MILGjVqlH74wx82up3q6mpVVVVJkjp16qRp06bppZde0jXXXKOf/vSnza4TAAAAAICT
RYDQRC+88IKmT5+ujIyMY5aVl5crJydHaWlpWrRokf7+97/XLTt8+LC+853v6Ne//rVeeOEFbd26
Vb///e8b3Mbw4cO1ePFi/elPf1J1dbVSUlJ0ySWXaM2aNWrXrl2z6wQAAAAA4GQRIBxH+CMQ+/Tp
o4EDBza47LnnntPDDz+s7OxsPfbYY7rjjjvqlv385z9XYWGhvv/97ys9PV2vvPKKHn74Ya1du/aY
7fXu3VuTJ0/Wyy+/rM6dO2vAgAHKzc3VjBkz9OCDD2rq1KnNqvNE9hcAAAAAgHB2vLv0R3VDZq6h
bZnZcZ8UYGMtKvdAaG4fyS7SzwmINcnwe88+JobQ/68kuK2kseMRAACSWVOPR2LyJorFG4pVvKFY
kjS0cKjGFI+RJBX1LlJR76JW6wMAAAAAAHhiMkCIxkk+QQEAAAAAANHDPRAAAAAAAEBEBAgAAAAA
ACAiAgQAAAAAABARAQIAAAAAAIjI95soFhYWyoynV8W6wsJCv0sAAAAAAPjI9wBhw4YNfpcAAAAA
AAAi4BIGAAAAAAAQEQECAAAAAACIiAABAAAAAABERIAAAAAAAAAiIkAAAAAAAAARESAAAAAAAICI
CBAAAAAAAGiAc05fffWVgsGg36XEhFS/CwAAAAAAIJZ8+eWXWrasRDNmlGjbtl16+OHvqG/fvn6X
5TsCBAAAAABA0isrK9Mnn5SouLhEGzdWyuwsder0TaWk/FPOOb/LiwkECAAAAACApLRnzx59+ukK
zZxZonXr9ks6Sx073qDCwnyZmSRp717zt8gYQoAAAAAAAEga+/btU0nJSs2aVaLPPtsl585QdvbV
KigolBm3CTweAgQAAAAAQEI7cOCAVqxYqTlzVqikZIecO01ZWUXKz++jQCDF7/LiRrMDBDNrI2mW
pPRQf28658Y2t18AAJBczOxaSb+V95SovzjnHq+3/DRJL0oaKOnnzrknm7ouACD5HDp0SKtWrdbc
uSVatmyLgsF+yswcrF69+ikQ4LP0k9Hs75pzrsLMLnfOHTSzFElzzWyyc25RFOoDAABJwLwxo89I
GiZpq6TFZvaOc251WLMyST+UdNNJrAsASAIVFRX67LPPNHduiZYsKVV19Slq126gevS4Qykp6X6X
F/eiErs45w6GJtuE+uQWlQAA4ERcJGmNc65UkszsNUkjJNWFAM65nZJ2mtn1J7ouACBxVVVVac2a
NZo/v0QLF65VVVWh2rQ5S7m5tyo1tY3f5SWUqAQIoeR/iaS+kp51zi2ORr8AACBp9JS0Kez9ZnnB
QEuvCwCIQ9XV1Vq7dq0WLizRvHlrVFHRQ+np/dW16w1KS8vwu7yEFa0RCDWSBphZB0lvm9mZzrmV
9duNGTOmbrqoqEhFRUXR2DwAAHGjuLhYxcXFfpeR1DgeAYD4VFNTo/Xr12vx4hLNnr1aBw92U2pq
f3Xteo3S0zP9Li+unOzxSFTvHOGc22dmMyRdK+m4AQIAAMmo/gnr2LHcdzhki6SCsPe9QvOivi7H
IwAQP2pqarRx40Z99FGJZs9epX37Oiolpb+6dr1cXbt28Lu8uHWyxyPReApDF0lVzrm9ZpYh6SpJ
v25uvwAAIKksltTPzAolbZM0UtKo47S3ZqwLAIhhzjlt2bJFH39couLiFdq9u70Cgf7q0uV7ysnJ
8bu8pBaNEQh5kl4O3QchIOl159z7UegXAAAkCedc0MzulzRVRx7FuMrM7vMWu+fNrLukjyRlSaox
sx9JOtM5V97Quj7tCgDgJDjntH37di1d6oUGX36ZGgoN7lZhYRe/y0NINB7juFze85gBAABOmnNu
iqTT6s37Y9j0Dkn5TV0XABD7vvzyS33yyQoVF5doy5YaBQL91anTKBUWdpOZRe4ArSqq90AAAAAA
AOB4ysrK9OmnXmhQWnpYZv2Vk3OLCgt7EBrEOAIEAAAAAECL2rNnj5YvX6FZs1boiy/2ybkzlZNz
vQoL8wkN4ggBAgAAAAAg6vbv368VK1Zq5swSrV5dJukMdehwlQoKCuXdQg/xhgABAAAAABAVBw8e
1IoVKzV7dolKSnaopuZrysoaovz8UxQIpPhdHpqJAAEAAAAAcNIOHz6sVatWa+7cEi1dulnBYD9l
Zg5Wr179FAhwyplI+GkCAAAAAJqssrJSW7Zs0caNm1VSslHLlm1UdfUpysg4Tz163K6UlHS/S0QL
IUAAAAAAADTIOafdu3dr06ZNWrt2s5Yv36TS0jJJuXKul9q1G6Du3W9Vampbv0tFKyBAAAAAAABI
8kYXbN26VaWlm7Ry5WatXr1Z+/alyCxfZr2UnX2uevXK5dKEJMVPHQAAAACSkHNOe/bsqRtdUFKy
SRs27JRz3eVcvjIyzlF29jeUk9PB71IRIwgQAAAAACAJVFVV1Y0uWLVqs1au3KR9+wJ1ows6dDhb
PXvmMboAjeJfBgAAAAAkGOec9u7de9S9CzZs+ErOdQuNLuivDh2uU8eOHWRmfpeLOEGAAAAAAABx
rqqqStu2bdPGjd69C1au3KS9exUaXZCvDh3OUo8eeUpJSfO7VMQxAgQAAAAAiCPOOe3bty80umCT
Sko2a/36L1VT01XO5att2zOVnX2NsrOzGV2AqCJAAAAAAIAYVl1dXTe6oPbeBbt3O5n1klm+srKu
Vl5eD0YXoMURIAAAAABADKkdXbBu3SYtX75Z69btUE1NF9XU5Csj43R16HCVCgo6MroArY4AAQAA
AAB8Ul1dre3btx81umDXrqDMeknKV4cOV4ZGF6T7XSpAgAAAAAAArWXfvn3avHmz1q3z7l2wdu12
BYOd5Vy+2rT5mrKzh6mgIIfRBYhJBAgAAAAA0AKCwWDd6ILVqzdrxYpNKiurqhtdkJV1hXJzezK6
AHGDAAEAAAAAoqyqqkqPPvqctmxJD40uOFUdOlyugoJOjC5A3CJAAAAAAIAoW7RoiTZt6q7evUf6
XQoQNQG/CwAAAACARFJZWak33pijLl0u97sUIKoIEAAAAAAgiubNW6TduwuVmdnd71KAqCJAAAAA
AIAoOXz4sN56a766dSvyuxQg6ggQAAAAACBK5sxZoH37+ql9+65+lwJEHQECAAAAAETBwYMHNWHC
IuXmDvW7FKBFECAAAAAAQBTMnDlPBw6coYyMTn6XArQIAgQAAAAAaKYDBw7onXeWKDd3iN+lAC2G
AAEAAAAAmmn69Dk6fPhstW2b7XcpQIshQAAAAACAZti3b5/efXeZ8vIu87sUoEURIAAAAABAM0yb
NlvV1QPUpk2W36UALYoAAQAAAABO0p49e/T++yXKzb3U71KAFkeAAAAAAAAnacqUmaqpuVDp6e39
LgVocQQIAAAAAHASysrKNHXqZ8rLu9jvUoBWQYAAAAAAACdh0qRimQ1WWlqG36UArYIAAQAAAABO
0Jdffqni4nXKyxvkdylAqyFAAAAAAIAT9N57xQoELlFqahu/SwFaDQECAAAAAJyAbdu2afbsTcrL
u8jvUoBWRYAAAAAAACdg4sQZSk39ulJS0vwuBWhVBAgAAAAA0ESbN2/W/Pk7lJd3vt+lAK2OAAEA
AAAAmmjChOlKTx+iQCDV71KAVkeAAAAAAABNsGHDBn300W7l5p7ndymALwgQAAAAACAC55zGj5+u
jIwiBQIpfpcD+IIAAQAAAAAiWLdunT755KC6dz/b71IA3xAgAAAAAMBxOOf05pvT1b59kcw4hULy
4l8/AAAAABzH559/rpUrq9W161l+lwL4igABAAAAABrhnNO4cdOVlXW5zMzvcgBfESAAAAAAQCNW
rFipNWtS1LnzaX6XAviOAAEAAAAAGlBTU6Nx42aoY8crGH0AiAABAAAAABr06afLVVraTjk5ff0u
BYgJBAgAAAAAUE8wGNS4ccXKyWH0AVCLAAEAAAAA6lm27BNt2ZKjjh17+10KEDMIEAAAAAAgTHV1
tV5/faY6dbrc71KAmEKAAAAAAABhPvroY23f3k3Z2fl+lwLEFAIEAAAAAAipqqrSuHGz1bUrow+A
+ggQAAAAACBkwYLFKivrpaysHn6XAsQcAgQAAAAAkFRRUaE335yrbt0YfQA0hAABAAAAACTNm7dQ
e/eeovbtu/ldChCTCBAAAAAAJL3Dhw/rrbcWqFu3Ir9LAWJWswMEM+tlZtPNbIWZLTezB6JRGAAA
SC5mdq2ZrTazz83swUba/M7M1pjZMjMbEDZ/g5l9YmZLzWxR61UNIFHMmjVf5eWnqV27zn6XAsSs
1Cj0US3px865ZWaWKWmJmU11zq2OQt8AACAJmFlA0jOShknaKmmxmb0TfjxhZtdJ6uucO9XMBkn6
vaTBocU1koqcc7tbuXQACeDgwYOaMGGRunf/vt+lADGt2SMQnHPbnXPLQtPlklZJ6tncfgEAQFK5
SNIa51ypc65K0muSRtRrM0LSXyXJObdQUraZdQ8tM3FpJoCTNGPGXB06dJYyMnL8LgWIaVH9Q2tm
vSWdJ2lhNPsFAAAJr6ekTWHvN+vYDyTqt9kS1sZJ+tDMFpvZv7ZYlQASTnl5uSZO/Fh5eUP8LgWI
edG4hEGSFLp84U1JPwqNRDjGmDFj6qaLiopUVFQUrc0DABAXiouLVVxc7HcZiehS59w2M+sqL0hY
5Zyb01BDjkcAhJs2bbYqK89VmzYd/C4FaDUnezxizrlmb9zMUiW9J2myc+6pRtq4aGwLAJrCxprc
6MT+P4d9TAxmJuec+V2H38xssKQxzrlrQ+8fkuScc4+HtfmDpBnOuddD71dLGuqc21Gvr9GS9jvn
nmxgOxx0jHILAAAgAElEQVSPAKizd+9e/fSnf1DXrj9Qenqm3+UgRm3e/Dc99NBg9evXz+9SWkxT
j0eidQnDC5JWNhYeAAAARLBYUj8zKzSzdEkjJU2s12aipLukusBhj3Nuh5m1C42ElJm1l3S1pJLW
Kx1AvJo6dZaCwfMJD4AmavYlDGZ2qaRvS1puZkvlXYP4c+fclOb2DQAAkoNzLmhm90uaKu8Djr84
51aZ2X3eYve8c+59MxtuZl9IOiDp3tDq3SVNMDMn79jmVefcVD/2A0D82L17t6ZMWam8vB/6XQoQ
N5odIDjn5kpKiUItAAAgiYU+fDit3rw/1nt/fwPrrZd3E2cAaLIpU2ZKGqS0tHZ+lwLEDR53BAAA
ACCp7Ny5Ux9++Lny8gb7XQoQVwgQAAAAACSVSZOKZXaxUlPb+l0KEFcIEAAAAAAkjR07dqi4eIN6
9BjkdylA3CFAAAAAAJA03n13hlJTL1VKSrrfpQBxhwABAAAAQFLYunWr5szZotzcC/wuBYhLBAgA
AAAAksLbb09XevoQpaSk+V0KEJcIEAAAAAAkvI0bN2rRop3KzR3gdylA3CJAAAAAAJDw3n57htq0
GapAINXvUoC4RYAAAAAAIKGtX79eS5bsVW7uuX6XAsQ1AgQAAAAACcs5p7femq527YpkxukP0Bz8
BgEAAABIWF988YWWLz+sbt36+10KEPcIEAAAAAAkJOec3nhjujIzL2f0ARAF/BYBAAAASEirVq3W
6tVOXbqc4XcpQEIgQAAAAACQcGpqavTGGzOUnX2FzMzvcoCEQIAAAAAAIOGUlKzQunXp6tTpVL9L
ARIGAQIAAACAhOKNPihWx46MPgCiiQABAAAAQEL55JNPVVqaqY4d+/hdCpBQCBAAAAAAJIxgMKjX
Xy9Wp06MPgCijQABAAAAQMJYsmSptm3rrI4dC/0uBUg4BAgAAAAAEkJ1dbXGjZulzp2v8LsUICER
IAAAAABICAsXfqSvvspThw49/S4FSEgECAAAAADiXmVlpd54Y466dr3c71KAhEWAAAAAACDuzZu3
SLt3FyozM9fvUoCERYAAAAAAIK5VVFRo/Pj56tatyO9SgIRGgAAAAAAgrs2Zs0D79vVV+/Zd/S4F
SGgECAAAAADi1qFDhzR+/EJ1717kdylAwiNAAAAAABC3Zs6cpwMHTldGRie/SwESHgECAAAAgLh0
4MABvf32R8rNHep3KUBSIEAAAAAAEJemT5+jw4fPVtu22X6XAiQFAgQAAAAAcWffvn16991lysu7
zO9SgKRBgAAAAAAg7kybNlvV1QPUpk2W36UASYMAAQAAAEBc2bNnj95/v0S5uZf6XQqQVAgQAAAA
AMSVDz6YpZqaC5Se3t7vUoCkQoAAAAAAIG6UlZVp6tTVysu7xO9SgKRDgAAAAAAgbkyePFPODVJa
WobfpQBJhwABAAAAQFz46quvNH36WvXoMdjvUoCkRIAAAAAAIC68++4MBQKXKDW1jd+lAEmJAAEA
AABAzNu+fbtmzdqovLwL/S4FSFoECAAAAABi3sSJM5SWdplSUtL9LgVIWgQIAAAAAGLa5s2bNW/e
NuXlne93KUBSI0AAAAAAENPefnuG0tOHKBBI9bsUIKkRIAAAAACIWaWlpVq8eJdycwf4XQqQ9AgQ
AAAAAMQk55zGj5+ujIyhCgRS/C4HSHoECAAAAABi0rp167Rs2QF1736O36UAEAECAAAAgBjknNOb
b05X+/ZFMuO0BYgF/CYCAAAAiDmff/65VqyoUteuZ/ldCoAQAgQAAAAAMcU5pzfemKEOHa6Qmfld
DoAQAgQAAAAAMWXlylVasyagzp1P87sUAGEIEAAAAADEjJqamtDog8sZfQDEGAIEAAAAADFj+fIS
rVvXVp069fO7FAD1ECAAAAAAiAnBYFDjxhUrJ4d7HwCxiAABAAAAQExYtuwTbd6crZycPn6XAqAB
BAgAAAAAfFddXa3XX5+pTp2u8LsUAI0gQAAAAADgu48++lg7dnRTdna+36UAaESq3wUAAAAASG5V
VVUaN262unQZ5XcpSALOScGgVF3tfW1suvbr3r3d/C45ZhAgAAAAAPDVwoUfqaysl/r06eF3KYii
pp6oN3TS3pTlJ9t3TY2UkuK9UlMjT2dk9PT7WxkzCBAAAAAA+KayslJvvDFHXbve5XcpCa/2JLqq
KvKroXaNrduUE/Xwk/JIJ+2pqVIgcOyyNm2k9u0jr9uUvk/kIR+bNy+VNLjFfi7xhAABAAAAgG/m
zVuoPXv6qE+f7n6X4ptgsOkn68052XdOSktr/JWa2vD8tm2Pv05jJ+0pKSd2oo7YF5UAwcz+Iul6
STucc+dEo08AAJBczOxaSb+Vd5PnvzjnHm+gze8kXSfpgKR7nHPLmrougNhz+PBhvfnmfHXv/i9+
l9IkNTVSRYVUWel9rX019r6pAYAkpac3fgLf2Al+u3ZNCwBqXyf6yTtQX7RGILwo6WlJf41SfwAA
IImYWUDSM5KGSdoqabGZveOcWx3W5jpJfZ1zp5rZIEl/kDS4KesCiE2zZ89XefnX1KVLlxbbRu1J
f/0T/cZO+o8XDgSD3ol+mzbeq6Hp9HQpI0Pq2NGbbkoYkJLSYrsPRFVUAgTn3BwzK4xGXwAAICld
JGmNc65UkszsNUkjJIWHACMU+rDCObfQzLLNrLukPk1YF0CMOXjwoMaPX6Tu3b9/zLLGTvqbeuJ/
vJP+xk78a0/6j9cmLY1P8JHcuAcCAACIBT0lbQp7v1leqBCpTc8mrgsgBhw6JC1YIM2aJc2YsVdr
196jlJScY078g8HGT+LDp9u3l3JyGm5T+56TfiB6WjVAGDNmTN10UVGRioqKWnPzAAD4rri4WMXF
xX6XkShO6pSA4xGg9ZSXS/PmSTNneq9ly6Szz5aGDJE6dVqhzMwz1aXLsSf+qamc9AMt6WSPR3wL
EAAASEb1T1jHjh3rXzGxZYukgrD3vULz6rfJb6BNehPWrcPxCNBy9uyR5szxwoJZs6QVK6Tzz/cC
gzFjpIsv9kYNSNKSJZ301FMfqLDwHhlpAdCqTvZ4JJoBgukkPwkAAABJb7GkfqF7Km2TNFLSqHpt
Jkr6gaTXzWywpD3OuR1mtrMJ6wJoATt3ekHBrFleaPDFF9KgQdLQodITT3jTbds2vO6AAefplFPm
a+fOz9Wly2mtWziAkxKtxzj+XVKRpM5mtlHSaOfci9HoGwAAJD7nXNDM7pc0VUcexbjKzO7zFrvn
nXPvm9lwM/tC3mMc7z3euj7tCpDQtm07EhbMnClt3ixdeqkXGDz3nDfaID29aX0FAgF961tX6b//
+0N17nyqvAeqAIhl0XoKw7ei0Q8AAEhezrkpkk6rN++P9d7f39R1ATRfaemRwGDWLKmsTLrsMu+S
hO9+Vzr3XO9+BSfr1FNP1XnnzdXq1cuUlzcweoUDaBE8hQEAAACAnJPWrj0SFsyc6T01YcgQb4TB
Aw9I/ftLgSgOFDAz3XbbVfrlL8cpGDxbKSlp0escQNQRIAAAAABJyDlp1aqjRxiYeWHB0KHSz34m
nXZayz8NoVevXioqytfs2QuUn39Zy24MQLMQIAAAAABJoKZGWr78yP0LZs2SsrK8sODqq6X//m+p
Tx9/Hp94443DNGfOn1VZOVDp6e1bvwAATUKAAAAAACSg6mpp6dIjYcGcOVK3bt4lCbfcIv32t1J+
fuR+WkOnTp00fHh/vfvuLBUWXud3OQAaQYAAAAAAJIDKSmnx4iOBwfz5UkGBN8Lgzjul55+XcnP9
rrJx11wzVB9++IwOHRqsjIwcv8sB0AACBAAAACAOHTokLVhw5B4GixdLX/uaFxj8279Jr74qde7s
d5VN1759e33zm4P117/+U336fNPvcgA0gAABAAAAiAPl5dK8eUdGGCxdKp19tndJwk9/Kl16qZSd
7XeVzXPZZRdr0qSntX//VmVl9fC7HAD1ECAAAAAAMWjPHu++BbUjDFaskAYO9EYYPPKIdPHFUmam
31VGV3p6ukaOHKpnn/1QmZl3yfy4oyOARhEgAAAAADGgqkqaO1eaNEmaNk364gtp0CAvMHjiCW+6
bVu/q2x5F1wwUIWFC7Rr1xfq3PlUv8sBEIYAAQAAAPDJV19Jkyd7ocHUqVK/ftI3viE9+6x0wQVS
errfFba+QCCgUaOu1K9/PU2dOvWVWcDvkgCEECAAAAAArcQ56ZNPpPfe80KDlSulYcOk66/3HquY
l+d3hbHh9NNP0znnzNWaNZ8qN/c8v8sBEEKAAAAAALSgAwekf/7TCwwmTfIuQ7j+eulXv5Iuu0xq
08bvCmOPmen226/Www+/qWDwLKWkpPldEgARIAAAAABRt379kcBgzhzpoou8SxN+/GPvUYvcGzCy
/Px8XXZZD82fv0i9el3qdzkARIAAAAAANFt1tfeIxdpLE3bulIYPl777Xem11+L/8Yp+GTFimObO
fUFVVQOUltbO73KApEeAAAAAAJyEnTulKVO80GDqVKlPH2+UwYsvejdADHDvv2br0qWLhg8/U5Mm
zVZh4TV+lwMkPQIEAAAAoAmck5YvPzLKoKREuuIKLzR48kmpRw+/K0xM115bpGnTntXhw4PUtm1H
v8sBkhoBAgAAANCIgwel6dOPhAbp6V5gMHq0NHQoN0BsDZmZmbr11ov06qvT1bv3LX6XAyQ1AgQA
AAAgTGmpFxa89553A8Tzz/dCgw8/lE47jRsg+mHIkEs0adLT2r9/m7KyeNYl4BcCBAAAACS16mpp
/vwjT03Yvt27AeI990h//7vUkVHzvmvTpo1GjRqq556bpqys7/hdDpC0CBAAAACQdHbtOnIDxA8+
kAoKpOuvl/70J+nCC6WUFL8rRH0XXDBQ+fkLtGvXWnXq1NfvcoCkRIAAAACAhOecd9PD2ksTPv1U
uvxy79KEJ56QevXyu0JEkpKSolGjhunxxz9UTs4pMq4lAVodAQIAAAAS0qFD3g0Qay9NCAS8UQa/
/KVUVCS1bet3hThRZ555hs4+e57WrVuu7t3P8bscIOkQIAAAACBhbNp0ZJTBrFnSgAHeKIPJk6Uz
zuAGiPHOzHT77VfpkUcmqKbmTAUCnM4ArYnfOAAAAMStYFBasOBIaLB1q3TdddKdd0qvvCLl5Phd
IaKtsLBQl17aXYsXL1bPnhf7XQ6QVAgQAAAAEFd27/ZugDhpkve1Z09vlMEf/iANGsQNEJPBzTdf
qQULXlJV1XlKS8vwuxwgaRAgAAAAIOaVlkpvvy1NmCB9/LE0dKgXGvzP/3hPUEBy6dq1q6655jR9
8MEcFRRc5Xc5QNIgQAAAAEDMcU5atUoaP94LDUpLpRtukH7yE+nKK6UMPnROesOHX67p05/T4cMX
qW3bbL/LAZICAQIAAABiQk2NtHixFxhMmCAdPCjdfLP0v/8rXXaZlMqRK8JkZWXp5psv0GuvzVDv
3jf5XQ6QFPhvGAAAAL6pqvKeljB+vPTOO1JWlnTLLdKrr0rnn89TE3B8RUWXavLkp1VevkOZmd39
LgdIeAQIAAAAaFUHD0pTp3qjDN57T+rb1xtpMG2adPrpfleHeNK2bVvdcccQ/fGP05SZ+W2/ywES
HgECAAAAWtzu3V5YMGGC9M9/eqMLbrlFeuwxKT/f7+oQzwYNukDvvbdAu3evV05OH7/LARJawO8C
AAAAkJi2bZN+/3vp6qulwkLpzTelG2+U1q2Tpk+X7r+f8ADNl5KSolGjhmn37g/lnPO7HCChMQIB
AAAAUfPFF94og/HjpdWrpeHDpfvu895nZvpdHRJV//5n6cwz52njxhXq1q2/3+UACYsAAQAAACfN
OWnZsiNPTti5UxoxQhozRrr8cik93e8KkQzMTHfccZXGjJmomprTFQhwmgO0BH6zAAAAcEKCQWne
vCOhQSDg3c/gj3+UBg/23gOtrU+fPrr44i5asuQj9ew52O9ygIREgAAAAICIKiq8mx9OmCBNnCjl
5XlPTnjnHenss3ncImLDzTdfqYUL/6rq6vOUmtrW73KAhEOAAAAAgAbt3y9NnuyFBpMnS/37eyMN
fvYz6ZRT/K4OOFb37t119dWn6sMP56qgYJjf5QAJhwFmAAAAqPPVV9Jf/iJdf73Us6f04ovevQxW
r5bmzJF+/GPCA8S24cMvV2rqR6qo2Od3KUDCIUAAAABIcqWl0lNPSUVFUr9+0pQp0re/LW3a5I08
+P73pdxcv6sEmiY7O1sjRgzUtm3FfpcCJBwuYQAAAEgyzkmrVnmPVpwwQdq4UbrhBuknP5GuvFLK
yPC7QqB5hg27TFOmPK0DB75S+/Zd/S4HSBiMQAAAAEgCNTXSwoXSQw9Jp58uXXut9OWX0v/+r7Rt
m/TCC16IQHiARNC2bVvdccfX9eWX0/wuBUgojEAAAABIUFVV0syZ3iiDt9+WsrO9Jye8+qp0/vk8
OQGJbfDgC/Xeewu1Z0+pOnYs9LscICEQIAAAACSQgwelqVO90OC996S+fb3Q4J//9EYeAMkiNTVV
o0Zdod/85kNlZ39XRmIGNBuXMAAAACSIX/1KysuTnn5auvBC6ZNPpEWLvMcuEh4gGZ1zztk6/fSg
du5c5XcpQEIgQAAAAEgQt98urVvnjTa4/36pVy+/KwL8ZWa6444rtX//NNXUBP0uB4h7BAgAAAAJ
4rTTpM6d/a4CiC19+/bVoEE52rZtid+lAHGPAAEAAABAQrvllitVXT1L1dUVfpcCxDUCBAAAAAAJ
LS8vT8OGnaJt2+b5XQoQ1wgQAAAAACS866+/QoHAIlVU7Pe7FCBuESAAAAAASHgdO3bUiBEDtH37
TL9LAeIWAQIAAACApDBs2GVq336lDh7c6XcpQFwiQAAAAACQFDIyMnTbbZdqx45pfpcCxCUCBAAA
AABJ45JLLlL37tu0d+9Gv0sB4g4BAgAAAICkkZaWplGjLldZ2YdyzvldDhBXUv0uAACQeJxzqqmp
qXsFg8Gj3h9vfvg8STp06JAyMjJ83iMAQCI599xzdOqp87Vjx2fq0uV0v8sB4gYBAgA0k3Ou7oQ5
/GtD86K5TJI+/fTTiCfmwWCNqqtrVFUVrJsOBr1X7bzw+dXVR+aFvxqaX10drNtGMOhtz5vnZBaQ
FJBZSt107css5aj34fOcC5tfIC1fvlwXXXSRHz9aAECCCgQCGjnySj322Afq3Plrob9TACIhQAAQ
t2pqanTgwAGVl5dr//79Ki8v1759+1VWVi5J+t3v/qaaGqdgsPYk/Mi0d7Jb+ym5a3Be/WXhX8OX
eSfLJu+k10IHIRZ6BY5aduRreLtjlx07r4FlBdJTT605+oRbKXLuyEm4c7Un8KkyCxz1CgRSjplX
e7LflHZpaQGlpzfczts/i8JP+U6GlwIAWkS/fv10/vnzVFLysXr0uMDvcoC4QIAAIOZUV1cfFQrs
379fe/eWa+fO/dq5s1y7du3Xrl3l2rfvoKQMBQJZkjLlXJZqajKVmtpFypfWrBkkMzvqhPbIdKDR
ZYFAQCkpTV8veifLJ2qk8vNv9WG7AADEPzPTN795lZYu/YeCwXOUkpLud0lAzItKgGBm10r6rbyP
v/7inHs8Gv0CSBzOOVVUVBwVDJSXe2HAzp3lKivzQoHdu/frwIEqBQKZkjJl5oUCUpbS0nqpTZss
padnql27TGVnt1cgkNLoNjt3PrXV9g/AyTOzHEmvSyqUtEHS7c65vQ20a/B4w8xGS/pXSV+Gmv7c
OTelFUoHEOd69Oihyy8v1MyZ85WfP9TvcoCY1+wAwbyP4Z6RNEzSVkmLzewd59zq5vYNIPY553Tw
4MGjRgvs31+uXbvK9dVXXihQVrZfe/aUq6rKjhot4FymzDKVnt5d6emZatMmSx07ZqpLlwyfPtEH
4JOHJE1zzj1hZg9K+lloXp0mHG886Zx7sjWLBpAYbrhhmGbNel6VlRcoPb293+UAMS0aIxAukrTG
OVcqSWb2mqQRkggQgDgWDAbrRgnUhgN793r3F6gNBnbvLtfevQdUU9MmLBjwwoGUlBylpxcoPT1T
6emZ6t49i6GBABozQlLtR38vSypWvQBBkY83SB0BnJScnBzdcMO5evvtmSosHO53OUBMi0aA0FPS
prD3m+X9kQfinnNSdbUUDDb8Ot6ySMv97LeqqlqHD1eourpaVVXVqqwMqqKiShUVQVVWevOqqpwk
7+Z7zmVK6ijnUmWWqkDAex25OZ8p/D53fk9X5ZRIw76m/9a53gxz8haF34zP1S076n1ty0bmN9a+
/nzXWPvG1j9OW9fotjpprLrUm9dQu3rbaXCbzZgfjT7qz6+dPpQjJIVuzrkdkuSc225m3RpoE+l4
434z+46kjyT9pKFLIACgMVddNURTpz6jgwcHqV27zn6XA8SsVr2J4pgxY+qmi4qKVFRU1JqbRxPU
njA39VV7Unqy72N1ndoTbueklJSGX6mpjS+LtPxklzW2PD39xPr99NMV+uKLUu3bV6Fg0Km62rsU
IT29rdq3z1Z6eke1bZut1NS2SkvLUGpqW6Wmtqm7rCD86oJYnK6yPnrRSSP0skwWOke1ULsjjWuX
mWr3y+qWyEmB8PfHaV83v177gB3ZdkPr19ZU975+Hw3VEOrTnOk5O10/qP3w9ah+w9rVnxe+78ds
M+z7c9S2I8w/kbZNnR/6vv2qbeI9Vqu4uFjFxcV+l9HqzOxDSd3DZ8n7Sf+ygeYn+uiN5yQ96pxz
ZvaYpCclfbexxhyPAKivXbt2uu22i/Xii/9Unz63+10O0OJO9njEmvt4LDMbLGmMc+7a0PuHJLn6
N1I0M5fIj+LaskXasOHETr6b8qqqat0+a2q8E83GXikpUlrakRPS+sua8z5W1gk/6Q4Ejj45TTTh
j0E88jjEcu3ZU66ysgMqK/MuU9izp1zl5RUKBNpLai8z71KFmppMpaS0r7tMwXu1V2qq//cwGGum
0Qn8f46UPPu44NoFGjRokN+ltBhvBI9L4P9pIjOzVZKKnHM7zCxX0gzn3Bn12jT1eKNQ0rvOuXMa
2VZCH48AOHlVVVX62c+eVk3N7erQoZff5SCGbN78Nz300GD169fP71JaTFOPR6IxAmGxpH6hP9jb
JI2UNCoK/caVqVOlP/3JOwFNSzv+SXikV3q61K7d0fOa22dDr4b6TPQTZhwtEAgoKytLWVlZEdsG
g8G6kOHI64B27dqjsrLNoXsiHNDu3eU6dKhKZl7QIGWqpqa9nMtUauqRkKE2cEhJaeN72ADAdxMl
3SPpcUl3S3qngTaNHm+YWa5zbnuo3S2SSlq6YACJJy0tTaNGFemppz5UVtY9HJ8ADWh2gOCcC5rZ
/ZKm6shjlVY1u7I4c++93gtIVCkpKerQoYM6dOgQsW11dfVRoxpqRzbs2lWmsrLSuhsw7txZrsOH
axQIHAkbakc2pKUdPbIhLa29UlLS+WMOJKbHJY0zs3+RVCrpdkkyszzp/7d3r8FR3ecdx3/P6rIS
CF1RLFVCYMzawVYiYxNIyjiWb4FQ1zYZxzaxh6Z90+mkbWaadhonbpPJJDOd9EWnSdM3uTVtx82k
Taa5OG2CayuJ00JxBdiEYMnYIAl0MbvCQlgCSfv0xS4gjO7a3aM9+n5mdtg9F+3vj7TaR8+e8z/6
qrvfP0u98UUzu1VSUqnLQP5+rgcAIBw2bbpV69f/j86c6dDq1TcFHQdYcjIyB0L6Wsu8wgBIkgoL
C1VZWanKyspZt7148eJVjYbz589raGhYicSA4vHXlEikjmoYGBjWxYtSJFJ2zZENk5sMl+7ndoYX
AIvh7glJ906xvFfS/ZMeT1lvuPuerAYEsGxEIhF95CP36fOf36uamphSV5AFcAklNoBAFRcXq7i4
WFVVM8+27+7XNBtSRzacVzzeqzNnLs3XcF59fcNSo9TV9ddKzdNm6SMXprtp2nUz75e6uU+//+z7
Xnl+96ufL7Vuqu3Tt+ulEyd+JrPIpJu97fGVW2o8U6+bbr+57nPl/woAgPwWi8W0adMvdezYIdXX
3xZ0HGBJoYEAIC+YmaLRqKLRqKqrq2fc1t31tc/9hb70pT+Qu1++XVo3n9tC9snVft9qk/bsSWp8
fFwTE0lNTCQ1Pp76N5n0a5Zduk1e9/ab+7Xrkslr111aNnmdlGompBohkcuPJ/87ed3bl19adtW6
NW+/SgQAANllZvrwh+/TU099RxMT71JBQVHQkYAlgwYCgNC59AdnWVlZwEmyrE26++67gk4h6UrT
I5lMXnObbvlc1n3921Jzc3PQwwMALDONjY1qbV2jX/xin9asuSPoOMCSQQMBALBoqdMZTJFI5s8V
XbFiRca/JgAAs3nggXv0wgtf09jY7Soq4r0IkFLHiQIAAAAAJqmurtbOnc06ffrnQUcBlgwaCAAA
AAAwhe3b71RJyWGNjAwGHQVYEmggAAAAAMAUVq5cqYcffq/6+v4r6CjAkkADAQAAAACmcccd71NN
zUmdO3c66ChA4GggAAAAAMA0iouL9dhjd+qNN/ZevuQysFzRQAAAAACAGWzefJvWrTunROLVoKMA
gaKBAAAAAAAziEQi2r37Xr355rNyTwYdBwgMDQQAAAAAmMU733mT3v3uYvX3vxR0FCAwNBAAAAAA
YBZmpkcf/YBGR5/XxMRY0HGAQNBAAAAAAIA5WLNmje644zfU2/u/QUcBAkEDAQAAAADm6MEH71Ey
+UuNjY0EHQXIORoIAAAAADBHq1ev1s6dN6u39xdBRwFyjgYCAAAAAMzDjh2tKi4+qNHRs0FHAXKK
BgIAAAAAzENZWZk+9KEt6ut7LugoQE7RQAAAAACAebrzzt9UZeVrOneuN+goQM7QQAAAAACAeYpG
o3rssffrzJlng44C5AwNBAAAAABYgPe853atWXNWicTxoKMAOUEDAQAAAAAWoKCgQLt336OzZ/fK
3VX5U38AAA09SURBVIOOA2QdDQQAAAAAWKCbb96od72rUAMDLwcdBcg6GggAAAAAsEBmpkceuU9v
vfWcksnxoOMAWUUDAQAAAAAWYe3atdq27Tr19h4IOgqQVTQQAAAAAGCRdu26VxMTL2hsbCToKEDW
0EAAAAAAgEWqra3V9u03qbf3haCjAFlDAwEAAAAAMmDnzrtUVNSu0dE3g44CZAUNBAAAAADIgFWr
VmnXrs3q63s+6ChAVtBAAAAAAIAMaW3dpoqKTg0P9wcdBcg4GggAAAAAkCElJSV69NH3a2Dg2aCj
ABlHAwEAAAAAMmjr1s1qbDyjwcHXg44CZBQNBAAAAADIoIKCAu3efY8GB/dqdPSs3D3oSEBGFAYd
AAAAAADCprn5Fn3gA51qb/+G+vtHZFYlsxpNTFQrGq1RaWmNVqyoUVHRSplZ0HGBOaGBAABYUtpO
tKntRJsk6c61d+qzbZ+VJLWua1XrutbAcgEAMB9mpiee2KUnnpAuXryoRCKheDyuM2cS6unpUlfX
QZ0+Hdfw8ITMqiXVyL1G0Wi1VqxINRiKikqDHgZwFRoIAIAlhUYBACBsiouLVVdXp7q6umvWjYyM
XG4uDAzE1dPzqrq79+v06bhGRwtkVi33GkmppkJpaarBUFBQnPuBYNmjgQAAAAAAASktLVVDQ4Ma
GhquWu7uOn/+/OXmQn9/XF1dR3TqVEK9vQmNj5fIrEbJZLXMai4ftVBaWqVIhD/zkB38ZAEAAADA
EmNmKisrU1lZmZqamq5a5+4aGhpSPB5XIpFQX19cJ0+eVE9PXKdOvSn3ssvNhYKCK/MtlJRUyox5
9LFwNBAAhAbnzgMAgOXAzFRRUaGKigqtX7/+qnXJZFJnz55VPB5XPB7X6dMJdXd3qqcnru7uYUkV
6eZCjQoLr8y3EI2WM5kjZmW5uqSImTmXLwGAxZncJGk70Xa5MUKTJH+Zmdydii1HqEcALGfj4+Ma
HBxMT+YY16lTcXV3J3TqVFxnz45evlJEMlmj4uIr8y0s9ytF9PT8sz75yfdqw4YNQUfJmrnWIxyB
AAB5hEYBAABYqMLCQtXW1qq2tvaadRcuXFAikVAikdAbb8TV03NC3d3tl68UEYnUyD01oWNJyZUJ
HblSxPJCAwEAAAAAlrloNKr6+nrV19dfs25kZOTyfAsDA3F1d3eouzuu3t6ERkcLJK1VcXFM1dUx
RaOrch8eOUMDAQAAAAAwrdLSUjU2NqqxsfGq5e6uc+fO6fXXX9fBg5168cW96u+vkHtMlZUxlZc3
MmljyNBAAAAAAADMm5mpvLxcLS0tamlp0Z49SfX09Ojo0Q7t2/eMTp4ckvsNKi29UVVVN6i4eGXQ
kbFINBAAAAAAAIsWiUTU1NSkpqYm7dhxr4aGhtTR0an29qNqb39GFy/WSoqpqiqmsrL6ZT0xY76i
gQAAAAAAyLjy8nJt3ny7Nm++XePj4+rq6tLRo53at+97OnlyRGYxlZbGVF19gwoLS4KOizmggQAA
AAAAyKrCwkKtX79e69ev1/33b9fg4KA6Ojr14ouHdPjw9zU+Xi8pNRHjypXv4OiEJYoGAgAAAAAg
p6qqqrR16xZt3bpFY2NjOnHihI4c6dS+ff+irq6k3GMqK7tRVVXXq6CgOOi4SKOBAAAAAAAITFFR
kWKxmGKxmB566IOKx+N65ZVOHTiwX0eOfFfJ5BpFIqmjE0pLqzk6IUA0EAAAAAAAS4KZafXq1Vq9
erW2bXufLly4oNdee00vvdSp/ft/qa6uIkkxrVoVU2XlOkUi/EmbS/xvAwAAAACWpGg0qo0bN2rj
xo165BFXf3+/jh3r1IEDP9exY/8q97UqKIippiamkpLKoOOGHg0EAAAAAMCSZ2aqq6tTXV2dWlvv
0MjIiI4fP65Dhzp14ECbBgZWyD2m8vKYKiqaFIkUBB05dGggAAAAAADyTmlpqZqbm9Xc3KzHH3ed
Pn1ax451av/+Z/Xqq3G5X6/i4htVXb1B0eiqoOOGAg0EAAAAAEBeMzM1NDSooaFB99zTquHhYR0/
flwHD3bqwIGfamSkUlJMFRUxlZc3yCwSdOS8RAMBAAAAABAqZWVlamlpUUtLi/bsSaqnp0dHj3Zo
374f6eTJIUkbVFISU3X1BhUVrQg6bt6ggQAAAAAACK1IJKKmpiY1NTVpx457NTQ0pI6OTrW3H1V7
+zO6eLFWUkxVVTGVldVzmcgZ0EAAAAAAACwb5eXl2rz5dm3efLvGx8fV1dWlo0c7tW/f99TVNSpp
g0pLY6quvkGFhSVBx11SzN1z80RmnqvnAgAgX5iZ3J2POnKEegQAMJPBwUF1dHTqxRc7dfhwl8bH
63X+/KC+8IXf1oYNG4KOlzVzrUcWNXOEmT1sZkfMbMLMblvM1wqDtra2oCNkHWMMB8YYDowRYWFm
VWb2UzN7xcx+YmYV02z3dTPrN7OXFrL/crEcXjeMMRwYYziEbYxVVVXaunWLPvaxx/WVr/ypnnxy
m269dUy1tbVBR1sSFjv15MuSdkn6WQay5L2wvXimwhjDgTGGA2NEiHxS0rPufpOk5yQ9Oc1235S0
fRH7LwvL4XXDGMOBMYZDmMdYVFSkWCymCxfeUkXFsu5NX7aoBoK7v+LunZI49BIAACzUg5K+lb7/
LUkPTbWRu78gaXCh+wMAgMXh4pcAACBo73D3fkly9z5J78jx/gAAYA5mnUTRzPZKum7yIkku6dPu
/sP0Ns9L+oS7t8/wdZixCACAKSyHSRRnqCeekvQP7l49adu4u9dM83XWSvqhu7970rLEPPanHgEA
YApzqUdmvYyju9+XqzAAACCcZqon0hMjXufu/WZWJ2lgnl9+zvtTjwAAsHCZPIWBN2QAALAQP5D0
0fT935H0/Rm2NV1bc8xnfwAAsECznsIw485mD0n6sqTVks5KOuTuH8xQNgAAsAyYWbWk70haI+mk
pEfc/ayZ1Uv6qrvfn97uaUmtkmok9Uv6jLt/c7r9cz8SAADCbVENBAAAAAAAsDwEchUGM/uEmSXT
nxiEipl9zswOm9lBM/vP9LmYoWJmXzSzX5vZITP7rpmVB50p08zsYTM7YmYTZnZb0Hkyycx2mNkx
M+swsz8POk+mmdnX0+dTvxR0lmwxs0Yze87MfmVmL5vZHwedKdPMLGpm+9O/S182s88EnSlbzCxi
Zu1m9oOgsyw31CP5jXokv1GP5D/qkXCZaz2S8waCmTVKuk+pQwzD6Ivu3uLumyQ9IymMP2Q/lXSL
u98qqVPSkwHnyYaXJe2S9LOgg2SSmUUk/Z2k7ZJukbTbzN4ZbKqM+6ZS4wuzcUl/4u63SHqfpI+F
7fvo7hck3ZX+XXqrpA+a2ZaAY2XLxyUdDTrEckM9EgrUI3mKeiQ0qEfCZU71SBBHIPyNpD8L4Hlz
wt2HJz1cKSkZVJZscfdn3f3SuPZJagwyTza4+yvu3qnwTQ66RVKnu5909zFJ35b0YMCZMsrdX5A0
GHSObHL3Pnc/lL4/LOnXkhqCTZV57v5W+m5UqasGhe6cu/QfsTslfS3oLMsQ9Uieox7Ja9QjIUA9
Eh7zqUdy2kAwswckdbv7y7l83lwzs8+bWZekj0j6y6DzZNnvSfqPoENgzhokdU963KMQ/qJfTsxs
nVId8f3BJsm89KF0ByX1Sdrr7geCzpQFl/6IDV0xspRRj4QS9Uh+oR4JGeqRvDfneqQw089sZnsl
XTd5UTrIU5I+pdThgpPX5Z0Zxvhpd/+huz8l6an0+Vx/JOmzuU+5OLONMb3NpyWNufvTAURctLmM
EVjKzKxM0r9J+vjbPm0MhfQni5vS5zX/u5nd7O6hOdTfzH5LUr+7HzKzVuXpe+JSRT1CPZIvqEeQ
76hH8tt865GMNxDc/b6plptZs6R1kg6bmSl1mNn/mdkWdx/IdI5smm6MU3ha0o+Vh2/Ys43RzD6q
1GEud+ckUBbM4/sYJqckNU163JhehjxjZoVKvVn/k7uH+pr37j5kZs9L2qFwzRWwTdIDZrZTUqmk
VWb2j+6+J+BcoUA9chXqkSWMekQS9Ujeoh4JhXnVIzk7hcHdj7h7nbuvd/frlTpUaVO+vVnPxsw2
THr4kFLnAoWKme1Q6hCXB9ITi4RdXn4yNY0DkjaY2VozK5b0mKQwzvxuCtf3bSrfkHTU3f826CDZ
YGarzawifb9UqU+LjwWbKrPc/VPu3uTu65V6LT5H8yD7qEfCg3okr1GPhAf1SJ6bbz0SyGUc01zh
fEH9lZm9ZGaHJN2r1GyWYfNlSWWS9qYv9fH3QQfKNDN7yMy6Jb1X0o/MLBTnVbr7hKQ/VGrm6l9J
+ra7h6qoNLOnJf23pBvNrMvMfjfoTJlmZtskPS7p7vRlhdrThXSY1Et6Pv27dL+kn7j7jwPOhHCi
Hslf1CN5inokHKhHlidzZ94mAAAAAAAwsyCPQAAAAAAAAHmCBgIAAAAAAJgVDQQAAAAAADArGggA
AAAAAGBWNBAAAAAAAMCsaCAAAAAAAIBZ0UAAAAAAAACz+n9WbX+0Yscg8AAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Conclusion-and-Summary">Conclusion and Summary<a class="anchor-link" href="#Conclusion-and-Summary">&#182;</a></h1><p>I guess the most important thing to summarize with is this: <strong>looking at the entire market, stock performance prior to an earnings release has no bearing on the stock's performance.</strong> Honestly: given the huge variability of returns after an earnings release, even when the stock has been trending for a long time, you're best off divesting before an earnings release and letting the market sort itself out.</p>
<p><em>However</em>, there is a big caveat. These results are taken when we look at the entire market. So while we can say that the market as a whole knows nothing and just reacts violently, I want to take a closer look into this data. Does the market typically perform poorly on large-cap/high liquidity stocks? Do smaller companies have investors that know them better and can thus predict performance better? Are specific market sectors better at prediction? Presumably technology stocks are more volatile than the industrials.</p>
<p>So there are some more interesting questions I still want to ask with this data. Knowing that the hard work of data processing is largely already done, it should be fairly simple to continue this analysis and get much more refined with it. Until next time.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Appendix">Appendix<a class="anchor-link" href="#Appendix">&#182;</a></h1><p>Export event data for Russell 3000 companies:</p>
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">html.parser</span> <span class="kn">import</span> <span class="n">HTMLParser</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">timedelta</span>
<span class="kn">import</span> <span class="nn">requests</span>
<span class="kn">import</span> <span class="nn">re</span>
<span class="kn">from</span> <span class="nn">dateutil</span> <span class="kn">import</span> <span class="n">parser</span>
<span class="kn">import</span> <span class="nn">progressbar</span>
<span class="kn">from</span> <span class="nn">concurrent</span> <span class="kn">import</span> <span class="n">futures</span>
<span class="kn">import</span> <span class="nn">yaml</span>
<span class="k">class</span> <span class="nc">EarningsParser</span><span class="p">(</span><span class="n">HTMLParser</span><span class="p">):</span>
<span class="n">store_dates</span> <span class="o">=</span> <span class="bp">False</span>
<span class="n">earnings_offset</span> <span class="o">=</span> <span class="bp">None</span>
<span class="n">dates</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">__init__</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dates</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">def</span> <span class="nf">handle_starttag</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tag</span><span class="p">,</span> <span class="n">attrs</span><span class="p">):</span>
<span class="k">if</span> <span class="n">tag</span> <span class="o">==</span> <span class="s1">&#39;table&#39;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">store_dates</span> <span class="o">=</span> <span class="bp">True</span>
<span class="k">def</span> <span class="nf">handle_data</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">store_dates</span><span class="p">:</span>
<span class="n">match</span> <span class="o">=</span> <span class="n">re</span><span class="o">.</span><span class="n">match</span><span class="p">(</span><span class="s1">r&#39;\d+/\d+/\d+&#39;</span><span class="p">,</span> <span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="n">match</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dates</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">match</span><span class="o">.</span><span class="n">group</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
<span class="c1"># If a company reports before the bell, record the earnings date</span>
<span class="c1"># being at midnight the day before. Ex: WMT reports 5/19/2016,</span>
<span class="c1"># but we want the reference point to be the closing price on 5/18/2016</span>
<span class="k">if</span> <span class="s1">&#39;After Close&#39;</span> <span class="ow">in</span> <span class="n">data</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">earnings_offset</span> <span class="o">=</span> <span class="n">timedelta</span><span class="p">(</span><span class="n">days</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">elif</span> <span class="s1">&#39;Before Open&#39;</span> <span class="ow">in</span> <span class="n">data</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">earnings_offset</span> <span class="o">=</span> <span class="n">timedelta</span><span class="p">(</span><span class="n">days</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">handle_endtag</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tag</span><span class="p">):</span>
<span class="k">if</span> <span class="n">tag</span> <span class="o">==</span> <span class="s1">&#39;table&#39;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">store_dates</span> <span class="o">=</span> <span class="bp">False</span>
<span class="k">def</span> <span class="nf">earnings_releases</span><span class="p">(</span><span class="n">ticker</span><span class="p">):</span>
<span class="c1">#print(&quot;Looking up ticker {}&quot;.format(ticker))</span>
<span class="n">user_agent</span> <span class="o">=</span> <span class="s1">&#39;Mozilla/5.0 (Windows NT 10.0; WOW64; rv:46.0) &#39;</span>\
<span class="s1">&#39;Gecko/20100101 Firefox/46.0&#39;</span>
<span class="n">headers</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;user-agent&#39;</span><span class="p">:</span> <span class="n">user_agent</span><span class="p">}</span>
<span class="n">base_url</span> <span class="o">=</span> <span class="s1">&#39;http://www.streetinsider.com/ec_earnings.php?q={}&#39;</span>\
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">ticker</span><span class="p">)</span>
<span class="n">e</span> <span class="o">=</span> <span class="n">EarningsParser</span><span class="p">()</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">requests</span><span class="o">.</span><span class="n">Session</span><span class="p">()</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">requests</span><span class="o">.</span><span class="n">adapters</span><span class="o">.</span><span class="n">HTTPAdapter</span><span class="p">(</span><span class="n">max_retries</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">s</span><span class="o">.</span><span class="n">mount</span><span class="p">(</span><span class="s1">&#39;http://&#39;</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
<span class="n">e</span><span class="o">.</span><span class="n">feed</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">s</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">base_url</span><span class="p">,</span> <span class="n">headers</span><span class="o">=</span><span class="n">headers</span><span class="p">)</span><span class="o">.</span><span class="n">content</span><span class="p">))</span>
<span class="k">if</span> <span class="n">e</span><span class="o">.</span><span class="n">earnings_offset</span> <span class="ow">is</span> <span class="ow">not</span> <span class="bp">None</span><span class="p">:</span>
<span class="n">dates</span> <span class="o">=</span> <span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">parser</span><span class="o">.</span><span class="n">parse</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">+</span> <span class="n">e</span><span class="o">.</span><span class="n">earnings_offset</span><span class="p">,</span> <span class="n">e</span><span class="o">.</span><span class="n">dates</span><span class="p">)</span>
<span class="n">past</span> <span class="o">=</span> <span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="n">datetime</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="n">dates</span><span class="p">)</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">d</span><span class="p">:</span> <span class="n">d</span><span class="o">.</span><span class="n">isoformat</span><span class="p">(),</span> <span class="n">past</span><span class="p">))</span>
<span class="c1"># Use a Russell-3000 ETF tracker (ticker IWV) to get a list of holdings</span>
<span class="n">r3000</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;https://www.ishares.com/us/products/239714/&#39;</span>
<span class="s1">&#39;ishares-russell-3000-etf/1449138789749.ajax?&#39;</span>
<span class="s1">&#39;fileType=csv&amp;fileName=IWV_holdings&amp;dataType=fund&#39;</span><span class="p">,</span>
<span class="n">header</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="n">r3000_equities</span> <span class="o">=</span> <span class="n">r3000</span><span class="p">[(</span><span class="n">r3000</span><span class="p">[</span><span class="s1">&#39;Exchange&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;NASDAQ&#39;</span><span class="p">)</span> <span class="o">|</span>
<span class="p">(</span><span class="n">r3000</span><span class="p">[</span><span class="s1">&#39;Exchange&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;New York Stock Exchange Inc.&#39;</span><span class="p">)]</span>
<span class="n">dates_file</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;earnings_dates.yaml&#39;</span><span class="p">,</span> <span class="s1">&#39;w&#39;</span><span class="p">)</span>
<span class="k">with</span> <span class="n">futures</span><span class="o">.</span><span class="n">ThreadPoolExecutor</span><span class="p">(</span><span class="n">max_workers</span><span class="o">=</span><span class="mi">8</span><span class="p">)</span> <span class="k">as</span> <span class="n">pool</span><span class="p">:</span>
<span class="n">fs</span> <span class="o">=</span> <span class="p">{</span><span class="n">pool</span><span class="o">.</span><span class="n">submit</span><span class="p">(</span><span class="n">earnings_releases</span><span class="p">,</span> <span class="n">r3000_equities</span><span class="o">.</span><span class="n">ix</span><span class="p">[</span><span class="n">t</span><span class="p">][</span><span class="s1">&#39;Ticker&#39;</span><span class="p">]):</span> <span class="n">t</span>
<span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">r3000_equities</span><span class="o">.</span><span class="n">index</span><span class="p">}</span>
<span class="n">pbar</span> <span class="o">=</span> <span class="n">progressbar</span><span class="o">.</span><span class="n">ProgressBar</span><span class="p">(</span><span class="n">term_width</span><span class="o">=</span><span class="mi">80</span><span class="p">,</span>
<span class="n">max_value</span><span class="o">=</span><span class="n">r3000_equities</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
<span class="k">for</span> <span class="n">future</span> <span class="ow">in</span> <span class="n">futures</span><span class="o">.</span><span class="n">as_completed</span><span class="p">(</span><span class="n">fs</span><span class="p">):</span>
<span class="n">i</span> <span class="o">=</span> <span class="n">fs</span><span class="p">[</span><span class="n">future</span><span class="p">]</span>
<span class="n">pbar</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
<span class="n">dates_file</span><span class="o">.</span><span class="n">write</span><span class="p">(</span><span class="n">yaml</span><span class="o">.</span><span class="n">dump</span><span class="p">({</span><span class="n">r3000_equities</span><span class="o">.</span><span class="n">ix</span><span class="p">[</span><span class="n">i</span><span class="p">][</span><span class="s1">&#39;Ticker&#39;</span><span class="p">]:</span>
<span class="n">future</span><span class="o">.</span><span class="n">result</span><span class="p">()}))</span>
</pre></div>
<p>Downloading stock price data needed for the event studies:</p>
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">secrets</span> <span class="kn">import</span> <span class="n">QUANDL_KEY</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">yaml</span>
<span class="kn">from</span> <span class="nn">dateutil.parser</span> <span class="kn">import</span> <span class="n">parse</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">timedelta</span>
<span class="kn">import</span> <span class="nn">quandl</span>
<span class="kn">from</span> <span class="nn">progressbar</span> <span class="kn">import</span> <span class="n">ProgressBar</span>
<span class="k">def</span> <span class="nf">fetch_ticker</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">end</span><span class="p">):</span>
<span class="c1"># Quandl is currently giving me issues with returning</span>
<span class="c1"># the entire dataset and not slicing server-side.</span>
<span class="c1"># So instead, we&#39;ll do it client-side!</span>
<span class="n">q_format</span> <span class="o">=</span> <span class="s1">&#39;%Y-%m-</span><span class="si">%d</span><span class="s1">&#39;</span>
<span class="n">ticker_data</span> <span class="o">=</span> <span class="n">quandl</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;YAHOO/&#39;</span> <span class="o">+</span> <span class="n">ticker</span><span class="p">,</span>
<span class="n">start_date</span><span class="o">=</span><span class="n">start</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="n">q_format</span><span class="p">),</span>
<span class="n">end_date</span><span class="o">=</span><span class="n">end</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="n">q_format</span><span class="p">),</span>
<span class="n">authtoken</span><span class="o">=</span><span class="n">QUANDL_KEY</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ticker_data</span>
<span class="n">data_str</span> <span class="o">=</span> <span class="nb">open</span><span class="p">(</span><span class="s1">&#39;earnings_dates.yaml&#39;</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">read</span><span class="p">()</span>
<span class="c1"># Need to remove invalid lines</span>
<span class="n">filtered</span> <span class="o">=</span> <span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="s1">&#39;{&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">x</span><span class="p">,</span> <span class="n">data_str</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">))</span>
<span class="n">earnings_data</span> <span class="o">=</span> <span class="n">yaml</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">filtered</span><span class="p">))</span>
<span class="c1"># Get the first 1500 keys - split up into two statements</span>
<span class="c1"># because of Quandl rate limits</span>
<span class="n">tickers</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">earnings_data</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span>
<span class="n">price_dict</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">invalid_tickers</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">ticker</span> <span class="ow">in</span> <span class="n">ProgressBar</span><span class="p">()(</span><span class="n">tickers</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="mi">1500</span><span class="p">]):</span>
<span class="k">try</span><span class="p">:</span>
<span class="c1"># Replace &#39;.&#39; with &#39;-&#39; in name for some tickers</span>
<span class="n">fixed</span> <span class="o">=</span> <span class="n">ticker</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">)</span>
<span class="n">event_strs</span> <span class="o">=</span> <span class="n">earnings_data</span><span class="p">[</span><span class="n">ticker</span><span class="p">]</span>
<span class="n">events</span> <span class="o">=</span> <span class="p">[</span><span class="n">parse</span><span class="p">(</span><span class="n">event</span><span class="p">)</span> <span class="k">for</span> <span class="n">event</span> <span class="ow">in</span> <span class="n">event_strs</span><span class="p">]</span>
<span class="n">td</span> <span class="o">=</span> <span class="n">timedelta</span><span class="p">(</span><span class="n">days</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">price_dict</span><span class="p">[</span><span class="n">ticker</span><span class="p">]</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="n">fixed</span><span class="p">,</span>
<span class="nb">min</span><span class="p">(</span><span class="n">events</span><span class="p">)</span><span class="o">-</span><span class="n">td</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="n">events</span><span class="p">)</span><span class="o">+</span><span class="n">td</span><span class="p">)</span>
<span class="k">except</span> <span class="n">quandl</span><span class="o">.</span><span class="n">NotFoundError</span><span class="p">:</span>
<span class="n">invalid_tickers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ticker</span><span class="p">)</span>
<span class="c1"># Execute this after 10 minutes have passed</span>
<span class="k">for</span> <span class="n">ticker</span> <span class="ow">in</span> <span class="n">ProgressBar</span><span class="p">()(</span><span class="n">tickers</span><span class="p">[</span><span class="mi">1500</span><span class="p">:]):</span>
<span class="k">try</span><span class="p">:</span>
<span class="c1"># Replace &#39;.&#39; with &#39;-&#39; in name for some tickers</span>
<span class="n">fixed</span> <span class="o">=</span> <span class="n">ticker</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">)</span>
<span class="n">event_strs</span> <span class="o">=</span> <span class="n">earnings_data</span><span class="p">[</span><span class="n">ticker</span><span class="p">]</span>
<span class="n">events</span> <span class="o">=</span> <span class="p">[</span><span class="n">parse</span><span class="p">(</span><span class="n">event</span><span class="p">)</span> <span class="k">for</span> <span class="n">event</span> <span class="ow">in</span> <span class="n">event_strs</span><span class="p">]</span>
<span class="n">td</span> <span class="o">=</span> <span class="n">timedelta</span><span class="p">(</span><span class="n">days</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">price_dict</span><span class="p">[</span><span class="n">ticker</span><span class="p">]</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="n">fixed</span><span class="p">,</span>
<span class="nb">min</span><span class="p">(</span><span class="n">events</span><span class="p">)</span><span class="o">-</span><span class="n">td</span><span class="p">,</span> <span class="nb">max</span><span class="p">(</span><span class="n">events</span><span class="p">)</span><span class="o">+</span><span class="n">td</span><span class="p">)</span>
<span class="k">except</span> <span class="n">quandl</span><span class="o">.</span><span class="n">NotFoundError</span><span class="p">:</span>
<span class="n">invalid_tickers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ticker</span><span class="p">)</span>
<span class="n">prices_store</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">HDFStore</span><span class="p">(</span><span class="s1">&#39;price_data.hdf&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">ticker</span><span class="p">,</span> <span class="n">prices</span> <span class="ow">in</span> <span class="n">price_dict</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="n">prices_store</span><span class="p">[</span><span class="n">ticker</span><span class="p">]</span> <span class="o">=</span> <span class="n">prices</span>
</pre></div>
</div>
</div>
</div></p>
<script type="text/x-mathjax-config">
//MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\(','\)']]}});
MathJax.Hub.Config({tex2jax: {inlineMath: [['\$','\$']]}});
</script>
<script async src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML'></script>
<div class="comments">
<div id="disqus_thread"></div>
<script type="text/javascript">
var disqus_shortname = 'bradleespeice';
var disqus_identifier = 'event-studies-and-earnings-releases.html';
var disqus_url = 'https://bspeice.github.io/event-studies-and-earnings-releases.html';
(function() {
var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
})();
</script>
<noscript>Please enable JavaScript to view the comments.</noscript>
</div>
</div>
<!-- /Content -->
<!-- Footer -->
<div class="footer gradient-2">
<div class="container footer-container ">
<div class="row">
<div class="col-xs-4 col-sm-3 col-md-3 col-lg-3">
<div class="footer-title"></div>
<ul class="list-unstyled">
<li><a href="https://bspeice.github.io/feeds/all.atom.xml" type="application/atom+xml" rel="alternate"></a></li>
</ul>
</div>
<div class="col-xs-4 col-sm-3 col-md-3 col-lg-3">
<div class="footer-title"></div>
<ul class="list-unstyled">
<li><a href="https://github.com/bspeice" target="_blank">Github</a></li>
<li><a href="https://www.linkedin.com/in/bradleespeice" target="_blank">LinkedIn</a></li>
</ul>
</div>
<div class="col-xs-4 col-sm-3 col-md-3 col-lg-3">
</div>
<div class="col-xs-12 col-sm-3 col-md-3 col-lg-3">
<p class="pull-right text-right">
<small><em>Proudly powered by <a href="http://docs.getpelican.com/" target="_blank">pelican</a></em></small><br/>
<small><em>Theme and code by <a href="https://github.com/molivier" target="_blank">molivier</a></em></small><br/>
<small></small>
</p>
</div>
</div>
</div>
</div>
<!-- /Footer -->
</body>
</html>