bspeice.github.io/event-studies-and-earnings-releases.html
2018-01-16 20:28:29 -05:00

5377 lines
427 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="Or, being suspicious of market insiders. Use the button below to show the code I&#39;ve used to generate this article. Because there is a significant amount more code involved than most other posts ...">
<meta name="keywords" content="earnings, event study">
<link rel="icon" href="https://bspeice.github.io/favicon.ico">
<title>Event Studies and Earnings Releases - Bradlee Speice</title>
<!-- Stylesheets -->
<link href="https://bspeice.github.io/theme/css/bootstrap.min.css" rel="stylesheet">
<link href="https://bspeice.github.io/theme/css/fonts.css" rel="stylesheet">
<link href="https://bspeice.github.io/theme/css/nest.css" rel="stylesheet">
<link href="https://bspeice.github.io/theme/css/pygment.css" rel="stylesheet">
<!-- /Stylesheets -->
<!-- RSS Feeds -->
<link href="https://bspeice.github.io/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Bradlee Speice Full Atom Feed" />
<link href="https://bspeice.github.io/feeds/blog.atom.xml" type="application/atom+xml" rel="alternate" title="Bradlee Speice Categories Atom Feed" />
<!-- /RSS Feeds -->
<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
<!-- Google Analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-74711362-1', 'auto');
ga('send', 'pageview');
</script>
<!-- /Google Analytics -->
</head>
<body>
<!-- Header -->
<div class="header-container gradient">
<!-- Static navbar -->
<div class="container">
<div class="header-nav">
<div class="header-logo">
<a class="pull-left" href="https://bspeice.github.io/"><img class="mr20" src="https://bspeice.github.io/images/logo.svg" alt="logo">Bradlee Speice</a>
</div>
<div class="nav pull-right">
</div>
</div>
</div>
<!-- /Static navbar -->
<!-- Header -->
<!-- Header -->
<div class="container header-wrapper">
<div class="row">
<div class="col-lg-12">
<div class="header-content">
<h1 class="header-title">Event Studies and Earnings Releases</h1>
<p class="header-date"> <a href="https://bspeice.github.io/author/bradlee-speice.html">Bradlee Speice</a>, Wed 08 June 2016, <a href="https://bspeice.github.io/category/blog.html">Blog</a></p>
<div class="header-underline"></div>
<div class="clearfix"></div>
<p class="pull-right header-tags">
<span class="glyphicon glyphicon-tags mr5" aria-hidden="true"></span>
<a href="https://bspeice.github.io/tag/earnings.html">earnings</a>, <a href="https://bspeice.github.io/tag/event-study.html">event study</a> </p>
</div>
</div>
</div>
</div>
<!-- /Header -->
<!-- /Header -->
</div>
<!-- /Header -->
<!-- Content -->
<div class="container content">
<script type="text/javascript" src="https://cdn.jsdelivr.net/jquery/3.0.0/jquery.min.js"></script>
<p>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>Or, being suspicious of market insiders.</p>
<hr>
<p>Use the button below to show the code I've used to generate this article. Because there is a significant amount more code involved than most other posts I've written, it's hidden by default to allow people to concentrate on the important bits.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="k">import</span> <span class="n">HTML</span>
<span class="n">HTML</span><span class="p">(</span><span class="s1">&#39;&#39;&#39;&lt;script&gt;</span>
<span class="s1">code_show=true; </span>
<span class="s1">function code_toggle() {</span>
<span class="s1"> if (code_show){</span>
<span class="s1"> $(&#39;div.input&#39;).hide();</span>
<span class="s1"> } else {</span>
<span class="s1"> $(&#39;div.input&#39;).show();</span>
<span class="s1"> }</span>
<span class="s1"> code_show = !code_show</span>
<span class="s1">} </span>
<span class="s1">$( document ).ready(code_toggle);</span>
<span class="s1">&lt;/script&gt;</span>
<span class="s1">&lt;form action=&quot;javascript:code_toggle()&quot;&gt;&lt;input type=&quot;submit&quot; value=&quot;Click here to toggle on/off the raw code.&quot;&gt;&lt;/form&gt;&#39;&#39;&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt output_prompt">Out[1]:</div>
<div class="output_html rendered_html output_subarea output_execute_result">
<script>
code_show=true;
function code_toggle() {
if (code_show){
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$( document ).ready(code_toggle);
</script>
<form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="The-Market-Just-Knew">The Market Just Knew<a class="anchor-link" href="#The-Market-Just-Knew">&#182;</a></h1><p>I recently saw two examples of stock charts that have kept me thinking for a while. And now that the semester is complete, I finally have enough time to really look at them and give them the treatment they deserve. The first is good old Apple:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="kn">from</span> <span class="nn">secrets</span> <span class="k">import</span> <span class="n">QUANDL_KEY</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">matplotlib.dates</span> <span class="k">import</span> <span class="n">date2num</span>
<span class="kn">from</span> <span class="nn">matplotlib.finance</span> <span class="k">import</span> <span class="n">candlestick_ohlc</span>
<span class="kn">from</span> <span class="nn">matplotlib.dates</span> <span class="k">import</span> <span class="n">DateFormatter</span><span class="p">,</span> <span class="n">WeekdayLocator</span><span class="p">,</span>\
<span class="n">DayLocator</span><span class="p">,</span> <span class="n">MONDAY</span>
<span class="kn">import</span> <span class="nn">quandl</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="k">import</span> <span class="n">datetime</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="o">%</span><span class="k">matplotlib</span> inline
<span class="k">def</span> <span class="nf">fetch_ticker</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">end</span><span class="p">):</span>
<span class="c1"># Quandl is currently giving me issues with returning</span>
<span class="c1"># the entire dataset and not slicing server-side.</span>
<span class="c1"># So instead, we&#39;ll do it client-side!</span>
<span class="n">q_format</span> <span class="o">=</span> <span class="s1">&#39;%Y-%m-</span><span class="si">%d</span><span class="s1">&#39;</span>
<span class="n">ticker_data</span> <span class="o">=</span> <span class="n">quandl</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;YAHOO/&#39;</span> <span class="o">+</span> <span class="n">ticker</span><span class="p">,</span>
<span class="n">start_date</span><span class="o">=</span><span class="n">start</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="n">q_format</span><span class="p">),</span>
<span class="n">end_date</span><span class="o">=</span><span class="n">end</span><span class="o">.</span><span class="n">strftime</span><span class="p">(</span><span class="n">q_format</span><span class="p">),</span>
<span class="n">authtoken</span><span class="o">=</span><span class="n">QUANDL_KEY</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ticker_data</span>
<span class="k">def</span> <span class="nf">ohlc_dataframe</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="c1"># Much of this code re-used from:</span>
<span class="c1"># http://matplotlib.org/examples/pylab_examples/finance_demo.html</span>
<span class="k">if</span> <span class="n">ax</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">f</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
<span class="n">vals</span> <span class="o">=</span> <span class="p">[(</span><span class="n">date2num</span><span class="p">(</span><span class="n">date</span><span class="p">),</span> <span class="o">*</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">date</span><span class="p">]))</span>
<span class="k">for</span> <span class="n">date</span> <span class="ow">in</span> <span class="n">data</span><span class="o">.</span><span class="n">index</span><span class="p">]</span>
<span class="n">candlestick_ohlc</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">vals</span><span class="p">)</span>
<span class="n">mondays</span> <span class="o">=</span> <span class="n">WeekdayLocator</span><span class="p">(</span><span class="n">MONDAY</span><span class="p">)</span>
<span class="n">alldays</span> <span class="o">=</span> <span class="n">DayLocator</span><span class="p">()</span>
<span class="n">weekFormatter</span> <span class="o">=</span> <span class="n">DateFormatter</span><span class="p">(</span><span class="s1">&#39;%b </span><span class="si">%d</span><span class="s1">&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_major_locator</span><span class="p">(</span><span class="n">mondays</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_minor_locator</span><span class="p">(</span><span class="n">alldays</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_major_formatter</span><span class="p">(</span><span class="n">weekFormatter</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ax</span>
<span class="n">AAPL</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="s1">&#39;AAPL&#39;</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">AAPL</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Apple Price 3/1/2016 - 5/1/2016&quot;</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWd//HXu1D40bRJ0yJJtaUtClJQEFbkKgRdtsIu
FwUR+CEg6HpDWDSr6PrbpojKJeKusAishYJSFcUtKIKAENyiqCsod+RiWygkwLaQNlwK6ef3xzmJ
0+lMMrnMzMnk/Xw85pGZc75zvp85mfnMd77n+z1HEYGZmY19E6odgJmZjQ4ndDOzGuGEbmZWI5zQ
zcxqhBO6mVmNcEI3M6sRTujjlKQTJf13her6tqR/qURdZuOZE/oYIKlD0mpJE0d508OahJDG87Kk
bknPSrpWUlPRSiI+GRFfHX6YBWP4kKSHJb0oqVPSFZIm55WZIenJ9P6nJf1e0iuSLi+yzTMlnS1p
T0k3S/pfSV2SfiipOa/suZKel/ScpHPy1p0l6V5Jr0n61wL1bC3pakkvpHV8dwT7YYGk9en/Ym36
d05emb0k3VlKbGmZSyR9VNIhkv5b0hpJT0u6TFJdTrktJF2e/g+elnRG3nYuTf9HvZJOKFDPXEk/
zXkfnZNfxobGCT3jJM0G9gM2AIdVOZw+AXwqIuqBHYCpwDcLFZRUrvfYncD+EdEAbAdMBM7OK3MI
cGN6fxXwFWDRANv8e+DnQCNwKTA7va0DrugrJOnjJP+LtwO7AIdK+sec7TwK/DPwsyL1/AR4GpgJ
bAO0DxBTKX4QEfURMSX9u7zA67qhxNgADibZDw0k+2wGMC+N9/yccguBNwOzgPcAn5f0dznr/wh8
EvhDfgVp4+QW4FaSfTAT+N6gr9QG5ISefScAvwEWAyflrkhbpd9OW5Pdkm6XtG3O+g2SPiPp8bQF
dF6xSiTtmNMqfUjSBweJSwAR8QJwLfC2nJgulnSDpLVAS7rsrJy6Dpd0T9qye7QvCUiql/SdtLX3
pKSvSFKhyiPiqYh4Nn04AegF3pJX7BCSxERELI2I64HVRV7/VGB74DcRcVNEXBsR6yLiFeAiYJ+c
4icA34iIZyLiGZKEfFJObN+NiF+QfBHk13MQSfL6fLr93oj4U6GYRlHufigaWxrf24E1EfF0RHw/
Im6OiFci4kXgP4F9c4qfAJwVEd0R8TBwGRvvh29HxO3AqwWqOglYFRH/nm5/fUTcP/KXOr45oWff
CSQtlyXAfElvyFt/HElLaTrwJ+DqvPVHALunt8MlnZxfgaRJwM1pPVsDxwD/IWnHwYKTtDVwJHB3
zuJjga9ExBSSlnRu+XcBVwKfS1vX+wPL09VXAutJWty7AQcBHx2g7n0lvQB0Ax8g51eCpM3Tbd8y
2GtIzQd+GYXPhXEA8EDO451J9nWfP6XLSrEX8GfgqrTL5reS9i/xucUcmm7rPkmfyF2RdhVtExF/
LHFbh/DX1ny+/v2QfgHOAO7NWT/U/bBC0s/TbqvbJL2txOdaEU7oGSZpP2Bb4JqIuBt4jCSB57oh
Iu6MiNeAfwH2lvSmnPXnRMSLEfEU8G8kyTbfPwB/iYirIvEnkm6BgVrpF0paDdxD0n3wuZx110XE
XQARkd86OxlYFBG3peufiYg/S9qG5Kf+GWmL7fkB4iV97p0RMRV4E0lXwMqc1fsDf4yIngFeQ66+
7paNSNoF+H9Aa87iycCLOY+702WlmEnyRfVLoAm4ALhO0rQSn5/vhyTdIW8A/hH4V0kfyll/CHDT
ELZXbD8cBHyYZF9A8nqDTffDlBLrmQl8iOR/PCOt87r0i9iGyQk9204Abo6INenj7wMn5pV5su9O
mrxWA2/MWf9Uzv0Veev6zAb2UnLgdbWkNSRfHM0Fyvb5TERMi4hZEfHhiPjfQjEVMAt4vEgME4Fn
cmK4hOQXw4DSbo9fAD/IWdzfzTCYtFvnIPISn6S3pNv4TET8OmfVOqA+53EDRbowCngZWB4Ri9Pu
lh+S7K998wtKOi7nQGfBVnNEPBwRnekX8W+AfweOyikylP3QALwV+HXe8r1IfvkdGRF9/7u+15u/
H9aWUhfJfliWdum8HhHtJL8y55X4fCvA34YZJen/AEcDEyQ9ky7eApgq6e0RcV+6bFbOcyYD00gO
AJKz/qH0/rYkrel8TwIdETF/lMIfaPTMkyQH0gotfwWYXqTbYzATSbpq+hwCvL/E5+5BkmT7v5TS
g9G3AAsjYkle+QeAXYH/SR+/g427ZAZyL8kvolwFX29ab37dgwnS4xtpa/cA8o69DGA+cFvu/pe0
G7AUOCkiOnJieyF9X+5K8muD9P5Q9sM+g5ayIXELPbveD7xO0mLZNb3NA5aRtNz7HCJpH0lbkIxI
+E1E5Cbtf5Y0VdIs4HQ2bsX2+Rmwg6TjJW0uaaKkd5bShz4Mi4CPSDpQiTdKemtEdJL0439T0pR0
3XbF+pfT1uus9P5skhEut6aP5wBbRMQjOeU3S78kNwM2l7SlpM3S1Rv1G6ddVr8ELoyI/yxQ/VXA
Z9PY3wR8lo1HwWye1jUBmJjW1fdZ+y+gUdKHJU2QdBRJl9GdDIOkw9L+7L7jE6eTJGBIRkf9KSLW
5ZQfKLb8/fA2klFCn4mIQq387wJfTt9f84CP5e2HiWldArZI6+o7yP09kl+F70n3wxnAc/y18WHD
ERG+ZfBG8kE6r8DyD5K0sieQfHguJkmEa4EOYHZO2Q3AqSRdHM8B5wFK150I/Cqn7PYkif3ZtOyt
wC5FYrsNOLnIustJRj4UXQYcTnIArZvkAOFB6fIp6et5ElhDMtzt6CL1nJ2WW0vSd/5toDFd92ng
W3nlF6T7ozfn9q/put8Du+eU/dd0fXd6Wwt0523vHOB/geeBr+etu6JAXSfkrN+XpIXaDfwO2GcE
75MlaQzdwIPAp3PWnQ98ttTYgGeArfP+b6/n7IO1wH0567cg+YJ+MX3u6Xl13V6grv1z1h9BMozy
hfQ9Na/an7uxfuv7cBclaRHJT8SuiNglXXYU0EbSYtwjkgN2fS2lh4CH06ffFRGfGrACGzZJVwBP
RkSxCSIbgLdExBOVjay60v7mCyNi0IOB6cHYuyNiZvkjqyxJD5D0ez9cQtk9SPbZXuWPzMqllC6X
K0j61nLdR9IlcEeB8o9FxO7pzcncquH29FaKBjYeoVMTlEzcubKUZJ5jQbniscoY9KBoRCxLW965
yx6B/tEB+QpOBLGyGOzg4bi8vmAkIyZKLfsoyc/+mhLJMNaiE8kKlP99GcOxCinHKJc5ku4m6Vf7
fxGxrAx1GBARm0wSylu/2UDrzay2jHZCfxrYNiLWSNodWCppp8g5ym5mZuUxqgk9/Zm3Jr1/t6TH
SU7edHd+WUnjsjvAzGykIqJg13ap49BF8b7x/uVKTgs6Ib2/HcnJkoqOsFiwYEHBoTeFlg+l7FC3
ccABB1S0vqEsLxRbNeIYyr6rRhy1/r/1vhv+vqvGPh0sPhh+HAMZtIUuaQnQAkyXtJLkSPga4EKS
adk/k/THiDiY5PwZZ0laTzL+9OORnI2voJaWlpKXD6XsULcxZ86citY3lOWFYqtGHEPZd9WIo9b/
t953g8dWjTiq8bkYUKFvgErckqqzYcGCBdUOoagsxxbh+EYiy7FFZDu+LMcWMXh8I0l/ae4smFc9
9Z9hfhNWSJZjA8c3ElmODbIdX5Zjg+rFN+hM0bJVLEW16jYzqyYJhpv+JBEjPChqZmYZ54RuZlYj
nNDNzGqEE7qZWY1wQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZlYjnNDNzGqEE7qZWY1w
QjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZiO2ePHiIS238nBCN7MRW758eenLneTLxgnd
rEpqvfXa3NxMe3v7pitOPRWamysf0DjghG5WJcVatWNRe3s7zXlJuquri56enk0L9/RAV1eFIhtf
Nq92AGY29vX09BRO3lZRbqGbmdUIJ3QzsxrhhG5mZdHU1ERdXV21wxhXnNDNrCw6OztpbW2tdhjj
ihO6mZXNnDlzqh3CuOKEbmZlc9JJJ1U7hHFFEVGdiqWoVt1mWTB58mQmT55MZ2dntUMZMUkAlPSZ
Tssyjj//0vBfviQiQoXWuYVuViU9PT10lTjBptZnldrocAvdrEqG0qrNemveLfShKVcL3TNFzcaA
rM/ErK+vZ6uttqp2GOOeu1zMMmYsdq+8+OKLmf31MJ44oZtlTFZO2jUWv1jGu0ETuqRFkrok3Zuz
7ChJ90vqlbR7XvkvSnpU0kOS/q4cQZuVQ6UTWF1dHU1NTSPbSBljLvTF0tDQsMlZFS07SmmhXwHM
z1t2H/B+4I7chZLmAUcD84CDgYvVd7TELOMq3TJubW0deTdFhWPu7u4ueWSOVd6gCT0ilgFr8pY9
EhGPAvnJ+nDgBxHxekQsBx4F3jVKsZrVlKHMohyV1rzVvNHuQ38T8GTO41XpMjPLM5RZlKPSmrea
V9Vhi21tbf33W1paaGlpqVosZkPR0NDAVltt5SRrZdfR0UFHR0dJZUc7oa8CZuU8npkuKyg3oZtl
1uLFkNea7u7upru7uyrhbKS9HS65BPzFUrPyG7sLFy4sWrbULhexaX957ro+1wPHSNpC0lzgLcDv
SqzDLJsqeOCx6IWViyl2fc4sDzmsqwMfDyiLUoYtLgF+DewgaaWkj0g6QtKTwF7AzyTdCBARDwLX
AA8CPwc+5fn9NqY1Nyet4AopemHlocrIWPaCLrrIvyjKZNAul4g4rsiqpUXKfx34+kiCMqu05uZm
1q1bt2k3oIfojT6fUrdsfC4XM8jM2OqmpiZefvnlaodhY5QTulmGZH3UTF1dHZMnT652GFaEz+Vi
NgZk5VJuHg+fbU7oZmOAL+VmpXBCNxtIU1MyzG6caWtrK3kyi2WHE7rZQDo7k2F2Y8koDLVsa2vL
9szthobkddpGfFDUbDAFujsyfXBwlEbsZKXfvqDu7uRmG3EL3YxkuGDdELpWMn1wcJS6iQr122c6
yZtb6GaQDBcck1foqauD/F8KnZ1QpvMk+eBstrmFbpYak8mqtdXT6K2fE7qZWY1wQjcbBvclWxY5
oZsNQ2a6Z4p9sfgLZyNj8vjIMDihm41lxb5YsvKFU2lFEnelLwBeLU7oZlYbmpvhIx8Z1xOOnNBt
3BkvP7/Hnb4JVRk5FXI1OKHbyIzB5HjqqafSPI5bcVa7PLHIRmYM9k329PSMzmXezDLGCd3Mxp5C
M2TNXS5WHu6ntrLyDNmCnNCtLMbLMDGzLHFCt8pxq92qoLm5mfYRnh9+rHAfulWOW+1WBV3jaBij
W+hmNvYUOrVBU9PGfwdTg1c9ckI3s7Gn0KkNOjthwYLSD5Z2d9fcJCQndBt146nP0rJvqFejGsuc
0MezMh2k7Orq8sQdy4zOzk5aW1urHUZFOKGPA0XHhFf6IGV7e831WVrtGctzKJzQa0yhN2PBMeHN
zbBwYWUTbE9PzfVZWu0Zy3MonNBrTMlvxgydma6sLaIx3NqyYRjnF/bwOHSrnCLn3yhri2gMt7Zs
GIpc2GO8XDLQLfQakvnRJZU+/0Zzc9Jvb+NewUsG1tWVPmZ9jHBCryFDGl0y1EkYhbS1Jf3wbW2l
la90K6mrK+m3NyukBk/w5YQ+DrS3t296QYehTsIopK0t2UapCX28XufSrEKc0MeBnp6ezJ7Porm5
mYULF/oKQpYJo/V+rNbQx0ETuqRFkrok3ZuzrFHSzZIekfQLSQ3p8tmSXpJ0d3q7uJzBW2nq6upo
ymhfYd8XTVa/cKyGFegCHK33Y7WGPpbSQr8CmJ+37Ezg1oh4K3Ab8MWcdY9FxO7p7VOjFKeNQGtr
K50Z7Svs+6LJ6heO1bAa7AIcNKFHxDJgTd7iw4Er0/tXAkfkrNPohGbjQWdnJwsWLMjsF47ZaCp3
V8xw+9C3iYgugIjoBLbJWTcn7W65XdJ+I47QChqVN0aZRp00NTVRX19flm0PMZBkaJpZRpS7K2a0
JhZF+vcZYNuIWCNpd2CppJ0iYt0o1WOpUXljjMZPzgJfCplpbXd2eqaoVVxzczNdXV1ccsklFf8s
DDehd0lqioguSc3AswARsR5Yn96/W9LjwA7A3YU20pYz3K2lpYWWlpZhhmMDKessuaz3Q2Y9PsuU
pqYmurq6MnVMp6Ojg46OjpLKlprQxcZ949cDJwHnAicC1wFI2hpYHREbJG0HvAV4othG20odv2wj
UnCWXIZUelp2fX09W221VUXrtLGhs7OTtra2EeWm0dhGrvzG7sKFC4uWHTShS1oCtADTJa0EFgDn
AD+SdDKwAjg6Lb4/cJak9cAG4OMR8cKwXoWNG5X+wnnxxRcrWp9ZpQya0CPiuCKr/rZA2Z8APxlp
UDY8TU1NrFvnwxVmIzGWT+TlmaJjVKHp/J2dnVx00UVVisisNozGL8ZqfSn49LljVE9PT8ETcWW9
v9xsPKjW51ARMXipclQsRbXqrgVScoza+9BsbGhubmbdunWsW7cOCYb70ZVERBScwOmEPkY5oZuN
Lbmf2XIldPehm5nVCPehj1F1dXVMLnA5NzMbv9xCH6Muuuii7EyxN7NBVeIcR2O+D33x4sUe2WFm
Y4r70Iuo1onkzcyyZswndDMzSzihm5nVCCd0M7Ma4YRuZlYjnNDNzGrEmB62mHtuBDOzscLDFgvo
6uoqeMbBIcvwdSfLfZVwM6sdYzqhj5oMj2X3OHszK5UTuplZjXBCz7hCVyYyMyvEB0Wbm2HduuSW
QT7vuVnt8UHRAjo7O2ltbR3ZRrq6YDQOrBbQ0NDg1rWZVcyYTuiZUmA0Sm9vb+XjMLNxywl9tBQY
jdLa2upzlptZxfiKRRnnKxOZWancQm9qgrq6akdRlFv5ZlaqMZPQyzZjsrMTChxYzcoMzTlz5lQ7
BDMbI8ZMQq/0jMmi9VU40fvyemZWqjGT0DMzwWYIXyxuXZtZJY2ZhN7T00NXV9cmyzORNJubob19
k8VuXZtZJY2ZhF5MxZNme3uSwHOVcXKSmVmpPGxxqHp6Nk3eTU2ZPXWAmY0fY76FXi5F++zr6pIE
nqvISBkzs0pyQgco0A9frM+e1tYkgZuZZUwmE3rFx4D74KWZ1YCqJvRCibu5uZlTTz218sHkqaur
oym/a8XMLMOqmtALTd4pdp3QSidYT7k3s7Fm0IQuaZGkLkn35ixrlHSzpEck/UJSQ866L0p6VNJD
kv5uoG23Fxi73dTURF2Bc6s4wZqZDayUFvoVwPy8ZWcCt0bEW4HbgC8CSNoJOBqYBxwMXKy+S+4U
UKglXuyiFZWeQJSJCUtmZkMwaEKPiGXAmrzFhwNXpvevBI5I7x8G/CAiXo+I5cCjwLtGI9BKTyAq
Wp8TvZll1HD70LeJiC6AiOgEtkmXvwl4MqfcqnRZ7XCiN7OMGq2Dor6CsYc+mlmVDXfqf5ekpojo
ktQMPJsuXwXMyik3M11WVFtbGwAtLS20tLQMMxwzs9rU0dFBR0dHSWUVMXjjWtIc4KcR8fb08bnA
6og4V9IXgMaIODM9KHo1sCdJV8stwPZRoBJJAVCo/ra2tv5Eb2ZWayQoIfUWea6IiIKDTQZtoUta
ArQA0yWtBBYA5wA/knQysIJkZAsR8aCka4AHgdeATxVK5mZmNvoGTegRcVyRVX9bpPzXga+PJCgP
GTQzG7qSulzKUvEAXS5mZrWsXF0umTw5l5mZDZ0TuplZjXBCNzOrEU7oZmY1wgndzKxGOKGbmdUI
J3QzsyoazUtuOqGbmVVRoSu3DZcTuplZjXBCNzOrEU7oZmY1wgndzKxGOKGbmdUIJ3QzsywaxnBG
J3Qzsypqb2+nubl50xXDGM443GuKmpnZKOjp6aGnp2dUtlXVC1zU1dWxbt26qtRvZlYtuRe4kJJr
VWyUi5ubYd265LbJc0dwTdFyam1trWb1ZmbZ1NU1rKdVtQ/d1w41Mxs9Ve1y8fVEzWw8GrTLJV1W
6MKjvqaomdk44IRuZlYjnNDNzGqEE7qZWY1wQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRu
ZlYjfPpcM7MqqqurY/LkyaOyLbfQzcyqqLW1lc7OzlHZlhO6mVmNcEI3M6ui0TyNuE+fa2ZWYbmn
zy1aACp7+lxJp0u6L72dli5bIOkpSXent/eNpA4zMyvNsEe5SNoZOAV4J/A6cKOkG9LVF0TEBaMQ
n5mZlWgkwxbnAb+NiFcBJP0K+EC6ruDPATMzK5+RdLncD7xbUqOkScAhwEwggFMl/VHSdyQ1jEag
ZmY2sGG30CPiYUnnArcA64B7gF7g28BXIiIknQ1cQNI1s4m2trb++y0tLbS0tAw3HDOzmtTR0UFH
R0dJZUdtlIukrwJPRsQlOctmAz+NiF0KlPcoFzMbl7I6yuUN6d9tgfcDSyQ15xT5AEnXjJmZlaqp
Cerqhvy0kZ7L5VpJ04DXgE9FRLekiyS9A9gALAc+PsI6zMzGl85OyOmSLtWIEnpE7F9g2Qkj2aaZ
mQ2Pp/6bmdUIJ3QzsxrhhG5mlkXDOGmXT85lZlZhgw5bHPC5ZRq2aGZmFdTcPOBqt9DNzCps2C10
CYFb6GZmY15T04Cr3UI3M6sw96GbmdmAnNDNzGqEE7qZWY0Y6cm5Rt2cOXNYsWJFtcOwGjF79myW
L19e7TDMKiJzB0XTDv8qRGS1yO8nyyIfFDUzswE5oZuZ1QgndDOzGuGEbmZWI5zQM2zZsmXMmzev
2mEMyYEHHsjll19e7TDMxiUn9CGaM2cOkyZNor6+nilTplBfX89pp51Wlrr2228/HnroobJsu5gr
r7ySzTffnPr6eqZOncpuu+3GDTfcUNEYzGx4MjcOPeskccMNN3DggQeOaDu9vb1sttlmoxTV6Npn
n3341a9+BcBll13GMcccw6pVq6ivr69yZGY2ELfQh6HYuOYnnniC9773vWy99dZss802HH/88XR3
d/evnzt3Lueddx677rorkydPpre3l7lz5/KNb3yDXXfdlcbGRo499ljWr18PwB133MGsWbM2en6x
sgDnnXceb3zjG5k5cyaLFi1iwoQJPPHEEwD8/Oc/Z+edd6a+vp5Zs2ZxwQUXlPRaP/zhD9PT08Oj
jz7av+yuu+5i3333pbGxkd1224077rij6PMvv/xydtppJ6ZPn87BBx/MypUr+9f90z/9E9tuuy0N
DQ3sscceLFu2rH/d73//e/bYYw8aGhqYMWMGra2tw6rfbFyJiKrckqo3VWx5VsyZMyd++ctfFlz3
2GOPxa233hqvvfZaPP/883HAAQfEGWecsdFzd9ttt1i1alW88sor/cv23HPP6OzsjDVr1sS8efPi
0ksvjYiIjo6OmDVr1kbPL1b2xhtvjBkzZsRDDz0UL7/8chx//PExYcKEePzxxyMiYsaMGXHnnXdG
RMQLL7wQ99xzT8HXsHjx4nj3u98dERGvv/56XHTRRbHlllvGc889FxERq1atiunTp8dNN90UERG3
3nprTJ8+PZ5//vmIiGhpaYlFixZFRMTSpUtj++23j0ceeSR6e3vjq1/9auyzzz79dV199dWxZs2a
6O3tjQsuuCCam5vj1VdfjYiIvffeO773ve9FRERPT0/89re/Lan+fFl/P9n4NJK3ZfqeLpxXi60o
920kCT2ZYzXy23DMmTMnpkyZEo2NjTF16tRobGyM73znOwXLLl26NHbfffeNnrt48eJNtrdkyZL+
x5///Ofjk5/8ZEQUTujFyp588snxpS99qX/dY489FpL6E/rs2bPjsssui+7u7gFf3+LFi2PzzTeP
xsbGmDhxYkyaNCl+9KMf9a8/99xz44QTTtjoOfPnz4+rrroqIjZO6AcffHBcfvnl/eV6e3tj0qRJ
sXLlyoJ1NzY2xr333hsREQcccEC0tbVtkqgHqz+fE7plUbkS+pjschmtlD5c1113HatXr2bNmjWs
Xr2aU045BYBnn32WY489lpkzZzJ16lSOP/54nn/++Y2eO3PmzE2215Rz0vpJkyaxbt26onUXK/v0
009v1D2Tex/g2muv5YYbbmD27NkceOCB3HXXXUXr2HvvvVm9ejUvvPAChx12WH9/OsCKFSu45ppr
mDZtGtOmTaOxsZE777yTzs7OTbazYsUKTj/99P6y06dPRxKrVq0CoL29nZ122onGxkYaGxvp7u7u
31+LFi3ikUceYccdd2TPPffsPzBbrP5nnnmm6OsxGy98UHQYosi3wZe+9CUmTJjAAw88QENDA9dd
dx2f+cxnNiojFTwFw4jNmDGDp556qv/xypUrN6rrb/7mb1i6dCm9vb1ceOGFHH300Rv1ZxcyadIk
Lr74YrbbbjtOOeUUdt11V2bNmsUJJ5zApZdeOmhMs2bN4stf/jLHHnvsJuuWLVvG+eefz+23385O
O+0EwLRp0/r37Zvf/GaWLFkCJF9GRx11FKtXrx5S/WbjzZhsoWfV2rVrmTx5MlOmTGHVqlWcf/75
Fav76KOP5oorruDhhx/mpZde4uyzz+5f99prr7FkyRK6u7vZbLPNmDJlSskjbBobG/nYxz7GwoUL
ATj++OP56U9/ys0338yGDRt45ZVXuOOOO3j66ac3ee4nPvEJvva1r/Hggw8C8OKLL/LjH/8YSPbV
xIkTmT59OuvXr+ess85i7dq1/c+9+uqr+1vrDQ0NSGLChAlDqt9svHFCH4ZDDz2U+vr6/tuRRx4J
wIIFC/jDH/7A1KlTOfTQQ/uX9ynUOh9Ki32gsu973/s47bTTOPDAA9lhhx3Ye++9Adhyyy0B+O53
v8vcuXOZOnUql112WX/rtxSnn346N954I/fffz8zZ87kuuuu42tf+xpveMMbmD17Nu3t7WzYsGGT
GI844gjOPPNMjjnmGKZOncouu+zCTTfdBMD8+fOZP38+O+ywA3PnzmXSpEkbdRPddNNN/aNyzjjj
DH74wx+y5ZZbDlq/2Xjm0+fWqIcffpi3v/3tvPrqq0yYMH6/t/1+sizy6XNtUEuXLmX9+vWsWbOG
L3zhCxx4t7f9AAAH8ElEQVR22GHjOpmbjTf+tNeQSy+9lG222Ybtt9+eiRMncvHFF1c7JDOrIHe5
WE3z+8myyF0uZmY2ICd0M7Ma4YRuZlYjMjdTdPbs2WWbTWnjz+zZs6sdglnFjOigqKTTgY+mD/8z
Ir4lqRH4ITAbWA4cHREvFnhuwYOiZma1LnMHRSXtDJwCvBN4B/APkt4MnAncGhFvBW4DvjjcOiql
o6Oj2iEUleXYwPGNRJZjg2zHl+XYoHrxjaQPfR7w24h4NSJ6gV8BHwAOA65My1wJHDGyEMsvy2+O
LMcGjm8kshwbZDu+LMcGYzOh3w+8W1KjpEnAIcAsoCkiugAiohPYptgGir3oQsuHUnao21i+fHlF
6xvK8kKxVSOOoey7asRR6/9b77vBY6tGHNX4XAxk2Ak9Ih4GzgVuAX4O3AP0FipabBtZ3vl+45ZW
1klp+Mu974a/fDx/LgYyajNFJX0VeBI4HWiJiC5JzcDtETGvQHkfETUzG4ZiB0VHNGxR0hsi4jlJ
2wLvB/YC5gInkbTeTwSuG0pAZmY2PCMdtvgrYBrwGnBGRHRImgZcQ9KfvoJk2OILoxGsmZkVV7WT
c5mZ2ega81P/JW2QdFXO480kPSfp+hFu932SHpb0Z0lfyFn+A0l3p7e/SLq7SvEtktQl6d4i6z+X
1j2t0vFJminpNkkPSLpP0mk5646SdL+kXkm7Zyy2XSX9RtI9kn4n6Z0lbvOINNYdhhtXzrYaJd0s
6RFJv5DUkLd+W0lrJX22CrEV/N9Jmpbu07WSvjXEbVYivs0lLZZ0b/p/P7MKsZ0n6SFJf5R0raT6
dPlsSS/l5JQRnfN6zCd0oAd4m6Qt08cHkRycLZmkzfIeTwAuAuYDOwPHStoRICKOiYjdI2J34Frg
J5WOL3VFGl+h8jPTelaUsPlyxPc68NmI2BnYG/h03/4D7iM53nJHBmM7D1gQEbsBC4BSLwp7DPDf
wKZXwx48vvzP4GAT875BMqqsVKMZW7H/3SvAl4HPDbWOCsX3QWCLiNiFZCLkx9PjfpWM7WZg54h4
B/AoG/9fH+vLKRHxqaHWlasWEjokb/C/T+8fC3y/b4WkPST9WtIfJC2TtH26/ERJ10n6JXBr3vbe
BTwaESsi4jXgB8DhBeo9OreuCsZHRCwD1hSp75vAP5cQV1nii4jOiPhjen8d8BDwpvTxIxHxKFDq
QfGKxQZsAPpaxFOBVYMFJ6kO2Jdk1vSxOcsPkHSHpJ8p+aV3cc66tZLaJd1DMpAg1+EUmZgn6XDg
CeCBweIqR2zF/ncR8VJE/Bp4tZS4Kh0fydDpuvTLfVIaZ3eFY7s1IvoufHsXMDO3uoFiGZKIGNM3
kn/M24AfAVuSjIffH7g+XT8ZmJDefy/w4/T+icBKoKHANo8ELst5fDzwrbwy7wZ+V434crY9G7g3
b9lhwAXp/b8A06oVX1puDsk5fSbnLb8d2D1LsQE7kvyqWUnyS2BWCf/f40jOYwSwDNgtvX8A8FL6
PxJJC+0D6boNwJFFtrc67/GanNd6J0lCWkDyK6OisQ32v0v3+7cGi6vS8ZGM5vs+8CywFvhotWJL
y10PHJfzGV4L3J3GvV+p+6/QrSZa6BFxP8mH81jgBjb+xpsK/FjSfSQt151y1t0SBU4cVqKNWotZ
iE/SVsCXSD7w/YurFZ+kycCPgdMjaQ0PWYVj+2T6eFvgDODyEkI8luQXHCQnpTsuZ93vIvmVFyTv
lf3S5b0M3lXXp69VtwD4ZkS81PcSMhDbSFUqvneRdLU1A9sBrZLmVCM2Sf8CvBYRS9JFTwPbRtKF
+zlgSfreHJbMnT53BK4n6fNsAbbOWf4V4LaI+ICk2STfgn16imxrFZDbxzaTnJ/f6U+3DwADHtQr
Y3zFvJkk+f1JktK4/yDpXRHxbCXjk7Q5ScL8bkQUnIswBJWK7cSIOB0gIn4sadFAQSk5s+h7SPr5
A9iM5Od9X3dX/hCyvscvp8mgkC5JTfHXiXl9/7c9gSMlnQc0Ar2SXo6IggfRyhTbqKlwfMcBN0XS
5fGcpDtJ+tKXVzI2SSeRnCLlPf1PTLp016T375b0OLADSYt9yGqhhd7XUrkcWBgR+f2LDfw1GX+k
xG3+HniLkiPQW5AcHMkdWXEQ8FBEPF2l+HK33d9Si4j7I6I5IraLiLnAUyQ/FQdK5uWK73LgwYj4
9xLqzkpsqyQdACDpvcCfB9nOB4GrImJuus9nA3+R1Ndie1f6HpoAfIjkAFvu6yrkepKJeZAzMS8i
9k/r2A74N+BrxZJ5GWPLVaxcqc+vZHwrSZNo2je+F/BwJWOT9D6SL4TDIuLVnOVbp9tB0nbAW0iO
kwxLLST0AIiIVRFxUYH15wHnSPoDJb7eSM4eeSpJ/9gDwA8i4qGcIh+ixO6WcsQHIGkJ8GtgB0kr
JRVKaMHgH4BRj0/SvsD/Bd6jZAjg3ekbum8o2JMkH6qfSboxK7EB/wh8Iz2odXb6eCAfAv4rb9m1
/PUg2v+QjJZ6AHg8Ipbmvq4izgUOkvQIyXGBc0p4WRWJbaD/naS/kIzAOTF9P+5YbDtViO8/gCmS
7gd+CyxKu/IqFhtwIclxkFu08fDE/YF7lQx/vgb4eIxgIqYnFpmVQdrS/1xEHFbtWPJlOTbIdnxZ
jg1qo4VuZma4hW5mVjPcQjczqxFO6GZmNcIJ3cysRjihm5nVCCd0M7Ma4YRuZlYj/j87ypbKS6Xw
rgAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The second chart is from Facebook:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="n">FB</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="s1">&#39;FB&#39;</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span>
<span class="n">ax</span> <span class="o">=</span> <span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">FB</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Facebook Price 3/5/2016 - 5/5/2016&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">);</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFPWd//HXGxCVAYZDndGAgEbiETUab00cj4jGn1c0
RlgPjJtj/bm6xEmibjYM2WiMjia/jXGjmxG8iDGaFS88UAfFKzEeiAdBDYKYGTUMwoyKOHx+f1T1
WNPTPd0z3T3dXf15Ph79mO5vXZ+qqf70t771rSqZGc455+JjULEDcM45l1+e2J1zLmY8sTvnXMx4
YnfOuZjxxO6cczHjid0552LGE7tzzsWMJ/aYk/SYpNMLMN8bJf043/MN5/0/ki4oxLydqwSe2AeY
pOWSPpC0VtK68G9tseMqJEmLJH0YrmurpD9I2ird+Gb2LTO7NM8xTJP0qqT3Jf1dUpOkYUnjjJO0
PEXM6yS9mGKeP5LUIGl/SQ9K+ke4fr+Lrp8CjeHwdyVdkjSfiyW9KGmDpItSLGdLSXMlrQnnMSeH
7fCfkj5O2v/GJY1zkKTm8P1b4f6aGPeeFPP8raTpko6R9LikNkmrJP13dBtL2lTSnPB/sErSuSnm
s1RSp6RpKZazvaR7wjjekXRxf7dD3HliH3gGHG1mI81sRPi3pdhBFZgB3zazkcCOwJZAY6oRJRVq
n3wU+JKZVQOfBYYBP0ka52jg3vB9V8zh/2nXFPNMjD8auBrYFpgIrAeaIuOdDRwJ7AzsDnxN0jcj
w5cC5wPz08Q+D3gT+AywFfCLTCubwU1J+99bScOPBhIJ3IApkXGPTjG/I8PYRwANQC2wC7AdEP2B
/inBNhoHHAFcJOnQyPBnge8AzycvQNJQ4MFwOVsC44G52a9yZfHEXhzqURD4Q1ibXC3pYUk7RoZv
LukXkt4Ma0TNkjYJhx0o6cmw/FlJX0qa/WRJfw6H3y6pOjLfEyQtCZe5QNLkyLCdw+W0SXpB0ldT
row0UtJCSVdkWmczawP+CHw+nPZGSVdJmi9pHXCQkpp5JH1N0nNhTe+vkg4Py6slXSfpbUkrJM1K
t3Aze8vM3g0/DgI2EiT4qK/yaWLvijnNOo8FJprZn8zsXjP7XzPrMLMPgV8DB0RGPx1oNLNWM3sb
uAKYHontBjN7AOhIsZyjgC3N7MJw/p1m9kK6uPKkL9thD6AlXLe5Zvagma03szXAb4EDI6OfBswy
s3Vm9hLBj9/0xEAzu9rMmoGPUyzqLOBvZnZVOP/14TxcCp7YS8tdwPYENZ4lwI2RYb8kSIZ7A2OA
i4CN4WH0POA/zGw0cAHwR0mjI9OeBpwKbEPwP/8lgKSdgBuA/0tQC3oIuFPS4PBH4+4wpi2A7wG/
l7RdNOAwwT0MLDCz8zOtoKQtga8R1M4SpgIzzWwE8FTS+AcQJIAZYW37EILaK8BNBMlwEvBF4KuS
zuxl2V+WtAZ4HziGSM03rBEeGG6DhMvDQ/5HU/xYHgk8kGZRBwPRpLMLEE3GL4Rl2dgP+KukmyW9
J+kpSQdmnKp3J4TzWizp29EB4f5UnZQ0b5HUEv74fj5pXl/l09p9sq7tIGkLgn1scWR4X7fDSkn3
KWjOWiBp5yynrTxm5q8BfAF/A9YCq8PXH9OMtwVBrXJzgmT8EbBjivEuApqSyhYAU8P3jwE/iQzb
FfggfN9AcFieGCbgbYLaZh2wMmm+twIXhe9vBP6H4It7boZ1fgxoD9d3JXA9MDoyn98mjX8j8OPw
/W+Bn6eY5zbAB8AmkbJTgQey+B9sA/wY2D5SdgQwP/J5H4Lmmk2AM8P/2baR4XOBb6SY9x7AP4B9
I2Ubge0in3cEPk4x7e8S2zdS1gR0hus2GJgWzn9UP/e/nYCa8H99INACnBgZ/m3gvyOfDwCGhvvh
j4BVwIjI8Cei6xopPwp4j+CoBoImqk5gUGScI4G/ppj2SWBaUtlDBN+Bw4AhBBWYZcDggfrultPL
a+zFcZyZjQlfX4OgbVnSZZJeD2uVywjaN7cg+CJuAryRYl4TgGlhU8pqSW3AvsDWkXFWRt6/CWwa
1ui34dPaLxZ8g1YRtOVuA6xIWlainTfhGIJk89ss1vlfwvUdb2ZnWNAkkyq+ZOOB11OUTwA2BVoj
630VQa2wVxY0hzxE9zbabs0PFjSxfGBmG8xsNvA0QbJKnAc4DLg/Ot+wGetu4Gwzezoy6ANgZORz
NbAuU5yhD4HXzOwmC5ph5gKtwP7JI0o6XZ+e5JyXZt1fsaDZxMzsceBXwEm9bIcnzOxjM/vQzH4a
rssB4fLGAJOS1jVxlHU9cIKZLQ+L28O/uWyHhWb2kJl9AvycYB+f3PtklckTe3GkarM8naAGU2dm
owjafxW+WgnaHbdPMd1K4LrID8VoC050XRkZZ3zk/QRgfZhY3w4/B0FJIjixtSoctm3SsrYNhyX8
N/AIcK+kzfqxzgm93Tt6JenXuyNpvUeZ2R4Z4kjYhODkXkJyu3KqGBPrsB9BTXNNYqCkSQQn9/7D
zH6fNO1LBCdNE75A96aa3iym5/ZJub0saKtPnOQ8Lsv5d61X2Px2EMERX8bxCfbXbuNK2ovgHMpp
ZvZYJLb3gHfpvh12pwDbwXliLyUjCHpTtEmqAi4h3HHNbCMwB/ilpJqwdn+ApMEEzRYnSDo8LN9M
Up26d6E8XdLnwvk2AInEcytwbNj2PAT4AUGTw9MEh9gbJH1P0hAFvReOAm6JzNfM7F8IjiTukrRp
AbZLE/DPkg5W4DOSJlvQk2OhpCskjQiHbZ+iLRwASf8Uth8jaSJBj5gF4efPAhvN7PXw82hJX1HQ
PW+IgusA9uPTGnq3dmVJ4wmOAK4ws+tSLP4G4HxJW4cxzABmR6YfEv4wDgI2CZebSJ63AzWSpob/
328QHJU82cftmFjWcQpPnkvaF/hX4I5w8MHAMxacAEbSBAVdOYeEMV1IsJ8mlp28HXYPP59tZt2O
ZkI3Av8RnvTeBfhm0nbYJNwOAoYm7U83EpxYrwuPmOoJKhlL+7MdYi9TWw3BF6sVWBwpuwx4haBb
0u3AyLD8cOAZgpMifwYOKXZbU6m9CJLgoSnKhwN3EiTWNwhOeHYStusStHH+EngLaCOoKQ8Jh+0L
LCRoe20J57NNOOxR4D/D/8cagtrUqMhyTwBeJmj/fgj4XGTYLuH0awhqTEdHht3Ap+3gIjiReQ+R
Nu/IuI8Cp6fZHl3zSVdGcLJ1cbhtlia2H8Gh/G8Iau9twF+Ak9Is59Jw260jaGL6NcFJQoDzgCsj
424Vbq/3w+2yiOBIKjH8OWC3yOefhP+rteFrHbA6MlzA5eG83gMuTortRoJ2+M7Ia1pk+JeBF/n0
R7dHm3Yf9r/fh/vJ2vD//t3IsF8QOV9CcLI+sd3fJfhh+0JknVoJz5VE/m8bIttgHfBcZPhmBBWU
tQRHhOckxfZY0jboBA6IDD+RoFluDcG+2uOck7+Cl8INlpakgwjax24ws93CssOBh81so6RLCWpu
F4a/2K1m1hL+It9vZuPSz9254pN0P3C5mfXWBJEYd2vgaTNLbqYqe5KWEvx4v5bFuPsTbLODCh+Z
66uMTTFmtoigNhQtW2BB8wAE3dPGheUvWHixjQXdpTYL2+2cK2UPERzxZGMkwcVEsRI2e/w2m6Qe
2gikvW7AFVfGGjsEbW3AXYkae9KwO4FbLDhbHy0/ieDKvSPyFaxzzrnMhuQysaR/BzakSOq7AD8D
vpLL/J1zzvVdvxO7pOkEZ8UPTSofx6fdnZb3Mr13VXLOuX4ws966D2fd3THRnzr4IB0JfB841szW
R8qrCS7Q+KGZPdVjLklmzpzZ42xuvsvSlR988MEFX3ZfYvR4+va/8njKK56+fDdLIR4ofjzpYsxG
xsQuaS5Bn+bJCm60dCbB1WrDgQcV3HTq6nD0cwguJvmxgps2PRveIyKlurq6gpelK584cWJR4kkX
o8eTvixVLB5PecXTl++mx5O+LGupfhEG4hUsunhmzpxZ1OUn83jSK6VYzDyeTOIQTyHTU67bJ8yd
vebXir3yNKdfwwLweNIrpVjA48nE4+ndQMSTVXfHgixYsmIt2znneiNBqaYnSViGk6c5dXcshIkT
J/Lmm29mHtG5LEyYMIHly5cXOwznBlTJ1djDX6MiROTiyPcn1x/lXmOv2DZ255yLK0/szjkXM57Y
nXMuZjyxl7BFixax0047FTuMPjnkkEO47rpUz5pwzg0UT+x9NHHiRIYNG8bIkSMZMWIEI0eO5Nxz
zy3Isg466CBeeeWVgsw7neuvv54hQ4YwcuRIRo0axR577ME996R7CL1zrhSVXHfHUieJe+65h0MO
OSSn+XR2djJ48OA8RZVfBxxwAI8++igA1157LaeccgqrVq1i5MiRGaZ0zpUCr7H3Q7ruc2+88QaH
HXYYW2yxBVtttRWnnnoqa9eu7Ro+adIkLrvsMnbffXeGDx9OZ2cnkyZN4oorrmD33Xdn9OjRTJ06
lY8//hiAhQsXMn78+G7TpxsX4LLLLmObbbZh3LhxNDU1MWjQIN544w0A7r33XnbZZRdGjhzJ+PHj
ufLK6LOu0zvttNPo6Ohg2bJlXWVPPfUUBx54IKNHj2aPPfZg4cL0z6i47rrr2HnnnRk7dixHHXUU
K1as6Br2b//2b2y77bZUV1ez9957s2jRoq5hf/7zn9l7772prq5m6623pr6+vl/Ld64iZbrnQKFe
pLkZQ7ryUjFx4kR76KGHUg577bXXbMGCBbZhwwZ777337OCDD7YZM2Z0m3aPPfawVatW2UcffdRV
tu+++1pLS4u1tbXZTjvtZNdcc42ZmTU3N9v48eO7TZ9u3Pnz59vWW29tr7zyin344Yd26qmn2qBB
g+z11183M7Ott97aHn/8cTMzW7NmjT333HMp12HOnDn2pS99yczMPvnkE7vqqqts0003tXfffdfM
zFatWmVjx461++67z8zMFixYYGPHjrX33nvPzMzq6uqsqanJzMzuuOMO22GHHWzp0qXW2dlpF198
sR1wwAFdy7r55putra3NOjs77corr7Ta2lpbv369mZntv//+dtNNN5mZWUdHhz399NNZLT9Zqe9P
rjR1221mzy5WGCkR13vFSPl59dfxxx/PmDFjGD16NGPGjKGpqQmA7bffnsMOO4whQ4YwduxYZsyY
0aM2ed5557HNNtuw6aabdiurqalh1KhRHHPMMTz//PNpl51u3D/84Q+ceeaZ7Ljjjmy22WY0NDR0
O7IYOnQoL730EuvWraO6upovfOELaZfx5JNPMmbMGDbffHN+8IMfcNNNN7HFFsFNOm+66SaOPvpo
pkyZAsBhhx3GXnvtxb333ttjPtdccw0XXnghkydPZtCgQVxwwQU8//zzrFy5EoBp06YxatQoBg0a
xIwZM1i/fj1Lly7tive1117jH//4B8OGDWOfffbp8/Kdy4syvHK5LBN78Hua+6u/5s2bx+rVq2lr
a2P16tWcddZZALzzzjtMnTqVcePGMWrUKE499VTee++9btOOG9fz2d41NTVd74cNG0Z7e3vaZacb
9+233+7WbBN9D3D77bdzzz33MGHCBA455BCeeir97fL3339/Vq9ezZo1azj22GO72tsB3nzzTW69
9VbGjBnT9eP2+OOP09LS0mM+b775Juedd17XuGPHjkUSq1atAqCxsZGdd96Z0aNHM3r0aNauXdu1
vZqamli6dCk77rgj++67b9cJ3HTL//vf/552fZyrNH7ytB8sza/CRRddxKBBg3jppZeorq5m3rx5
/Ou//mu3cZTLoUIvtt56a956662uzytWrOi2rC9+8YvccccddHZ28qtf/YqTTz65W3t3KsOGDePq
q69mu+2246yzzmL33Xdn/PjxnH766VxzzTUZYxo/fjw/+tGPmDp1ao9hixYt4vLLL+eRRx5h5513
BmDMmDFd23b77bdn7tzgiYu33347J510EqtXr+7T8p2rVGVZYy9V69atY/jw4YwYMYJVq1Zx+eWX
D9iyTz75ZGbPns2rr77KBx98wE9/+tOuYRs2bGDu3LmsXbuWwYMHM2LEiKx75IwePZpvfetbzJoV
PJD+1FNP5a677uKBBx5g48aNfPTRRyxcuJC33367x7Tf/e53ueSSS3j55ZcBeP/997ntttuAYFtt
sskmjB07lo8//pif/OQnrFu3rmvam2++uav2Xl1djSQGDRrUp+U7V6myeYJSk6RWSYsjZZdJekXS
85JulzQyMuxCScvC4UcUKvBiOuaYYxg5cmTX68QTTwSCR/395S9/6Wr/TpQnpKqt96UG39u4Rx55
JOeeey6HHHIIkydPZv/99wfoasu/8cYbmTRpEqNGjeLaa6/tqg1n47zzzmP+/PksWbKEcePGMW/e
PC655BK23HJLJkyYQGNjIxs3buwR4/HHH88FF1zAKaecwqhRo9htt9247777AJgyZQpTpkxh8uTJ
TJo0iWHDhnVrPrrvvvu6evHMmDGD3//+92y66aYZl++cy+LujpIOAtqBG8xst7DscOBhM9so6VKC
s7QXStoZuBnYGxgHLAB2sBQL8bs7Ftarr77Krrvuyvr16xk0qHIPzHx/cv3R7e6ODQ3Bq0Tk5e6O
ZrYIaEsqW2BmiSrSUwRJHOBY4BYz+8TMlgPLgH36GrjrnzvuuIOPP/6YtrY2fvjDH3LsscdWdFJ3
rlLl41v/TSDR1+wzwMrIsFVhmRsA11xzDVtttRU77LADm2yyCVdffXXmiZxzsZNTrxhJ/w5sMLPf
9Wf6hsjhTV1dXck9m7DczJ8/v9ghOOfyrLm5mebm5j5Nk9UTlCRNAO5KtLGHZdOBbwGHmtn6sOwC
gvb2n4ef7wNmmtnTKebpbeyu4Hx/cv0R+zb2xLzCV2LGRwLfB45NJPXQncApkoZKmgR8FvhT38J2
zjmXi4xNMZLmAnXAWEkrgJnARcBQ4MGwe9tTZna2mb0s6VbgZWADcHbKarlzzrmCyZjYzWxaiuLZ
vYz/M+Bn/Q1owoQJBbs601WeCRMmFDsE5wZcyd1SYHkZ3nDHOedKSVYnTwuy4DQnT51zrti6Tp7W
1kJ7e/AqEdmcPPXE7pxzSboSe6JZuIRyVT57xTjnnCsTntidcy5mPLE751zMeGJ3zrmY8cTunHMx
44ndOedixhO7c87FjCd255yLGU/szjk3gObMmVPwZXhid865ATQQ98PyWwo451ySQt5SYPjw4Qwf
PpyWlpZ+xub3inHOuT4rZGJP3Ja8v/nP7xXjnHMVKGNil9QkqVXS4kjZSZKWSOqUtGekfIikOZIW
S3opfAaqc865PsrlJGs2NfbZwJSksheBE4CFSeVfB4aGD73eC/iOpG37HZ1zzlWoXE6yZkzsZrYI
aEsqW2pmy4g84DoxCKiSNBgYBqwH1vY7OuecqwR57gKZ7zb224APgL8Dy4FGM1uT52U451y8pKid
NzY2Ultb26/Z5fuZp/sAnwC1wFjgMUkLzGx5qpEbGhq63tfV1VFXV5fncJxzrjx1dHTQ0dFBc3Mz
zc3NQWFjY1bTZtXdUdIE4K6w7Txa/ghwvpk9G36+CnjSzG4OPzcB883sthTz9O6OzrmSNODdHRsa
glem8SQUlOWlu6Po2Z4eHZawAjg0DKoK2A94NctlOOdcWcilx0pVVRU1NTX5CyaFbLo7zgWeACZL
WiHpTEnHS1pJkLjvljQ/HP3XwAhJS4CngSYzW1Ko4J1zrhhy6bFSX1/f76tOyfIHIWMbu5lNSzPo
jhTjdgAnZ7Vk55xzfdPS8mnzUC/8ylPnnOuD2tpaGrM8iVksntidc64PWltb6ejoyO9MGxuhn10b
U/HE7pxzMeOJ3Tnniq2+Pmg/zxNP7M45FzOe2J1zLmY8sTvnXMx4YnfOuWKbODGvs/PE7uJlAJ4A
71zeTZ+e19l5YnfxMgBPgHeu1Hlid865PqipqaGqqqrYYfTKE7uLj9rarO9X7VxWamogKYm3tLRQ
X19fpICyk+8HbThXPK2txY7AxU1LS4/7pA+Uqqoqhg8f3q9pvcbunHMDaGKWPWCuuuqqft/e1xO7
c84NoOlZ9oDJdrxUPLE751zMZPMEpSZJrZIWR8pOkrREUqekPZPG303SE+HwFyQNLUTgzuXyeDLn
4iybGvtsYEpS2YvACcDCaKGkwcCNwLfN7PNAHbAh9zCd6ymXx5M5l7U8XxU6EDImdjNbBLQllS01
s2X0fMD1EcALieecmlmbWR4f7+1cKNen2Hht32Utz1eFDoR8t7FPBpB0n6RnJH0/z/N3Dsj9KTbn
nHMOtXl8Yo1zpSTf/diHAAcCewEfAQ9JesbMHkk1ckOkf2hdXR11dXV5Dse51Do6OvL/eDPnCqC5
uZnm5uY+TZPvxP4W8KiZtQFIuhfYE8iY2J1zzvWUXOmdNWtWxmmybYoRPdvTo8MS7gd2lbSZpCHA
wcDLWS7DOefKQrYXGRWLMp3blDSXoHfLWKAVmElwMvVXwBbAGuB5MzsqHH8acBGwEbjHzC5MM18/
r+r6TQrqE932obCMLParlNM7F5Ky2o2KQhJmlq6iHYxTrB3bE7vLhSd2V0jlntj9ylPnnIsZT+zO
ORczntidcy5mPLE751zMeGJ3zrmY8cTunHMx44ndOedixhO7iz+/k6OrMJ7YXfz5fdtdhfHE7txA
8yMIV2Ce2J0baH4E4QrME7uLj5oaqKrqXlZbCzk8acm5cuSJ3ZW8rB9j19IC9fXdy1pbwR+o4SqM
J3ZX8kruodXeRu5KnCd25/qq1H5onEuSMbFLapLUKmlxpOwkSUskdUraM8U020paJ+l7+Q7YuV6V
+JNtnBsI2dTYZwNTkspeBE4AFqaZ5grg3hzicq5/pk8vdgT94807Lo8yPszazBZJmpBUthRAicfQ
REg6DngD8DNWzmWjthba28v3R8mVnLy2sUuqAn4AzCL9w6+dc1Hec8flWb5PnjYAvzCzD8LPntxd
caXq256rxsaglu0KIuvurS6tjE0xfbQvcKKky4DRQKekD83s6lQjNzQ0dL2vq6ujrq4uz+G4itfS
ApH9LC86OryGXUAl1721yJqbm2lubu7TNNkmdpG+9t1VbmZf7iqUZgLr0iV16J7YnXPO9ZRc6Z01
a1bGabLp7jgXeAKYLGmFpDMlHS9pJbAfcLek+f2O2rl+qKmpoSrfTSwF0KNZwW9x4AZANr1ipqUZ
dEeG6TL/rDjXTy0tLdkf8aXo215VVcXw4cPzGlOy2tpa2tvbmR7t7dLaWtBlOgd+5akrA42NjdSm
OFk5MduLkVJ0I6yvr6elpSW3wDJobW2lI7ktvhAnc51Lku+Tp87lXUdHR88ECd1rwuWiECdznUvi
NXbnnIsZT+zOuZJRW1tLo59czpkndlfyqqqqqKmpyes8s26f7wO/sCZ3Kc9LuD7zxO5KXiFOdBai
fd4vrOkH/zEsCE/sLideS3U58R/DgvDE7nKSqpbqyT4Dv2e8KzBP7C6vamtrOeecc4odRmkrx26a
rqx4P3aXV60FuLKyECc6nYszr7G7rBWriaUsL0Ryrog8sbusea8P58qDJ/Y48JOVzrkIT+xx4DVp
ly2vBFQET+xlppS6Elbs5d9VVcFdGstRiVcCyuU++6XOE3uZybqdewB+ACr28u/6+uAujRnU1NQw
cuTIAQio9KWskDQ0QNIj31paWqivrx+IkGItmycoNUlqlbQ4UnaSpCWSOiXtGSk/XNIzkl6Q9GdJ
hxQqcJdBjjWzUjoyKFctLS28//77xQ6jJKSskDQ0gD/nuCCyqbHPBqYklb0InAAsTCp/F/g/ZrY7
MB24MdcAXXEkfxErttnF5UW6h6Wk4tct5C5jYjezRUBbUtlSM1tG0gOuzewFM2sJ378EbCZpkzzG
W9GKmVwrttklS2Xxw1fE5612dHRkffGaX7eQu4JdeSrpJOBZM9tQqGVUmpRfjNra4Dmav/lNVu2+
hVZTU0N7e3uxw3Cp+PNWK0ZBTp5K2gX4GfDtQszfRSS+rEX40qbqwVCpJ7/Keb39fEr85L3GLmkc
8EfgNDNb3tu40afM19XVUecnUspKS0uLJ4UY8CuKS1tzczPNSb2HMsk2sYuk9vSkYcEbqRq4G/ih
mT2VaaYN/lDfklRbW0t7e3tW/x9vD/2Un/RzhZBc6Z01a1bGabLp7jgXeAKYLGmFpDMlHS9pJbAf
cLek+eHo5wDbAz+W9JykZyVt0fdVccXkJ0r7x3/kXKnIWGM3s2lpBt2RYtyLgYtzDco557qZM8fv
Y98HfuWp6yHXy7pj3yQR9/UrRX4eoE88scdVY2PQFbIfcu3hEfsmibiv30DyH8mC8MTunCse/5Es
CE/scZXljaqcc/Hjid1lxW+n6lz58MTuslLOV1a6MlfEe9yUK0/sLmux7+0SM7G5Kri1Ffy6ij4p
2E3AXPzEvrdLzJTSrQKqqqoYPnx4scOoGF5jL3eJR7Tl+VFtXjuvcHmu7dfX19PiJ/MHjCf2ctfS
AjNn5r0HjNfOy0ghmlxKqLbv+s4TewmLTRupK6wcknAhHhDi+23xeWIvYVm3kXqzieunlDd8y7EX
Sim17VcqT+wlqk81KW82qWw53D4ipZj1QqnEIwhP7CXKb51bQWpqIJeLvzo6ejxBK9uKQVlceJbj
9qnEI4iSS+yV+OuarbL4Erq+a2kJbgGRRykrBikSZFlceFaA7UN1dX6PckpMySX2Svx1zVZZfAld
6SpEgkyhsbGR2lJPmmvXxvrh3tk8QalJUqukxZGykyQtkdQpac+k8S+UtEzSK5KOKETQceRHKi4u
Ojo6aI1x0iwH2dTYZwNTkspeBE4AFkYLJe0EnAzsBBwFXC0p3bNSsxfzwyYowJGK95RxWfKL0eIn
Y2I3s0VAW1LZUjNbRs8HXB8H3GJmn5jZcmAZsE/OUcb8sKkgvKeMy5JfjBY/+W5j/wywMvJ5VVjm
8sRrV871TVm0+edZUW8C1tDQ0PW+rq6Ourq67CeurobNN6+4h0l47cq5vuno6CjrrsPNzc00Nzf3
aZp8J/bzrcTQAAAOfUlEQVRVwPjI53FhWUrRxA5B39v29vYe5SmtXRu8nHMuxpIrvbNmzco4TbZN
MaJne3p0WMKdwCmShkqaBHwW+FOWy6jYi3IKcb8OV2a8ia1gqqqqqMnz3U9LXTbdHecCTwCTJa2Q
dKak4yWtBPYD7pY0H8DMXgZuBV4G7gXONjNLN+/q6up8rEPZq9QfNBfhTWwFU4m3DM7YFGNm09IM
uiPN+D8DfpbNwtcmNaXU1NTQ3t6ezaTOuRLlD9UovpK68tSvrHSuBOR4b5ZKrCGXmpJK7GlVVeX9
CUHOuTQG6NYDrnDKI7HX11dct0bnnOuv8kjsZaC6urriLoJwzpWmol6gFCdr167tcTI4W37S2OWb
71OVzWvsJcBPGrt8y3mfyqFfvd/2ovg8sZcof6iGK6oc+tWnuu2FJ/uB5Ym9RHkt3sVJMe9xVIk/
Kt7G7ly5q6qCFBcExSqh5bAulXjjPK+xO1fu0nQHjlVCG4B1qa2tjc1tTrzGXsJiVeNyrsTF6XF+
JZfYKzWZpVrvWNW4XOFU6HcmJ2mar+Ki5JpiyiKZFeDB02Wx3q40+b7TdzG/mr3kEntZyPeDp51z
Lo9KrikmpTI41PRblTrnSkV51NhTHWqW2B0f/ValzrlSkc0TlJoktUpaHCkbLekBSUsl3S+pOiwf
ImmOpMWSXpJ0QcEij3kbmXPO9Vc2NfbZwJSksguABWb2OeBh4MKw/OvAUDPbDdgL+I6kbfMVrHPO
ucwyJnYzWwS0JRUfB1wfvr8eOD4xOlAlaTAwDFgP9O+Wh845VyhlcN4uF/1tY9/KzFoBzKwFSDR2
3wZ8APwdWA40mtmaXIPMu9paiMkVZs65foh5F9F89YrZGP7dF/gEqAXGAo9JWmBmy9NN2NDQAEBd
XR11dXV5CieDGF1h5pyLt+bmZpqbm/s0TX8Te6ukGjNrlVQLvBOWTwXuM7ONwLuSHidoa1+ebkaJ
xN5nxTyUamyE3/ym28nbSr1i1rm4KNWHkyRXemfNmpVxmmybYhS+Eu4EpofvpwPzwvcrgEMBJFUB
+wGvpptpTvcbL+ahVEdHj1q/XznqXHmL062ys+nuOBd4ApgsaYWkM4FLga9IWkqQyC8NR/81MELS
EuBpoMnMlqSbd1w2onPOlZKMTTFmNi3NoMNTjNsBnJxrUM455/qvqFeeeru0c87lX1ETe6m3S8fp
xvvOucpRHjcBK5I43XjfOVc5yuMmYANkTgHus+6ccwPNa+wRy7O9z3rMn77inCtvXmPvD7+zpHOu
hHlid865mPHE7pxzMeOJ3TnnYsYTu3POxYwnduecixlP7L2oqanJ7Q6UzjlXBJ7YexGn23g65yqH
J3bnnIsZT+zOVRK/o2pF8MTuXCUp8TuquvzI5glKTZJaJS2OlI2W9ICkpZLul1QdGbabpCckLZH0
gqShhQreOefyKS7PiMimxj4bmJJUdgGwwMw+BzwMXAggaTBwI/BtM/s8UAdsyFu0zjlXQKX+jIhs
ZUzsZrYIaEsqPg64Pnx/PXB8+P4I4IXEc07NrM3MLE+xOuecy0J/29i3MrNWADNrAbYKyycDSLpP
0jOSvp+HGJ1zzvVBvu7HnqiVDwEOBPYCPgIekvSMmT2SaqKGhoau93V1ddTV1eUpHOeci4fm5maa
m5v7NE1/E3urpBoza5VUC7wTlr8FPGpmbQCS7gX2BDIm9mKrra2lvb29pGJyzrnkSu+sWbMyTpNt
U4zCV8KdwPTw/RnAvPD9/cCukjaTNAQ4GHg5y2UUVWtrKx0dHcUOwznncpaxxi5pLkHvlrGSVgAz
gUuBP0j6JvAmcDKAma2RdCXwDLARuMfM5hco9v6rqYH29v5PH5MuUc65eMqY2M1sWppBh6cZfy4w
N5egCq6lBXJpcolJlyjnXDz5lafOORczntgziMuVaM65yuGJPYO4XInmnKscntidcy5mPLE751zM
eGJ3zrmY8cTunHMx44ndOedixhO7c87FjCd255yLGU/soZqaGqqqqoodhnPO5axyE3vSFaUtLS3U
19cXJxbnnMujyk3sfkWpcy6mKjexO+dcTHlid865mMmY2CU1SWqVtDhSNlrSA5KWSrpfUnXSNNtK
Wifpe4UIulD8To7OuTjIpsY+G5iSVHYBsMDMPgc8DFyYNPwK4N7cwyucVA+HLeadHPv6sNpCK6V4
SikW8Hgy8Xh6NxDxZEzsZrYIaEsqPg64Pnx/PXB8YoCk44A3gJfyFGNBVOI/uy9KKZ5SigU8nkw8
nt6VRGJPYyszawUwsxagBkDScOAHwCy6P/w6pVQrmO+ydOXLly8vSjzpYvR40pelisXjKa94+vLd
9HjSl2UrXydPN4Z/ZwK/MLMPws+9JndP7B5PNmXlkLg8nt7jKYdEWmrx5JLYZWaZR5ImAHeZ2W7h
51eAOjNrlVQLPGJmO0l6FBgXTjYa6AR+bGZXp5hn5gU755zrwcx6rTQPyXI+onvt+05gOvBz4Axg
XriwL3dNIM0E1qVK6tkE5pxzrn+y6e44F3gCmCxphaQzgUuBr0haChwWfnbOOVcCsmqKcc45Vz7K
8spTSRsl3RD5PFjSu5LuzHG+R0p6VdJfJf0wUn6LpGfD198kPTtA8fS4OCxp+PnhsscUOh5J4yQ9
LOklSS9KOjcy7CRJSyR1StozxbQDHc/ukp6U9JykP0naK808jg9jm9zfOCLzyvmivTzHk/J/ImlM
uN3WSfqvDPMYiHiGSJojaXH4v7xggOK5TNIrkp6XdLukkWH5BEkfRL7vVydNV5DvemR+F0paFsZ2
RFi2uaS7w7IXJV2SaT5lmdiBDuDzkjYNP38FWNmXGUganPR5EHAVwcVYuwBTJe0IYGanmNmeZrYn
cDvwx0LHE0p1cVhi/HHhct5MMbgQ8XwCfM/MdgH2B/5vYvsALwInAAvTzG6g47kMmGlmexD01Lo8
zWxPAR4DpvYlljCe5O9OPi7ay2c86f4nHwE/As7PYrYDEc/XgaFhx4y9gO9I2nYA4nkA2MXMvgAs
o/v/67XE993Mzk6aLud9uZcYdwJOBnYCjgKulpQ4F3m5me0E7AEcJCllXkgo18QOwZfk6PD9VOB3
iQGS9pb0hKS/SFokaYew/AxJ8yQ9BCxImt8+wDIze9PMNgC3EFyIlezk6LIKGE+6i8MSfgF8P82w
vMdjZi1m9nz4vh14BfhM+HmpmS2j9+6tAxYPQffbRI15FLAqORhJVcCBwFlEEoWkgyUtDGtIr0Zr
bGEtt1HSc8B+SbPM6aK9fMeT7n9iZh+Y2RPA+nSxDGQ8gAFV4Q/3sDCutQMQzwIzS3TTfopPe/OR
IsZk/dmXF0raLTLeY5J2TZrvccAtZvaJmS0n+MHZx8w+NLOFYdyfAM8mxduTmZXdi+Af/3ngD8Cm
wHPAl4E7w+HDgUHh+8OA28L3ZwArgOoU8zwRuDby+VTgv5LG+RLwp4GIJzLvCcDipLJjgSvD938D
xgxUPOF4E4HlwPCk8keAPQdy+6SKB9iR4EhmBUFtanyKaaYB/xO+XwTsEb4/GPgg3O4iqNl9LRy2
ETgxTQyrkz63RdbtcYKkNZPgKCPV9HmNJ4v/yRkk7d/FiIegZ97vgHeAdcA/D2Q84Xh3AtMi37d1
BMnzEeCgPO3LpxFc4wOwA6nzyK8ScYSff5tYl0jZKOB1YGJv61S2NXYzW0LwhZ4K3EP3X9lRwG2S
XiSo2e4cGfagmb3fz8V2+3UuRjySNgcuIkgSXcUDFY+Cq4tvA86zoKaclQGO51/Cz9sCM4DrUkw6
leCoDOD3BIkj4U8WHLkZwf/7oLC8k57NcOn09aK9QsfTVwMVzz4EzWq1wHZAvaSJAxWPpH8HNpjZ
3LDobWBbC5pdzwfmhvtYl37uy7cBR4dHJt8E5vQWV5pYBwNzgV9aUKNPK9t+7KXqToL20zpgi0j5
fwIPm9nXFFxc9UhkWEeaea0Com1744gcwocb9WtAj5ODBYonne0JdqoXwva3ccBfJO1jZu8UMh5J
Qwh20BvNbF4f4x7IeM4ws/MAzOw2SU1J040GDiVoKzVgMEGTQKJpK7mrWOLzh2HySKVVUo19etFe
4n+xL3CipMsIL9qT9KFFru8oUDz9NsDxTAPus6BZ5F1JjxO0tS8vdDySpgNfDecdTBg0w7aF75+V
9DowmaAGH9WnfdnMPpT0IEET3deBL6YIaRUwPvK5Ww4CrgWWmtmv0q1TQrnW2BO/kNcBs8wsue2y
mk83yJlZzvPPwGcVnBUfSnCiJnqm+yvAK2b29gDFE513V43AzJaYWa2ZbWdmk4C3CA5L30maphDx
XAe8bGb/L0O86coGKp5Vkg4GkHQY8Nek4V8HbjCzSeF2nAD8TVKiprdPuB8MAr5BcMIu3bolJC7a
g6SL9sJlbAf8ErjEel60V4h4otKNl658IONZQZhYw3b0/YBXCx2PpCMJfhiONbP1kfItwvkgaTvg
swTnR5Jj78++3AT8F8ERRqqj0DuBUyQNlTQpXPafwlh+Cow0sxnp1imqXBO7AZjZKjO7KsXwy4BL
Jf2FLNfRzDqBcwja6F4iOInxSmSUb5CmGaYQ8UDai8NSLTvVCam8xiPpQOCfgEMVdCN8NvxyJLqh
rST4Ut4taX4x4wG+DVwRnjT7afg56hvA/yaV3c6nJ+WeIegh9RLwupndEV2PNH5O/y/ay3s8vf1P
JP2NoJfOGeF+tWPS5AMZz6+BEZKWAE8DTWFTR0HjIWjPHg48qO7dGr8MLFbQpflW4DtmtiYyXb/3
ZTN7lqCNfnaqgMzs5XCZLxOcoD3bzEzSZwiaX3eO7Ovf7GXd/AIl56LCmv75ZnZssWMBjyeTUoun
N5K2IWimSf4hzbtyrbE751zZkHQa8CRBzbvwy/Mau3POxYvX2J1zLmY8sTvnXMx4YnfOuZjxxO6c
czHjid0552LGE7tzzsXM/wfgLII59KYqMQAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>These two charts demonstrate two very specific phonomena: how the market prepares for earnings releases. Let's look at those charts again, but with some extra information. As we're about the see, the market "knew" in advance that Apple was going to perform poorly. The market expected that Facebook was going to perform poorly, and instead shot the lights out. Let's see that trend in action:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="k">def</span> <span class="nf">plot_hilo</span><span class="p">(</span><span class="n">ax</span><span class="p">,</span> <span class="n">start</span><span class="p">,</span> <span class="n">end</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">date2num</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="n">date2num</span><span class="p">(</span><span class="n">end</span><span class="p">)],</span>
<span class="p">[</span><span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">start</span><span class="p">][</span><span class="s1">&#39;High&#39;</span><span class="p">],</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">end</span><span class="p">][</span><span class="s1">&#39;High&#39;</span><span class="p">]],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">date2num</span><span class="p">(</span><span class="n">start</span><span class="p">),</span> <span class="n">date2num</span><span class="p">(</span><span class="n">end</span><span class="p">)],</span>
<span class="p">[</span><span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">start</span><span class="p">][</span><span class="s1">&#39;Low&#39;</span><span class="p">],</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">end</span><span class="p">][</span><span class="s1">&#39;Low&#39;</span><span class="p">]],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;b&#39;</span><span class="p">)</span>
<span class="n">f</span><span class="p">,</span> <span class="n">axarr</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">ax_aapl</span> <span class="o">=</span> <span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">ax_fb</span> <span class="o">=</span> <span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="c1"># Plot the AAPL trend up and down</span>
<span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">AAPL</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax_aapl</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_aapl</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">15</span><span class="p">),</span> <span class="n">AAPL</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_aapl</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">18</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">),</span> <span class="n">AAPL</span><span class="p">)</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">26</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax_aapl</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">ax_aapl</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">&#39;AAPL Price History&#39;</span><span class="p">)</span>
<span class="c1"># Plot the FB trend down and up</span>
<span class="n">ohlc_dataframe</span><span class="p">(</span><span class="n">FB</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax_fb</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_fb</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">30</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">),</span> <span class="n">FB</span><span class="p">)</span>
<span class="n">plot_hilo</span><span class="p">(</span><span class="n">ax_fb</span><span class="p">,</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">28</span><span class="p">),</span> <span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="n">FB</span><span class="p">)</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">vlines</span><span class="p">(</span><span class="n">date2num</span><span class="p">(</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">27</span><span class="p">,</span> <span class="mi">12</span><span class="p">)),</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ax_fb</span><span class="o">.</span><span class="n">get_ylim</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span>
<span class="n">color</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Earnings Release&#39;</span><span class="p">)</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">ax_fb</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s1">&#39;FB Price History&#39;</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">18</span><span class="p">,</span> <span class="mi">6</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcjfX7x/HXZc++ZUaRUZE2soWIQUVJEam00V7fXyRa
5Fto07ekfVF20kbRpj1KWixFSrI0iGbabJFtfH5/fM5ojNmdM/c5M+/n4zGP4b7vc9/XbZnzOdf9
+VyXOecQEREREREREclJsaADEBEREREREZHYoCSCiIiIiIiIiOSKkggiIiIiIiIikitKIoiIiIiI
iIhIriiJICIiIiIiIiK5oiSCiIiIiIiIiOSKkggiRYCZPWNmQwK47mAze66grysiIiLBMLOlZtY2
gOu+Y2aXFvR1RYoiJRFE8sHMZpvZX2ZWMov9w8xsr5k1z7D9cjPbY2ZbzGyTmS0ysy6hfe3MbF0e
rv9P6Dy/mdl0M4vL6njn3PXOufvyco+5iGGomU3OZPteMzsydN0RzrlrcnGuT8zsinDGJyIiUlSZ
WZKZbQ+NE7aGvsebWZ3Q+/SW0NevZvaUmRXP5lx7051jnZk9bGaW1fHOuROcc5+G+X4OGCdkHDc5
585yzh0wLsnkXPvGKSKSP0oiiOSRmdUB2gB7gXOyOOxS4E/gskz2zXPOVXTOVQbGAa+YWaXQPpfL
MBxwg3OuIlAfqAw8kkW8kfx/nlm8ub2HsMluMCMiIlIEOaBLaLxRIfQ9Od2+SqExxIlAK+A/OZyr
Yej4jkBv4OqMB2WXiIig/Iw58j1OCegeRaKOkggieXcZ8AUwAeiTcWdoCl880A+4yMxKZHOuccAh
wFH5iMMAnHObgOnACaHrjzezp83sbTPbCiSGtt2dLsZzzewbM9tsZivM7IzQ9opmNsbMNoSeNtyT
jw/o+45PP1vBzEqb2WQz+8PMNprZV2Z2qJndC5wKPBl6yvF46PhTzOzrdMe2SnfeT8zsXjOba2bb
gIFmtmC/IMxuNrPX8xi7iIhIYZHd+3faGOIP4APguByOTTv+J+Az/h1z/Gxmt5rZYuBvMyse2tYh
tL+Ymd1hZitDY475ZnZ4aF8DM3vfzP40s2Vmdv5B3Wy62QpmdlRo1uam0IzNF0Pb54TuZUlozHF+
aPvVofHQH2Y2w8xqpjvvXjO7wcx+An4ysyfNbGSGa880s/4HE79ILFESQSTvLgOmAFOBTmZ2aCb7
3wReDf2+a2YnCSUXrga2AivyG4yZVQd6AIvSbb4IuMc5VwH4PMPxJwMTgYHOuUpAWyAptHsisAs4
EmgMnA5cld/YQtIy/pcDFYHDgarAdcA/zrn/4gck/xd6UtLPzKoAbwGPAtXwsyzeDm1Pc0kotgrA
40CCmR2TYf/Eg4xdRESkMDIAMzsM6IR/OJLzi8yOwyf+0485LgTOBCo751IzvGQgcAHQOTTmuALY
bmZlgffx46nqoXM8ZWYN8noPWbgHeC8067MW8ASAc65daP+JoTHHq6GEx/1AT6AmsBZ4KcP5zgWa
45MtE0Px+iDMquFnaLyQh9hFYpqSCCJ5YGZtgCOAV5xzi4CV+Gl9afsPAc4HXnDO7QGmceCShlZm
9hewAf/G2s05tzUf4TwROs83oXMNTLdvpnPuSwDn3M4Mr7sCGOuc+zi0/1fn3E9mVgM/CBjgnNsR
ejrxKD4hkZULzNeGSPvaSNbTBHfjEwL1nfeNc+7vLI7tAvzknJvqnNvrnHsJ+JH9EzITnHM/hvbv
Al7GJw4ws+OBOsDb2cQuIiJSmM1I9/78WrrtBvwees9eB/yNn9GYnUVm9icwE3jOOTch3b7HnHMb
MhlvAFwJDHHOrQRwzn3nnNsInA387JybFBoTLAZew4+hsvJE+jEH/oFNVnYDdczscOfcLufcvAz7
0ycgeuPHRYudc7uBwfix2hHpjrnfObfZObfTOTcf2GxmHUP7LgRmh8ZNIkWCkggieXMZ8H7oDRDg
RfwT9jTn4d+4ZoV+PxU4K5SlTvOFc66qc66Gc+4U59wn+YzlxtB5ajvnLnXO/ZluX3YFGmsDqzLZ
XgcoCfyaLiHwLP4JQVZeDsWQ9lWFrJ8MTAbeA14ys1/M7H/ZrC08DFiTYdsa/CyGNBnvcRL/JnQu
wSd6dmcTu4iISGF2brr35/PSbXdAtdB7dllgHn5WQHYaO+eqOefqOeeGZtj3Szavqw2szmR7HaBl
hocQvfHLQbNyY/oxBz4RkZVb8J9zvjaz78ysbzbH7jfmcM5tw9e1Sj/myHiPkwg9uAh9z7Ggo0hh
kt1abRFJx8zKAL2AYmb2a2hzKaCymZ3onPsOn2QoD6wN1RIw/P+z3oSm0hWQ7IoGrSPzGgzrgB34
gUXYiyOGZmbcA9wTyu7Pws8uGM+B8W7AL9FIL+01+06Z4fxfmdkuMzsV/+ed3QwKERGRwi6nmgjO
ObfTzCYAg8ysqnPur3ycKzdjjh8y2T7bOdcpm9fmm3PuN+AaADNrDXxoZnOcc5klNDbgkxqEji+H
nzmZPnGQ8R6nAN+ZWUOgATAjjOGLRD3NRBDJve7AHuBYoFHo61j8ev7LQusKO+Kn4p8U2t8QeJD9
Zytkx0IFCPd9hfkeAMYCfc2svXmHmdkxoarN7wOPmFmF0L4jLUy9ns0s0cxOMN8t4m/8jI20tZMp
+DoMad4B6pnZhaEiTRfg/6yzm7oI/knAk0BmUxdFREQkXaHE0DjjMuDXbBIIB2MM/uHB0aHrnZiu
7lF9M7vEzEqYWUkza5bHmghZMrOeaQUcgU34jlp7Q79PZv8xx4v4cVHD0J/H/cCXzrksZ3U659YD
C/DjjulZLOUQKbSURBDJvcuAcc659c6539K+gKeAi/GdGr5xzn2UYf/jwImhYkQ5OQzYHvr6B198
KLNextll/bNtuxhay9cXX+9gMzAb/5Q/7R5L4Z8Y/IUvDpnd1MLcXp/QeaaFrvk98Ak+kw/wGHB+
qELzo6GBzNnAIOCP0Pcu6ZaRZHWNyfiK0ZpWKCIiRVlO44SNZrYF+BVoQdYtq3Nzruy2jQJeAd43
s834pMIhoZpIZ+DrCWwIfT2AH4PkNYbMjmkOfBW6xxlAP+dcUmjfMGBSaBlFT+fcR8Cd+JoM64G6
pCucmM21J+LHHJNyEZtIoWI5zVo2s7H4wXyKc65haFtP/H/AY4HmoQJzmFkdYBl+ijL4LN4NkQld
RGR/oSUnKUAT51xmdR9EJEZlMR55EF9wdSe+1ktf59wWMzsN/4GkJL7jzK0HUX9GROQAoeWTk51z
CUHHIlLQcjMTYTy+9Ut63+Gnds/J5PiVzrkmoS8lEESkIN0AzFcCQaRQymw88j5wvHPuJHyr3MGh
7b8DZzvnGuFniWl2koiEjZmVBPoDzwcdi0gQciys6JybG5phkH7bcvCLtzN5SXaFV0REIsLMfg79
sluggYhIRGQxHvkw3W+/JFSQNdQuLu2Y782sjJmVVMcWETlYoboNC/Atth8LOByRQESiO0OCmS3C
r3u+0zk3NwLXEBHZj3OubtAxiEigrgBeyrgxtARzkRIIIhIOzrkf8Z24RIqscCcRNgBHOOc2mlkT
YIaZHRcqniIiIiISdmY2BNjtnJuaYfvxwAjg9EACExERKYTCmkQIZfk3hn69yMxWAfWBRRmPNbOw
96EXEREpLJxzWh6YC2bWBzgL6JBhey18tfVL01Vlz+z1Go+IiIhkIbPxSG5bPO7rJ5vFPv8Ls+qh
HvCE2tIdDazO6qRDhw7FOZfl18Hsj+S527VrF7FzF9b7imTcui/dl+5L9xX0fTGMsN6XZGm/8YiZ
dQZuAc5x6fq0m1klfB/625xzX+Z00vz+fRX0vuz+XUZTnLqH6N+ne4iOfbqH6NgXrntIPxaI1XvI
uC8rOSYRzGwqMA+ob2ZrzayvmXUzs3VAS+AtM5sVOrwtsCRUE+EV4Frn3Kaszp2YmJjttQ9mfyTP
nZCQELFz57Q/Vu8rknHntF/3lff9uq/w79d95X2/7kvSy2w8AjyBX5v8gZktMrOnQ4f/H3AUcJeZ
fRPaVz2rc+f376ug92X37zKa4tQ9RP8+3UN07NM9RMc+3UPe92WZeYj0l790bBo6dGjQIUSE7iu2
6L5ii+4rtuT1vhgW3ve00HtkYO/RRekrlsYjheH/m+4hOugeooPuITqE6x7CPRbIi0j9PWQ1Hsnt
cgZJp7A+JdJ9xRbdV2zRfcWWwnpfEtsKw79L3UN00D1EB91DdNA95J35BEPBMzMX1LVFRETCyYYb
bmj43tPMDKfCigVC4xEREQmHcI8FokFW45Fwt3g8aAkJCaxZsyboMKSQqFOnDklJSUGHISIiMUbj
EQknjUdEpDCJuiTCmjVr0BMBCRczPcgTEZG803hEwknjEREpTFQTQURERERERERyRUkEERERERER
EckVJRFEREREREREJFeURIhic+fO5dhjjw06jDxp374948aNCzoMERERCRONR0REJD0lEfIoISGB
smXLUrFiRSpUqEDFihXp169fRK7Vpk0bli1bFpFzZ2XixImUKFGCihUrUrlyZRo3bszbb79doDGI
iIhI9jQeERGRoERdd4ZoZ2a8/fbbtG/f/qDOk5qaSvHixcMUVXidcsopfPrppwA899xzXHjhhaxf
v56KFSsGHJmIiIiAxiMiIhIczUTIh6xaPq1evZqOHTtSvXp1atSowSWXXMKWLVv27a9bty4PPvgg
jRo1onz58qSmplK3bl0efvhhGjVqRJUqVbjooovYtWsXAHPmzKF27dr7vT6rYwEefPBBDjvsMGrV
qsXYsWMpVqwYq1evBuCdd97h+OOPp2LFitSuXZtRo0bl6l4vvfRStm3bxooVK/Zt+/LLL2ndujVV
qlShcePGzJkzJ8vXjxs3juOOO45q1apx5plnsnbt2n37brrpJo444ggqVapE8+bNmTt37r598+fP
p3nz5lSqVImaNWsyaNCgfF1fRESksNJ4ROMREZFAOOcC+fKXPlBW26NFQkKC++ijjzLdt3LlSvfh
hx+63bt3uz/++MO1a9fODRgwYL/XNm7c2K1fv97t2LFj37YWLVq45ORkt3HjRnfssce60aNHO+ec
mz17tqtdu/Z+r8/q2FmzZrmaNWu6ZcuWuX/++cddcsklrlixYm7VqlXOOedq1qzpPv/8c+ecc5s2
bXLffPNNpvcwYcIEd+qppzrnnNuzZ4978sknXenSpd3vv//unHNu/fr1rlq1au7dd991zjn34Ycf
umrVqrk//vjDOedcYmKiGzt2rHPOuRkzZrh69eq55cuXu9TUVHffffe5U045Zd+1XnjhBbdx40aX
mprqRo0a5eLj493OnTudc861atXKTZkyxTnn3LZt29xXX32Vq+tnFO3/nkSkcGBYeH/WhH52BfYe
XZS+NB7ReETjEREJh3CPBaJBVuMRzUTIh27dulG1alWqVKlC1apVGTt2LABHHXUUHTt2pESJElSr
Vo0BAwYckJXu378/hx12GKVLl95vW1xcHJUrV6Zr1658++23WV47q2NfffVV+vbtS4MGDShTpgzD
hg1LGxwBUKpUKb7//nu2bt1KpUqVOOmkk7K8xhdffEHVqlU55JBDuPXWW5kyZQrVq1cHYMqUKXTp
0oVOnToB0LFjR5o1a8Y777xzwHlGjx7N4MGDqV+/PsWKFeP222/n22+/Zd26dQD07t2bypUrU6xY
MQYMGMDOnTtZvnz5vnhXrlzJn3/+SdmyZTn55JPzfH0REZHCTOMRjUdERIIQkzURbLiF5TxuaObT
AHMyc+bMTNcg/vbbb/Tv35/PPvuMv//+m9TUVKpWrbrfMbVq1TrgdXFxcft+XbZsWX799dcsr53V
sRs2bKB58+b79qWfdggwffp07rnnHm677TYaNWrEiBEjaNmyZabXaNWqFZ9++inbt2/nyiuv5NNP
P6Vnz54ArFmzhldeeYU333wT8DNZ9uzZQ8eOHQ84z5o1a+jfvz8DBw7cd6yZsX79emrXrs3IkSMZ
N27cvnvYunUrf/zxBwBjx47lzjvvpEGDBhx55JHcdddddOnSJcvrd+jQIcs/MxERkUgIx3gkv2MR
0HhE4xERkWDEZBLhYN5ww3J9l/n177jjDooVK8b3339PpUqVmDlzJjfeeON+x5iFJwGSUc2aNfnl
l1/2/X7t2rX7Xatp06bMmDGD1NRUnnjiCXr16rXfesDMlC1blqeffpojjzySK6+8kkaNGlG7dm0u
u+wyRo8enWNMtWvX5r///S8XXXTRAfvmzp3LQw89xCeffMJxxx0HQNWqVff92R511FFMnToV8AOO
nj178tdff+Xp+iIiIpGk8ciBNB4RESn8tJwhjLZu3Ur58uWpUKEC69ev56GHHiqwa/fq1Yvx48fz
448/sn37du699959+3bv3s3UqVPZsmULxYsXp0KFCrmuxFylShWuvvpqhg8fDsAll1zCm2++yfvv
v8/evXvZsWMHc+bMYcOGDQe89rrrruP+++/nhx9+AGDz5s1MmzYN8H9WJUuWpFq1auzatYu7776b
rVu37nvtCy+8sO8pQKVKlTAzihUrlqfri4iIFEUaj+xP4xERkfBSEiEfunbtSsWKFfd99ejRA4Ch
Q4eycOHCfesD07anySzrn5cnAdkd27lzZ/r160f79u2pX78+rVq1Ati31nHy5MnUrVuXypUr89xz
z+3LqudG//79mTVrFkuXLqVWrVrMnDmT+++/n0MPPZQ6deowcuRI9u7de0CM3bp14/bbb+fCCy+k
cuXKNGzYkHfffReATp060alTJ+rXr0/dunUpW7bsflMe33333X3VmwcMGMDLL79M6dKlc7y+iIhI
UaHxiMYjIiJBsKymwkX8wmYus2ubWZbT8yT3fvzxR0488UR27txJsWJFN1ekf08iUhBsuIV1anvo
Z1dk5pvLfjQeiSyNRzz9exIp/NLGAjt2QMmSkMuJVlEtq/FI0f1pXgjNmDGDXbt2sXHjRm677TbO
OeecIv2GLSIiIgVP4xERKcqefBI6dICffw46ksjRT/RCZPTo0dSoUYN69epRsmRJnn766aBDEhER
kSJG4xERKcoGDICu8fM5+WQYOxYK4ySkmOzOIJmbNWtW0CGIiIhIEafxiIgUZcWLw6Bj36bznc25
9FJ4/XUYMwbi44OOLHw0E0FEREREREQkjE44Ab76Cho3hpNOglBTmEJBSQQRERERERGRMCtVCu65
B2bMgDvugEsugY0bg47q4CmJICIiIiIiIhIhLVvCt99ClSrQsCG8/37QER0cJRFEREREREREIqhs
WXjiCRg/Hq66Cv7zH9i2Leio8ifqCivWqVMHM7XGlvCoU6dO0CGIiEgM0nhEwknjERFJc9ppsGQJ
9OvnayVMmgStWgUdVd5EXRIhKSkp6BBERESkiNN4REREIqVyZZ88mD4duneHK6+EoUN9DYVYoOUM
IiIiIiIiIgWsRw9YvBi++w5OPtl/jwVKIoiIiEjUM7OxZpZiZkvSbXvQzJaZ2bdmNt3MKqbbN9jM
VoT2nxFM1CIiItmLi4OZM6F/f+jQAR58EFJTg44qe0oiiIiISCwYD3TKsO194Hjn3EnACmAwgJkd
B/QCjgXOBJ42FTgQEZEoZQZ9+8L8+fDOO9CuHaxaFXRUWVMSQURERKKec24usDHDtg+dc3tDv/0S
qBX69TnAS865Pc65JHyC4eSCilVERCQ/EhLg44/9MoeWLeG558C5oKM6kJIIIiIxbsKECVnuS0qC
L78ssFBEgnQF8E7o14cD69LtWx/aJiIiEtWKFYMBA2DOHJ9E6NIFNmwIOqr9KYkgIhIDsk8UJB2w
7csvoVcvaNYMvn7iq8gFJhIFzGwIsNs592LQsYiIiITDccfBF1/4gouNG8PLLwcd0b+irsWjiIgc
KDft5vbsgRkzYNQoSEmBm26CsWOhwsOzgBYRj1EkCGbWBzgL6JBu83qgdrrf1wpty9SwYcP2/Tox
MZHExMRwhigiIpIvJUvCsGF+NsKll/px3lNPQdWqkbne7NmzmT17do7HKYkgIlFlwoQJ9OnTJ+gw
YsrOnaV59FF47DGoVQtuuQXOOQeKFw86MpGws9CX/41ZZ+AWoK1zbme6494AXjCzR/DLGI4Gvs7q
pOmTCCIiItGmeXP45hsYPBgaNoQxY6Bz5/BfJ2Miffjw4ZkepySCiESV3DxxF2/NGnj8cRg16hpK
l36dTz/tzskZS8fFx/tpCc8+C8nJgcQpEg5mNhVIBKqZ2VpgKHAHUAr4INR84Uvn3A3OuR/M7BXg
B2A3cINz0ViaSkREJHcOOQQefdQ/KOrbF848E0aOhPLlCz4W1UQQEYly8fHxjBw5ct/vv/oKLrgA
mjTxxXegMTt3nndgAgF8AiH9d5EY5Zzr7Zw7zDlX2jl3hHNuvHOunnOujnOuSejrhnTHj3DOHe2c
O9Y5936QsYuIiIRLhw6wZAns2AEnnQSff17wMSiJICIS5VJSUti27R+mT4fWreGii+CUU3znhYce
gv2L0IuIiIhIYVapEkyY4Gci9OwJt98OO3fm+LKwURJBRCSKbd0K0A9YwSOPwMCBsGIF9O8PFSoE
HJyIiIiIBKZbN1i8GJYv93UTFi8umOsqiSAiEoXWrvUFEhMSAFoBFzF3Lpx3ngomioiIiIhXowa8
9pp/0HTaaTBihO/YFUlKIoiIRJGvv/bLFRo3Budg0SKAi8imsLyIiIiIFGFmcPnlsHAhfPghtG0L
K1dG7npKIoiIBCw11WeQ27TxBRNbtICff/br3OrUyfn15cqVIy4uLvKBioiIiEj24uNh+HD/vYAd
cQR88AFceCG0bAnPPOMfSoWbkggiIgHZutW3aKxXzycMbrrJ1zu46SaoWDH35xk0aBDJat8oIiIi
EryAO2MVKwb9+sHcuTB+vG8FuX59mK8R3tOJiEhO1q2DW2+FunV9W56pU2HePF9dt0SJoKMTERER
kVjXoIEfX55yil8mO3Vq+GYlKIkgIlJA5s+H3r19T9/UVFiwAF5+2U83ExEREREJpxIl4K67YNYs
uPdev2z2zz8P/rxKIoiIRFBqKrz+Opx6Kpx/vm+/8/PP8PDDaZ0XDl5CuE4kIiIiIoVO06a+6GLt
2tCwIbz99sGdTxNnRUQi4O+//Tq0Rx/1rXduvhm6d4/McoU+ffqE/6QiIiIiUmgccoh/iHXOOdCn
D8yc6X9foULez6WZCCIiYfTLL3DbbX6WwWefwZQp8MUXfhaC6h2IiIiISJDatYPFi2HvXmjUCD79
NO/nUBJBRKLKyJEjiQ+gJc7BWrAALr7Y/zDevdvXP3jlFWjVKujIRERERET+VbEijBkDjz3m20He
cgvs2JH71yuJICJRZdu2baQE1BInr1JTYcYMn9Ht0cOvN1u9GkaN8p0XRERERESiVdeuflbC6tXQ
rBl8803uXqfJtSJSaMTHx/PPP/+wefPmiF7n779hwgRf76BaNRg4EM47T8sVRERERCS2HHooTJsG
L7wAnTpBv35w++3Zj2s1E0FECo2UlBS2bNkSsfP/8ov/oZqQALNnw6RJ8OWX0KuXEggiIiIiEpvM
4JJLfAeHOXOgTRv46aesj1cSQUQkBwsX+h+sjRrBzp2+3sG0aXDKKf6HbqTFxcVRsWLFyF9IRERE
RIqs2rXhvffg0kth7gNzszxOSQQRiSkTJkwokOvs3QtvvAGJib41Y+PGfr3YI48UfL2D5OTkiC/R
EBEREREpVgz+8x+44ogPszxGE3BFJKYkJSVF9PzbtsHEiT5ZUKXKv/UOSpaM6GVFRERERGKCZiKI
iADr18Pgwb7ewUcf+cKJX30FF1wQngRCQc2gEBERERGJJCURRKRIW7TIr/s68UTYvt0XSpw+HVq3
Dm+9g5xmUCjJICIiIiKxQEkEkSIqWj+0litXjri4uMicPHTPe/fCm29C+/bQrRs0bOjrHTz2GBx1
VGQunZ34+Hj69u1LfHx8wV9cRERERGJaQY/rc0wimNlYM0sxsyXptvU0s6VmlmpmTTIcP9jMVpjZ
MjM7IxJBi8jBi3RtgfwaNGgQycnJETn3tp/W8/TT0KAB3H03XHstrFoFt9wClStH5JK5kpKSst93
EREREZHcKuhxfW4KK44HngAmpdv2HdAdGJ3+QDM7FugFHAvUAj40s3rOOReecEWksEtISAj7OTds
gCefhOcfu4lTO8G4ceFfriAiIiIiUhTkOBPBOTcX2Jhh23Ln3Aog4xD8XOAl59we51wSsAI4OUyx
ikgR0KdPn3y/Ni4ujnLlyu37/TffwGWXwQknwN9/w5dXjuG116BNGyUQRERERCT2xcfHM3z48AJd
FhvumgiHA+vS/X59aJuISMQlJyczcOAtvPUWdOgA55zjCyauWgWPPw5HVd2Y80lERERERGJEEMti
c7OcQUQk6m3fDpMmwVNP/YeEBBg4EHr2DE97RhERERER8cKdRFgP1E73+1qhbZkaNmzYvl8nJiaS
mJgY5nBEJNzi4+NJSUkhLi4uYgUQ82LDBnjqKXj+eV/noGvXNxg37gotV5CYMnv2bGbPnh10GCIi
IiI5ym0SwTiw/kH6fWneAF4ws0fwyxiOBr7O6qTpkwgiEkUmTIAsahNESyeBb7+FRx7xrRovvhjm
zYOjj4Zhw9ZmnUAYORKefRaiIPkhkl7GRPrw4cODC0ZEREQkG7lp8TgVmAfUN7O1ZtbXzLqZ2Tqg
JfCWmc0CcM79ALwC/AC8A9ygzgwiMShK2z/u3Qs//VSPjh3h7LPhuON8vYMnnvAJhBxt2wZFrY1i
XBypFIO4uKAjEREREZEoMmHChHy9LseZCM653lnsmpHF8SOAEfmKRkQkE9u3w+TJ8J//rCA1tQEV
K17PH388E/56B9nMwIhF8+fDiFOSOXTNAkYvbBZ0OCIHxczGAmcDKc65hqFtPYFh+NbSzZ1zi0Lb
SwBjgCZAcWCyc+6BIOIWERGJVkn5fHAY7u4MIlIYjBwJBdgmJivJyXDnnZCQALNmQWrqlUAztmx5
NjIFE6NDDbsDAAAgAElEQVR0BkZeOAeffAKnnw49ekD79vDINcuCDkskHMYDnTJs+w7oDszJsP18
oFQo2dAMuNbMjoh8iCIiIlEmn7MNsqPuDCJyoG3b/FdAlizx9Q5mzoTeveHzz6FePTD7LLCYot3e
vfDWW3D//bBpE9x2m68VUaoUwKVBhydy0Jxzc82sToZtywHMDqiE4oByZlYcKAvsBLYUSKAiIiLR
JAIPyZREECmC0josPPvss1HRYQH8h+B334VRo2DZMrjxRli5EqpWDTqy6LZnD7z8MowYAaVLw+DB
0L07FC8edGQigZoGnAv8ChwCDHDObQo2JBERkehxMJ8HlEQQKYKipcMCwD//+HoHjzwChxwCN98M
vXqlPUHfX1xc3L72kkXdjh0wcSL8739QuzY8/DCccQZqbSninQzsAeKBasBnZvahcy4ps4PVclpE
RIqazD4P7Gs5PXJktrOSlUQQkUAkJ8PTT8Po0dCype+82LZt9h+Ck5OTmTBhAn0KUfHDvNq61f+Z
jRoFTZr4BEzr1kFHJRJ1egPvOuf2Ar+b2ef42ghJmR2sltMiIiLpEumhVtNZNZxWYUURKVBLlkDf
vr49459/wmef+doH7drl7il6YUwgpM2syG6GxZ9/wtChcOSRsHChLzT51ltKIEiRY6GvrPalWQt0
ADCzcviW1D9GNjQREZGiQUkEEYm4vXv9h97TT4czz4T69WHFCnjqKf/roi45OZmhQ4dmuh5t/Xq/
xKNePfj1V/jiC3jxRWjUKIBARQJkZlOBeUB9M1trZn3NrJuZrcMnCd4ys1mhw58CKpjZUuArYKxz
bmkwkYuIiPxrQgS6JRQ0LWcQkYj55x+YMsXXOyhd2n8YvuCCzOsdhEtCQkLkTl6AVq709Q6mT/cz
N777Dg4/POioRILjnOudxa4ZmRy7DegV2YhERETyLinM3RIiUjMsLg6yqZ2mmQgiEnYpKX7qfUIC
vPmmn3GwaBFcemlkEwgQ+8sdFi+Giy6CVq180mDFCl80UQkEEREREckouxmtB3FSP5jPgpIIInKg
cuV8BjKPli6FK6+EY4+F33+HTz+FN96A9u3VNWDkyJHEx8dnuX/t2tqcfTacdRY0bQqrV8OwYVCt
WsHFmFe//w7PPQfOBR2JiIiIiBQUJRFE5ECDBvkMZC44B+++C506+RaDRx3ln54//TQcc0yE44xx
zsF77/mikq+/fh5du8KqVf6Pv0KFoKPL2T//wDP3/cmll8L27UFHIyIiIiIFQUkEETlQruoKlGbM
GDjhBLj9drj4Yvj5Z7jjjuh+ep6l+Hjfziab2QIHY9CgQfummaWmwrRpfsbBoEFw7bVw441PcO21
UKZMRC4fEUecHM/na2tj01+ldWv/9y8iIiIimYuPj2f48OHZzk6NBUoiiMiBsqkrcOihxwNDKVZs
LTNmwBNPwDffwGWX+eKJMSuteEw2RWQORkJCArt2wfjxvr3lyJF+ucLixdC7NxQrtjci142olBTK
8g+TdvTiiiugZUt4//2ggxIRERGJTimhcWZKhMabB4jQQzJ1ZxCRXPn+e99lYc+epTRtOp8pU2rQ
oEHQUcWG7dthy5Y+HH00NGgAzz4LiYmFp06EATfe6NtOXnih//Xttxee+xMRERGJSRF6SKaZCCJF
UFoLmJxawTjnnyx37gynnw5168JPP8HZZ79d+BIIaX8WYWyPs2kT3H8/HHkkzJ7t2zW+/37mhSYL
Q2vKtm1h/nyYORN69ICtW4OOSERERKQIi8D4FpREECmSkpOTGT9+fJatYHbsgHHj4MQT4ZZbfMvB
n3+GIUOgevUCDragpLWyCUN7nJQUGDzYF5lcvhw+/hheew2aN8/6NbHemjLN4YfDnDlw6KFw8sn+
/kVEREQkAGEc36anJIJIEZXZh9bffvPLphIS/FPzxx6Db7+Fyy+P8XoHafLZujK31qyB//s/3+Jy
61ZYuBAmTvQ1EIqS0qVh9GgYOBBOPdXPTBARERGR2LBtGyT/XT7L/UoiiAg//ABXX+3X62/YAJ98
Am+/DR07FrJ17XloXZkXy5b5REuTJr4147Jl8OSTuWxyUYhddRW8+aavkXDnnb4rhYiIiIhEH+fg
66/hmmugdm14aUPbLI9VEkGkiHIOPvgAzjzTJwvq1PH1DkaP9k/SJWfz58N55/kiicccA6tWwYgR
EZ3sEHNatPB/Tp9+Cl27wsaNQUckIiIiIv+qxqOPQsOGvmNYQgJ89x3cNPXkLF+h7gwiRcyOHTB1
qu+0YAY33wwzZhSS5QoFwDlfJHHECPjxR18zYsoUKFs26MiiV1wcfPgh3Hqrrwvx+uu+3oaIiIiI
FDw/O/QM4ErgDBYu9G3b27aFYrmYZqAkgkgR8fvv8Mwz8PTTftr9I4/kf7lCYegkkKls7mvvXnjr
LZ88+Osv38Lw4ouhVKmCCy+WlSzp/801bw4dOvg3qgsvDDoqERERkaIjKQnGj/dfcB8wFriGyZM3
5ek8SiKIFHI//ACPPgqvvgrnn+87BRxsob+Y7SSQU/Ijk/vaswdeecUnD0qWhDvugO7doXjxiERY
6PXuDccf75eBLFgADzwAJfROJCIS9ZYuhSpVfBceEYkdO/aUYMZLMHYsfPON77r2xhvQuHE2bcNy
oJoIIoWQc376+Fln+ae+tWr5egfPPVf0OgXsJw/Jjx07fH2IY47x30eO9N0WevZUAuFgNWrk6yQs
XQonnvgrv/8edEQiIpKTzz+HZsdv54MPgo5ERHJj8WLo1w9qPTaIMWPgiivgl1/8bNCTTjq4cyuJ
IFKI7NwJEyb4D2kDBviZB0lJcNddcOihQUcXG7Zu9QmDI4/0nQUmTYI5c6BTp0LWqaKgTJiQ6eaq
VX0HkOrVV9CsmU8qiIhI9Lr2Wnjh3Fe5/HLfDlodd0Siz+bN8Oyzfvno2WdD5cowf0kZPvzQz0Ao
UyY811ESQaQQ+P13uOceP1v/5Zfh4YdhyRLo2zd8PywKuz//hKFDffJg4UKYNcvXQGjdOujIYlh8
vP9HGB+f6e7ixaFjx4959FE/a2bcuAKOT0RE8qRD3Z9ZsAA++sj/3NZMMpHgOQdJSXW47DLfbe2j
j/zngqQkuPtuqFs3/NdUEkEkhi1b5p8M1K8Pa9f6JQyzZsHpp+upeW6tXw8DB0K9erBhA8ybBy++
6GdzyEFKSdn/exa6d/ctIB98EK6/HnbtKoDYREQkXw47zNdXatwYmjb175sikjtxoT7gcWHoB75h
g6/ZVb8+vPNOFxo3hhUrfB20zp0ju/xWSQSRGOOczzB26QLt2/s38+XL4fnnfcG6NBOymEYu3sqV
cM01vtWgc37mxvPP+2SCFLxjj4Wvv4Zff4XERP/GKCIi0alECV8Y98knoVs3X8DZuaCjEol+ycnJ
DB06lOTk5Hy9fvdu35q9a1c/7l+9GiZPhuuvf5oBAwpu+bKSCFL4FZIP0zt3wsSJvhBK//7Qo4ef
pjR0KNSosf+x8fHx9O3bl/gsppEXZUuW+DVhrVpBzZq+4OSoUb74pASrYkV47TU/RbZ5c5g7N+iI
RERkn/h4Xwwh3djinHPgq69gyhRfh2nz5gDjE4kWabMMwjDbIM3y5XDrrVC7tq/ddd55sG6dfwDW
smXBz0BWEkEKv6SkoCM4KH/8Affd59czvfgiPPQQfPedr7CaVb2DlND08ZQcppEXJfPm+QIznTv7
6ZerV/uxUPXqQUcm6RUrBv/9L4wZ4xNlTz2lp1siIlEhiyVqdev6pG+NGtCsGXz7bQCxiUST5GT/
lC+fsw3SbNvmn4Weeiq0a+e3zZ7t/7/17Qvlyx90pPmmJIJIlPrxR7juOr/O6eef4f334d134Ywz
VO8gt5yD997zP3gvucRP/Vq9GgYNggoVgo5OsnPmmT7xM3q0f6P855+gIxIRkayUKQNPP+2T86ef
rkK5IvnlnJ/dc801ftbB9Om+dte6db52VIMG4bvWwdRnUBJBJIo454sVnX22/+AbH++LJ44ZAyec
EHR0sSM1FaZN809EBg70xSd/+sl/V7eKMIrAdL30jjoKvvjCL+Vp0wbWrInIZUREJEx69/ZtkUeO
9Ang7duDjkgkNvzxBzzyiK/VdfHFfobP0qW+3Xi3blCyZPavT0hIyPM1k5OTGT9+fL7qMyiJIBIF
du2CSZN8peMbb/Q/LJKSYNiwiH0+K5R27YLx432hmZEj/UyyJUv8oKZEiaCjK4TCNF0vO+XKwdSp
fiZJixa+A4mIiESv447zhXJ37fJrtX/6KeiIRKJTaqqfMXv++XD00bBokV/GuWIFDB7si6fnVp8+
ffIVQ35fpySCFHlBdjH480+4/35ISIAXXoD//c9nHa+6Cg45JLCwYs727fDEE/4H8NSp8Mwz/gn2
Oef4NfYS28xgwABfE+TSS31dENVJEBGJXuXL+2KLN9wArVv7lnMi4m3aVJmhQ/1sgyFDoEMH//Bw
8mQ/EzkWli3r2ZwUeUkBFF5cvty3Q3rpJV9d9b33/PQlyZtNm/wazMce84OU6dN9VX8pnNq390+3
zjsP5s/3a26DLCokIiJZM/O1nZo3909a5871SeBSpYKOTKTg7djhWzOOHQuff34NV13llyo0ahR0
ZPmjZ3QiBcQ5+OQTX9yvbVtfxfjHH/0PEyUQ8iYlxU/zOuoon5D55BPfGlAJhNgSHx/PyJEj8/Sa
2rXhs898YcyWLf2UPxERiV5Nm8LChb5IdNu2sHZt0BGJFJzFi6FfP99KfOxYuPJKuPnmUTz+eOwm
EEBJBJGcHeRyh127/PSkJk3gP//xU+yTknwFY9U7yJs1a3zNiGOPha1b/aBk4kS//lJiT0pKCtu2
bcvz68qU8cVG/+///AyUt96KQHAiIkVUJJZ5Vqnin8Kedx6cfLLvNiVSWG3aBM/Mb0azZr5YeuXK
fgblBx/AhRdCiRJ7gg7xoCmJIJKTfC53+OsvGDHCr3eaNMnXPli6FK6+WvUO8mrZMujTxydiypWD
H36AJ5/0tSQkOL/8AnfPacfOnQV/7bRpsjNn+u/Dh8PevQUfhxQcMxtrZilmtiTdtp5mttTMUs2s
SYbjG5rZvND+xWamSdQiuRCpZZ7FisGtt8Irr/jaT3fe6QvLiRQ2EyfCx7+dwL33+o8Rd9/tPw8U
JkoiiITZTz/5GQdHH+2nWs+a5TOPZ56pIn95tWAB9OgBiYlQrx6sWgUPPOBbX0rwSpSAhZuOomlT
n2E/wMG2gKxUKce/7Fat/s3ud+sGmzfn71ISE8YDnTJs+w7oDsxJv9HMigOTgWuccycAicDuAohR
RDKRfnZD27Z+JuHnn8MZZ/gliiKFSf/+8Or8BDp3huLFg44mMvSRRiQMnIPZs+Hcc30/+2rV/NPy
ceOgYcOgo4staX+WZ5zhpz22a+fXUQ4Z4qeDSfSIj4cZi45gyBA/Xe+22+Cff9IdcLAtILdsydXo
smZN+PhjqFPH18X4/vv8XU6im3NuLrAxw7blzrkVQMZa1mcAi51zS0PHbXROPT1EchIfH8/w4cOJ
D3O2PuPshrg4n/xt1crXTPjss7BeTkQiTEkEkYOwa5dvYdS0KVx/PXTp4tft3323npbn1d69vkrt
KafAtdfCRRfBypW+GE3ZskFHJ1kx839XS5b4ZE/jxv7pUkErVcq3+RwyxM9cmTat4GOQqFIfwMze
NbMFZnZL0AGJxIKUUOI2JYzTA7JKTBQvDvfeC889Bz17qn2vSCxRi0cp0uLj40lJSeHZZ58lOQ9P
S//6y7/pPfkkNGjg3wQ7d9ZyhfzYs8evjxwxAkqWhDvugO7dC+/0r8IqLs7/PU6f7geDF1wA990H
5Qo4jssv991O0tpA3nefX3YhRU4JoDXQDNgBfGRmC5xznwQblkjRk1Ni4qyzfPveXr18EnrCBM08
FIl2GlpJkZbXjPuKFfDYYzB1ql+68Pbbsd2eJUg7dvjCMw8+6NvePPQQdOrkn2xL7EqrYXHTTX4p
z5g2CbTP4ti4uDj+/vvvsMfQpImvp3Hhhb4WyYsvQvXqYb+MRLdfgE+dcxsBzOwdoAmQaRJh2LBh
+36dmJhIYmJi5CMUkX3q1PFLGgYN8rM7X3nFfxeRgjV79mxmz56d43FKIojkwDn47FMYNQrmzfNT
7b//3q/DlrzbuhVGj4ZHHoGTTvKJhDZtgo5KwqlaNd/W9K234LKLu3P29T5ZVKHC/sclJyfv9+Et
nKpX9y3EhgzxdRKmT/fJBYl5xoH1D9LvS/MecIuZlQH2AO2AUVmdNFL/DkUk90qVgscf92OCzp39
LM9rrtHDBZGClDGRPnz48EyP0+RrKRA59hyOQE/ig7V7N7xQ6Qaa3d2Vazqs4MwzfZuWe+5RAiE/
/vwThg2DI4/0T4nfftt/KYFQeJ19Nnx3/TPs3g0nnADvvRfe8+f0c6VECfjf/3wCo1Mn32pVYpeZ
TQXmAfXNbK2Z9TWzbma2DmgJvGVmswCcc5vwSYMFwCJggXNuVlCxi0ju9eoFc+f6JaOXXQbbtgUd
kYhkpCSCFIgcew5HqCdxfmzc6D941K0L47b04G7u4ofUY7j2WhX4y4/162HgQN+icf16P5vjpZf8
LAQp/CqX2cGYMfD8834Wz5VXwqZN4Tl3bnuZn38+fPKJTwDeeKNPEErscc71ds4d5pwr7Zw7wjk3
3jk3wzlX2zl3iHOupnPuzHTHT3XOneCca+icGxxk7CKSN8ccA1995WtNnXwyLFsWdEQi4ZOQkBB0
CAdNSQQJmxxnG2QlPh6GDw+8ncHKlf4DxlFH+faMb70FH3EaXXiHYqhccF6tXOmnIZ54ol8SsmSJ
/yBZr17QkUkQzjgDvvsOypTxsxLefLNgr3/CCb7QYlISdOiQ/66TIiJSMMqW9RNVBwyAtm19fRuR
wqBPnz5Bh3DQlESQsMntU8EDpBU1DGM7obxpA7zGKadApUq+3sHEibl7Up7vxEkhtmQJ9O7tez/X
rAk//eTrSdSqFXRkEoh02fYKFeCpp3xb1AED4OKLYfv2QwoslMqVYeZM6NjR10n44osCu7SIiOSD
GVx1FXzwAdx5J9xwA+zcGXRUIqIkghRJu3f7DgswHxgDvEdSki/ik5d6B/lOnIRDlCUw5s2Drl19
MaTGjWH1aj/BRFXxi7hMsu2JibB4MdSoAc88cwPTphVcOMWK+doczzzjO6yMHq2+5CIi0e6kk2Dh
Qj+LrE2bqFoFK1IkKYkgRcrGjb7I2pFHwpgxAMOAY4HRmdc7iIvb/3s0iYJ3UOd8sbzERLjkEujS
xScPbrnlwEr8IumVK+c7dPTq9Qr//a+vW1CQk5HOPtv3I3/8cbj6at9yVEREolelSr7TzkUXQYsW
ftmpiARDSQQpElatgn79fL2DpUvhjTfg448B3obs6h0kJ8PQoVpAncHevf6NvFkzXzTx6qv9soXr
rvNr3kVy69RTi/Ptt/7/ZsOG8MILBTczoF49X7hr82a/3nbduoK5roiI5I8Z3HwzvPYaXH89DB4M
e/YEHZVI0aMkgoRFfHw8w4cPJz7g4ojpOedbBJ13bxNa1vuT8uV9YbdJk/x0+5g3cmSBF6Pcvduv
ojjuOD+j4667fA2Eiy/27fRE8qpPnz6UKQMPPOCfKj3wgF9msH49frpChGcBlS8Pr7wCPXv6CuCz
Z0f0ciIiEgatW8OiRX6Jw2mnwa+/Bh2RSNGiJIKERUpoHnJKfuYjh3nJwO7dvoVgixZwxRVwevGP
STq0OfffD4cfno8TRmsblm3bCmz+9/bt8MQT/mnxCy/A00/Dl1/6D3vF9FNEwqR5cz8gbNzYf43v
OAX3a+RnAZnBrbf6BOOFF/plFqqTICIS3Q49FGbNgvbtoWlT38pXRAqGhv9SIEaOHJn1LIUwLRnY
tAkeesh/0B092lfx/fFHuH5wZcqlrM7/iQtBG5b82rQJ7r/f15D45BO/hOGDD3yLPLOgo5PCqFQp
X5Dzgw/gia9b0LkzrF1bMNc+/XSfHJs82c+u2batYK4rIiL5U7y4H0JOmOBrJYwY4ZdcikhkKYkg
BWLbtm35m6WQC6tXQ//+/oPukiUwY4b/wNu1q56S51dKil9nePTRPhHz0Ud+/WHz5kFHJkVFo0bw
1VXP066df8L07LMFMzBMSPAFF0uUgFNO8fVUREQkup1xBixYAG++6cd/f/0VdEQihZs+YklMcs4P
9Hv08MsWypb19Q4mT4YmTQoujmxnWMSgNWvgxhvh2GNhyxb/hjxpEhx/fNCRSVFUsvhe7rjD1ykY
Px46dvz3Q30k67Accgi0bz+Bq6/2iYR33w37JUREJMxq1YI5c+CYY/xYcP78oCMSKbyURJCYsmcP
vPwytGzpVxl07Og7HY4Ykc96BwcpkjMsCtKyZf7Ps0kTX8vuhx/gqaeitxyEFC3HHw/z5vm2jC1a
wGOPQUrK70A+67Dkwpo1Sfzf/8G0aXDllXDffZoiKyIS7UqWhFGj/FeXLvDkk6pxIxIJSiJIgShX
rhxxB1E4cfNmePhhX+/gmWdgyBA/zf6GG/yHXsmfBQv8bI7ERN/ubtUqXx2/EE2ukFiWLotVvLhv
J/rFF742B3wK1I94CKeeCl9/7TtH9OjhZ+iIiEh0O+88n3weM8bXSti6NeiIRAoXJRGkQAwaNIjk
fBRO/PlnuOkmX+/gm2/8uvzZs+Gcc/yHiqAdbHIkCM75P8NOnaB7d2jXzteVGDIEKlcOOjqRdDIp
alqvXlobxheBz4FbIt4j/PDD/TXj4/1MiB9/jOz1RETk4B19tE88ly/vazotXRp0RCKFR45JBDMb
a2YpZrYk3bYqZva+mS03s/fMrFJoex0z225mi0JfT0cyeCmcnPPZ4549/Q/9MmVg8WKYMsUXWIsm
+U2OBME5X3CodWu49lq44AI/86BfP83mkNjiC6Y+BTQHOnHKKZEfHJYu7WdB3XKLn50wa1Zkryci
IgfvkEP8bITbb/etICdPDjoikcIhNzMRxgOdMmy7HfjQOXcM8DEwON2+lc65JqGvG8IUpxQBe/bA
K69Aq1Zw2WV+in1Skp9eX6tW0NHFrj17YOpUX+3+rrtgwABf8+CKK3w7PZHYlQScxtVX+8HhPffA
7t2RveIVV8A778DChTMieyERkVgzYULQEWSpTx/4+GO491645hrYsSPoiERiW45JBOfcXGBjhs3n
AhNDv54IdEu3T93jJU82b4ZRy8/i6KN9Mb/Bg2H5cvi///NT0CIpbSlCrC1JAPz0gWzjLgVczTHH
+PZ4Dz4IixbB+edHx1IQkXC5+mr/b/uLL/zspW++iez1mjeHPXu+jexFRERiTVJS0BFk68QTfceG
zZv9Ayu18BXJv/zWRKjhnEsBcM4lAzXS7UsILWX4xMzaHHSEEjUmhDnD/PPP/ql43bqwsNjJTJvm
W/Oce26YP+Rm02IgOTkZ51zMLEnYz6BBkEncf/8NcDOwGjiXiRPh00+hc2cwpfikkKpdG95+2/9M
6dQJ/vtf2Lkz6KhERCSaVKwIL73kZ5W1agUzMk4qi+LZFCLRJFyFFdOap/wKHOGcawIMBKaaWYSf
JUtBSQpThvmLL/zT8ObN/XT6xYvhhRegWbOwnP5AmRRnKxQyJEf+/BOGDfNJGb9WvAtwNm2UypMi
wgwuv9z/TFm61Lcs/eqrvJ8nPj6e4cOHE682JSIihY4Z3HijrxPVv79/JrNvKVyUz6YQiRYl8vm6
FDOLc86lmFk88BuAc24XsCv060Vmtgrfg2tRZicZNmzYvl8nJiaSmJiYz3Ak2tWuXZdXX/V9e3/7
zXdcGD8+8ssVCrVQcmT9ev/nOn68b0E3bx7Ur39RsLGJRFhcXBwpKSmZLkWqWRNefx1eftnPbLr0
Urj7bl9gK1rNnj2b2b7thIiIFIAWLfxSuEsv9XV1Xn4ZDg86KJEYkdskgrF/rYM3gD7A/4DLgZkA
ZlYd+Ms5t9fMjgSOxs+pzlT6JIIUTlu2wNix8Nhjl1O7Ntx6a/S0ZwyHhGyWSkTaypW+zsG0af7p
65Il/xagzO4DlkhhkJyczLBhw7J8HzGDCy+EDh18B5JGjWDcOHI1Myenc0dCxkT68OHDC+zaIiJF
VbVq8NZbMGKEnxE7+fQjOS3ooERiQG5aPE4F5gH1zWytmfUFHgBON7PlQMfQ7wHaAkvMbBHwCnCt
c25TZEKXaLZmDQwc6KfWz58Pr74Kn30G3bsXngQCQJ8AlkosWQK9e/u1fPHx8NNP8Mgj+3ewSE5O
Zvz48bFZ60EkjGrU8Otf//c/6NXLJxS2bQs6KhGRGJT2YCKzBxTx8TB8uP8eY4oVgyFD/NLay17v
zt13w969QUclEt1y052ht3PuMOdcaefcEc658c65jc6505xzxzjnzkhLFDjnXnPOnRBq79jMOfdO
5G9BoksLLrgAmjb1yYJvv/XtBZs3Dzqu2PfFF9C1qy+Q2Lixryp8991QvXrmxweR4BCJVt27+zoJ
mzb5Ct0ffxx0RCIiMSY5GYYOzbSoMykp+3+PQR06wIJrnuPDD+Gss+CPP4KOSCR6hauwohRhe/YA
9AA+B6bSurXvvPDgg75iuuSfc/D++5CYCBdfDF26wOrVcMstvsKwiORe1aowaRI88YRfAnTddX7J
lYhIURPujluFxWEVtvLxx34JXJMm/gGOiBxISQTJty1b4NFHoV49KFnyFmAkNWq0oV8/qFAh6Ohi
2969MH26n8Fx881w9dV+2cJ110GZMkFHJxId8luTpEsXPyshNRVOOAHefTe8cYmIRLtwddwKVIQS
ISVK+CVwTz7pi/M+9ph/qCMi/1ISQXIlfcuzNWt8O5y6dX37tJdfhl27WuDca6SkbAg61Ji2e7d/
Tzz+eD+T4847fQ2Eiy/2b2oi8q+DWbJTqRI8/7wv/Hr99dC3L2zc+O/+IIumiohILkQ4EXLOOX6c
O7aqLUgAACAASURBVGmSb02+eXNELycSU5REkFxJSUkBmpOS8ihNmvjK5998Ay++CCefHHR0sW/7
dj/F+uijYcoUeOop+PJLnwEvpv+lIhFz+unw3XdQrpyflfDGG367aoqIiOzvyy/hxz+yKMRUSNWt
C59/Doce6rs3LF4cdEQi0UEfTyRbqal+Wj3MBV4GviApCR56CI44ItDQCoXNm31boSOP9IXeXn0V
PvzQF/cxy/n1InLwypf301ZffNF3lendWwW1REQyWrUKTp14FS+9FHQkBatMGXjmGRg2DE47zbcL
FinqlESQTG3d6teA1asHo0YBjAKOBh5XvYMw+O03uOMOnzxYtgw++ghef12zOkSC1Latf8pUs6bv
4PDqq5mvg02/vEtEpKi4+GJ4b04ZhgyBG2+EnTuDjqhgXbx7AnPmwMiRcMUVfhapSFGlJILsZ+1a
X/m/bl2YN8+3Z/z8c4DXADXNPVhr1vg33gYN/CyEBQv8Wrvjjw86MhEBKFsWHn4YXnsN7roLevY8
sJtZSqiFWUoMtzKLRWY21sxSzGxJum09zWypmaWaWZNMXnOEmW01s5sLNlqRwqlJE1i4ENatg1NP
9eOaIiE+Hvr25bgO8Xz9tU+gtGzpi16LFEVKIggAX38NF10EjRv7J28LF/qCiS1bBh1Z4bBsGfTp
4998y5WDH37wdQ/q1g06MhHJTKtWvu7LMcf4Vl9Tpqg6dxQYD3TKsO07oDswJ4vXPAy8E8mgRIqa
ypX97MlevfwMyrffDjqiApCWNE5JoXx5/55www3QurWftSZS1CiJUISlpvqnbW3awAUXQIsW8PPP
fppWnTpBR1c4LFgAPXpAYqIvmrhyJTzwgE9oi0h0K1MG7r8f3nnHd0s55xxYvz7oqIou59xcYGOG
bcudcyuAA6rImNm5wGrg+4KJUKToMPOduqZP9+2n7+A+9lA86LAKjJm/71mz4NZb4aabYNeuoKMS
KThKIhRBW7fC449D/fo+YXDTTbBihf9esWLQ0cU+52D2bOjUCbp39+usV6+G//4XqlQJOjoRyaum
TX1CsFkzOOkkgCuCDklyYGblgFuB4WSSYBCR8GjTxs9e/bpUG07nA5Krn1AwF46Ph+HDA38q06wZ
LFrki062a+eXBYsUBUoiFCHr1vlsad26MHeun4o1b55f81uiRPavjYuL2++7HMg5eOstP7Xtmmv8
7I5Vq6B/f7+EQURiV6lSMHSoL4IKNwD/CTgiycEw4BHnXFrpMyUSRCKkRg14b3tbTm1bjKalvmNO
VouLwind8oKgVakCM2dCt25+ece7/9/efcdHWWV/HP8cqsquyApmbBjAFbFTRETRCIpgQUQQwRZ0
Lau/tWIvAVcFlbUXLAisLvYCKiqgRkGk61IUBBRRdIKuWEBkKff3x51oyCZkkinPzDPf9+vFK8kz
k5lzw5Q757n3nDeCjij7jRo1KugQpApVfHSUMJg1y3dYePNNOPNM/3N+fvVuIxqNMmrUKPVOr8CG
DX4/3JAhULu277rQq5f/XkTCZb/9YIcderBy5fdKqma2g4CTzOx2oBGw0czWOucerOjKgwYN+u37
goICCgoK0hGjSGjUrg03HfEOHa85nL59/erWK6+EWjlyurJWLbjqKl9Pp18/OPtsn3jWXLBmli1b
FnQIOau4uJji4uIqr6ckQkht3AivvOKTB8uX+7Phw4cntl1BCYTNrVsHo0f7vdI77eS/Hn203ycn
IuFVUqLCCAEyKl9V8Ntx59xhvx00KwJ+riyBAJsnEUSk5rp1g5kzfdHF99/386RccthhfntH//5+
TjhmjF+pIZItyifSBw8eXOH1QpsfzNVlMKtXw333+YriQ4f6doJLlsCll6reQbKsXu1bwDVvDi+/
DCNHwnvv+TdOJRBERFLDzMYAU4E9zGy5mQ0ws55m9iXQAXjVzF4PNkoR2XVXePddX1C6bVuAtkGH
lFaRCEyY4AuWt2njtxCLhE1okwi5tgzmq6/8Mqr8fP+B9oknYNo06NOn6noHEp///AcGDfLJgxkz
fP2D8eN9n2QREUkt51x/59xOzrn6zrmmzrmRzrmXnXO7Oue2ds7t6JzrXsHvDXbO3RlEzCLZJlk1
sOrVg7vugjvuAHgdOD/h2JIlHSca69SBW26BRx7xXbqGDVObYAmX0CYRcsWsWXDqqb6P+fr1fgnZ
c8/5PVmSHF9/7dsY/fnPPlkzZQo88wy0bh10ZCIiIiLJE41GKSoqIhqNVv+XKyi41bs3bL/9CcD5
bLXVC6xenXCICav0RGMKOj4cc4w/8fTcc75j1w8/JO2mRQKlJEIW2rjRV4E9/HCf3Wzb1rcQvPNO
33lBkmPpUjjvPNhnH/83nzsXHnvMt8YUERERkTIqqZ313XdTufbaV+nXrxft28PHH6c3rLIikQiD
Bw8mUlGiIEUdH3bbDSZPhqZN/Zx9zpyk3rxIIJREyCJr1sADD8Cee8Ktt8KFF/oPupddBg0bBh1d
eMyd6wviHHQQ5OXBp5/6JXm77BJ0ZCIiIiKJ2eIHaSC/ui284lC37noefxyuuMKfBHvyyaTfRVxK
YgmCkooSBaVbOFLQeadePbj3Xj9/P/pov81B2xskmymJkAW++gquvtqvEnvnHV/pdto0X/lW9Q6S
54MP4PjjfYHE1q396o6bboLGjYOOTERERCQ5tvhBmtR24xowACZN8rsGzj8ffv01ZXdVfdGo78tY
k60ccerb12+LvfdeOOMMf4JQJBspiZDB5syB007zfcl//RWmT4fnn4eOHdUFIFmc8xV0Cwr86oNj
jvHJgyuuUDcLERERkWTbf39f0+u77+CQQ/y8K5e0bOnn9LVq+VWvCxcGHZFI9SmJkGE2bYJx4/yH
2p494YAD/Ivr3Xf7rgCSHJs2wYsvwoEH+u0gf/kLLF4Mf/0rbLVV0NGJiIiIhFfDhr7Y4BlnQIcO
vtZXLmnQAEaNgksu8V2+nnoq6IhEqkeL4TPEmjV+m8Ldd8N228Hll0OvXlC3btCRhcv69TBmDAwd
6lca3HCD38JQS+k0ERERkbQxg4svhvbt/TL/99/3bRFzZe5r5k9itW3rW7JPmeKLpNevH3RkwYpE
IpSUlDB8+PCadQmRtNBHp4CtWAHXXOPrHbz1Fowc6Zc49e2bOy+i6bB2Ldx/P+y+OzzxhC9QOW0a
nHCCEggiIiIiQTn4YL+Fd+5c6NzZt9bOJa1b++0dX38Nhx4KlXWgzBVV1eyQzBDKj09VVZ3NBB9+
CKefDvvuC7/84j/QvvCC3xumegfJ8+OPMGSIb3351lt+6dykSf5NSn9nERERyTV5se4DeSnoQlCZ
qjo+NG4M48dD167+zPxbbyV2f6NGjUrsBtJsu+38Ntt+/XydhFdfDToikS0LZRIhUzNYmzbBK6/A
EUdAjx6+YOJnn8E990CLFkFHl30vuFuyciVce63/u378sX8zeuklv2ROREREJFdFo1GKiorSulQ8
no4PtWr5baZPPOELi998s58718SyLDydb+brdL34oq/Rde21sGFD0FGlUIg+d+SiUCYRUq6aD/o1
a+Chh2DPPX3LwHPP/b0DwHbbpSbEmsjGF9zyvvgC/vY3/7f+4QeYOdO/Ge29d9CRiYiIiEhVjjzS
L+9/4w049ljfxSGXHHKI394xa5b/W3zzTdARpUgIPnfkMiURaiLOB/3XX8N11/l6BxMnwogRMGOG
X6qkegfJtXCh7z3cpg1ss41fffDgg34bg4iIiEjQwrTiM9V23hneeQf22cdvb5g2LeiI0qtJE3j9
dd+trW1bKC4OOiKRzSmJkAIffQRnnulf+H7+2b/wvfiib+GiffjJNXs29O4Nhx3mty4sWQK33QYZ
XA5DREREclAYVnymU926cMcdfttvjx5w773gXNBRpU/t2jBokF8AfcopvsZXTbd3iCSbkghJsmmT
L4LSubNvGbj33rB0qX/By4R6B2HiHLz7Lhx9NPTs6ZMzn38O118PjRoFHZ2IiIhI/CKRCGaW0QXB
g9SzJ3zwgf8w3bcv/PRTCu+sigKQQeja1W/PfeUVn0z5/vugIxJREiFhv/wCw4dDq1Y+W3jOOb7e
wZVXZt8H2mHDhmX0G5hzPlFzyCH+79y3r0/UXHwxNGgQdHQiIiIi1ZepBcEzSYsWMHWqn1sfeCDM
Y5/U3FEcBSCDsOuu/gTaHnv47Q0zZwYdkeQ6JRFq6Jtv/Jnv/Hx480147DH/hM7megdr1qzJyDew
DRvgqadg//191d5LLoFPPoGzzoJ69YKOTkRERCS7VNVyMRNttRU8/LCff3fmbUZxZtAhpVXdunDn
nTBsGBxzDDzwQG5t75DMEsokQir73/7731B4y+7svfMqfvzRZ0Vfekn1DlJh3Tp49FHfaeGhh3yt
gzlz4OST/T4xEREREam+eFouZqrTT4diChjK1ZzNY6xdG3RE6XXSSf7zxyOPQP/+vv6aSLqFMomQ
7P63mzbBa69Bly6+1UyrDfNY6ppz332w++5JuYu45UJl39Wrfaa1eXOfoBk5Et57D7p3V6JGRERE
MlcuzNMywd58zEwO5Be24eCDYfHioCNKrz//2Rdub9DAb+9YsCDoiCTXhDKJkCy//OKXTe21F9x4
o18+/9lncBW304gfUnfHlbwBDRo0iAEDBjBo0KDU3XeAvv8eBg/2yYPp0339g/Hj/SoPERERkUyn
Dgzp80dWM4b+nHMOdOzoO6Hlkq239tupr77at4J84omgI5JcUifoADJRNOr3GT38MBx8sP962GFp
PAteyRtQafIgbEmEr7/2Kw9GjoQTT4QpU3zhGBERERGRyhhw4YX+bPzJJ8PkyX77ay4pLPTFFnv3
9nPoe+7x9SNEUkkrEcqYOxcGDPArD1atgvffh7Fj4fDDtYw+FZYuhfPOg3328cUTP/rIZ1SVQBAR
EZG4aQtBzmvf3tfNWrzYn5X/8cdtgw4prfbd1xd4X7XKr8pYujToiCTscj6JsGmTXzJ/5JF+z33L
lrBkCdx/v99vJMk3b54vBHPQQbDDDrBoEdx9t29fIyIiIlIt2kIgwJ/+BOPGQY8e8Oij5/Lmm0FH
lEIVJM623RaeecavTDj4YHj55bRHJTkkZ5MIa9f6qqZ77+1bxRQWwuef+31Ff/pT0NEFo0GDBinp
aFHqgw/8C3vXrnDAAb6+xN//Dk2apOwuRURERCRH1Krl5/K9ez/PgAEwaBBs3Bh0VClQSeLMDC66
yCdTLr4YrrgC1q9Pb2iSG3IuiRCN+iKJ+fm+cN9DD8Hs2XDaaVCvXpw30qABpPDDdlAGDhyYtI4W
pZyDCRPgiCP86oPu3X3y4MorfcZUREREJOwikQiDBw8mEokEHUo4lM7DK5mP5+cvY/ZsKC6Gbt3g
22/TF1om6NDBb++YPx86d4YVK4KOKH6lJzRTeWJTEpczSYR583x3hVat4LvvfOGVceP8vqlq1zsY
ONBnIyqRre198vPzk3Zbmzb5KrkHHgiXXgpnnw2ffgp//auvJisiIiISr2ydW5UqKSnZ7KskKBqF
oqItzsd33BEmTfJz0TZtfK2zXPqAuv32vkV9t27Qrp3/W2SDaDRKUVFR0k9sSnJldRKhqjeUTZvg
9df98vlu3XyNgyVL4MEHU1u8L1vb+xQWFiZ8G+vXw+jRfpvIbbfBDTf4BM5pp0HduonHKCIiIrmn
xnOrLE8+SGLq1IFbb/Urj3v1giuuiPL44yNz5gNqrVpw3XXw5JNw+ul+G/GmTem7/0o/qw0a5Pu6
h6zjXC7J6haPlb2hrF0Ls2e3YZ99oH59uOwy6Nu3GtsVpNrWroURI+COO3yy5v77/fIpdbUQERGR
wKTgxM6oUaOScuJF0ue442D6dOjTB3bdtZATT4Tttgs6qvTp0sVv3z7lFL8i48knoXHj1N9vpcm/
0uSBkghZK6tXIpRXUuJXNuXnw6eftuSBB/x+oNNPz7AEQoiy4j/+CEOHQrNmfpnUs8/6r126KIEg
IiIi4ZOtK05zXX4+TJnitzm0a+dbi+eSnXaCt9+G/feHtm1h2rSgI6pcMrdYS2pkbRIhEokwbNgw
wBcNOftsX+/g22/hvfegX7+nOOKIDP0gm8CbT6Y8qVau9MujWrSABQt84uDll33bRhERkWQzsxFm
VmJmc8sc621m881so5m1KXP8SDObZWb/NrOZZnZEMFFLLlHxxMxXvz488IBf1n/UUfDYY74IeK6o
U8dvN77vPt8x7Z57Ujf+RJ4PWumT+bI2iVBSUsKaNYdw9NG+5kGLFrB4sa930LJl0NElIBKBWHKk
IkE/qZYv961j9twTVq2CmTPhiSdgn30CDUtERMJvJHB0uWPzgBOBd8sd/xY4zjm3P1AIPJHy6CTn
qXhiZojnw2u/fv6k4113+Tbva9akL76ERSK+nkACyaoePfxKhH/+02/x+OmnJMYXo+dDuGVdEuHX
X/3ee5gP3Mapp8Lnn8O11/oqpKUy5Yz9/6jqiV9SkpGvZAsXwoAB0Lq1766wYIFP2DRrFnRkIiKS
C5xzU4BV5Y4tcs4tBqzc8X8756Kx7xcAW5mZyvtmqS1+KEzCByoJl3g/vLZqBTNm+EKDBx0Eixal
I7okKB1Xgh/Omzf39REaN/bbO+bOrfp3REplTRJh5UpfeyM/H156CeBvQGvOOMMvTSov6DP2lUrS
Ez9dZs+G3r3hsMP8i82SJX4Z1I47Bh2ZiIhI1cysNzDHObc+6FikZrb4oTDL5lUVyaW2g+lQnb9n
gwb+bPxFF8Ghh8Izz6Q6usyy1VYwfDjceKOvZzZyZNARSbbI+CTCggXwl7/4LQrRKBQXw6uvArwT
cGQpkpfnX9EC5By8+y4cfTT07OlfVD//3LdrbNQo0NBERETiZmZ7A0OAc4OORaQy0WiUoqKinGk7
mGrV/Xuawbnnwptv+pXNf/sbrFuX4iBTqNK2iltw2ml+7n/77b7O3Nq1yY9LwiUjWzw6BxMnwp13
+qU1F1zg6x2koxVJyuXl+Wx5ZdnRaDSwdifOwWuvwZAhfuXH1Vf7F5WKVnqIiIhkMjPbBXgRON05
t2xL1x1U5n23oKCAgoKCVIYmOSgvL4+SkhKtNshgbdr4FbiFhX4F7rPPwm67BR1V9dW0e8hee/la
Z+eeCx06wPPP+7btkluKi4spLi6u8noZlUT49VcYM8YnD2rXhssug7Fjs+tDbCQSoaSkhOHDh1ec
AS1NEmRQX9QNG+C553yrRjOfhT3pJP9/ICIikkGMcvUPyl3mvzFrCLwKXOWcq7KR2aAMek+WcNIq
g+yw3XZ+2/Q//gHt2/vl/cccE3RU6fOHP8C//uW3OHTsCA895Lc1S+4on0gfPHhwhdfLiCTCypX+
QfrQQ75v6T33QOfOGdqeEXxhhkpkUyXSdev8PrDSGgdDh0K3bhn8dxcRkZxlZmOAAmB7M1sOFOEL
Ld4HNAZeNbOPnHPdgf8DWgA3mlkR4ICuzrnvAgleRNIqkQLrZjBwoC+22K8fnHkmDKY2ddiYvAAz
mBn89a9w4IG+c8OUKX6bQ716QUcmmSTQmggffwznnOPrHXz9Nbzzjl9O36WLfwDXZE9PWmRq0cY4
rV7tV3s0b+6zrSNHwuTJ0L27EggiIpKZnHP9nXM7OefqO+eaOudGOudeds7t6pzb2jm3YyyBgHPu
FufcH51zbZxzrWNflUCQhMXTPlCCl4wC6506+e0N06ZBVyYQJbe2orRrB3PmwNKlcPjh8OWXQUck
mSTQJEKXLtC0KXz6KTz8sG+1UlZN9/QEKZMr7H7/ve+C1KwZTJ/uC1SOH+9fJEVERERky7Jpxakk
Li8PJkyAQ5lCW2bzHrk1aW7UyG8t79nTr0x4442gI5JMEWgS4aabnuCGG6BJk/+9LFszvZlYYfeb
b+CKK2D33WH5cr8s6ZlnoHXroCMTEREREclctWvDTRQxgrM5mWe57TbYtCnoqNKnVi246ir/2eHs
s307yI1B7uzI1JXqOSbQJMKKFUsrvUyZ3sR99hmcfz7svTesXw///jeMGOG3j4iIiIhI9aRqxWki
e/glPbrxJjM5kJdfhhNOgFWrgo4ovQ4/3G/vmDzZt4FfuTKgQLJwpXoYBZpESEReXh4NGjQIOoyM
NG8enHqqryrbpAksWgR33w277hp0ZCIiIiLZK1UrTpOxhz/nBJB42ZWvePddaNHCt4ScNSvtIQQq
EoGJE33RybZt/epmyU2BJhG2tF2hqkxvNBpl4MCBKYstG02bBj16QNeusP/+fiXC3/9e8XYRERER
kVCLRHwxqCzbGitxCijxUq+ePzl3++2+KPlDD4FzgYQSiDp14JZbfBvIk07y7TBrNH6tvslqga9E
qGy7QjyZXi398k/aiRPhiCN8G5pu3Xzy4MorYdttg45OREREJCClc0xtjZUU6NMH3n/ff5g+7TTf
/SyXHHsszJjhayX06gU//FDNG9Dqm6xWZRLBzEaYWYmZzS1zrJGZTTCzRWb2ppk1LHPZNWa22Mw+
MbOuqQocMnfpVzqSG5s2wYsv+kqpl1wCZ53lu1xccAFsvXXK715EREQks5WuZs3AjlkSDnvsAR98
APXr+23EH38cdETptdtuvkbCLrv47Q1z5gQdkaRLPCsRRgJHlzt2NTDJOdcSeBu4BsDM9gJOBloB
3YEHzcySF252qDK5kUCSYf16GD0a9tkHhg6F66/3NRBOPx3q1q3xzYqIiIiESzQKRUX+q0iKbLMN
PP44DBzoiw/+619BR5Re9evDfffBrbf6gouPPJJb2ztyVZ2qruCcm2Jmu5U7fAJweOz70UAxPrHQ
A3jaObcBWGZmi4H2wPSkRRwGNVhBsXat76wwbJgv5nLffdC5M+ReikZEREQk8+Tl5VFSUpL0zg2S
Hc46y5+N793bFxy86y7Yaqugo0qfvn3hgAN8nQRfcHEb4JeAo5JUqWlNhB2ccyUAzrkosEPs+M7A
l2WutyJ2TKqjzEqFH3/0Kw6aNYNJk/y+o7fegi5dlEAQERERyRSp6twg2WP//X3Hhm+/hUMOgc8/
Dzqi9GrZEqb/dup4OqC+8mGVrMKKWrSSTIWFrFwJ113nVx0sWOATCC+/7FuqiIiIiIhI5mnYEJ57
Ds44w8/bx40LOqL0atDAb72Ge4DJQN9gA5KUqHI7QyVKzCzPOVdiZhFgZez4CmDXMtfbJXZsiwYN
GkRBQQEFBQU1DCc8li/3WxaefNIvC5oxA5o3DzoqERFJpeLiYoqLi4MOQ0QSpM5hAn618MUX+2KL
ffv6Lg633OLbI+YCv1r6MWAW8Dz/93++FWT9+gnecCTiu60MH65aJwGLdyWCxf6VGgcUxr4/Exhb
5vgpZlbPzJoBuwMzqrrx0iRCLlu0yO+lat3a759asMD3nVUCQUQk/AoKChg0aNBv/0QkO2Vq5zAJ
xsEH+44FH33ka5l9/XX8vztq1KiUxZU+HwFtWbECOnWCZcsSvDm1bc0Y8bR4HANMBfYws+VmNgAY
ChxlZouALrGfcc59DDwLfAyMBy5wTvU5t2TOHN9ntlMnX/dgyRK4/XbYccegIxMRERERkUQ0bgzj
x8ORR0K7dvD22/H93rKEP3EHq7TAaF7eVrz4Ipxyit/e8dprAQcmSVFlEsE51985t5Nzrr5zrqlz
bqRzbpVz7kjnXEvnXFfn3A9lrj/EObe7c66Vc25CasPPTs7Be+9Bt27Qo8fvhVduuAEaNQo6OhER
EZEsUdoJIY0dEbRlQaqrdm248Ub45z/h1FP91oZNm4KOKrXKFho1g8sugxdegPPPh2uvhQ0bgo5Q
EpGswooSB+d89u3QQ+Hss/0KhKVL4ZJLfBESEREREamGaBSKitK6P1pbFqSmjjzSd294/XU47jj4
z3/SHEDAWyQOPRRmz4aZM/3fQmUNsldGJxHCkunduBGeftr3Tr3uOrjoIli40CcSEi4wIiIiIiIi
WWHnneGdd2CvvaBNy9VlWiKmQQZskdhhB3jjDTj8cGjbFt59N+iIpCYyOomQ7Znedevg0Ud9z9T7
74chQ+DDD32V1tq1g45ORERERETSrW5d343t7i6vcvzxcN99fsVyrqhdGwYPhpEj/eeioUPDv70j
bDI6iZCtVq+GO++EFi3gxRf9E2TKFDjmmNKWJyIiIiJSVjiq0YvE78RWC/ngg98/TP/0U2K3F4lE
GDx4MJFIJDkBxiGR523Xrn5rw7hxcMIJ8P33yYtLUktJhCT6/nufVWveHKZNg1de8XueOnUKOjIR
ERGRzJbt1ehFaqJFC5g61RdXP/BAmDev5rdVEmt9WFJRC8RIxH9QSXKCIdHn7a67QnEx7L67394w
c2ZSwpIUUxIhCb75Bq64wj/4ly+HyZPh2WehdeugIxMREREJuZDU0JIcU+ZD/VZbwcMP+9ppnTvD
6NEpuL/SxEJFCYaA1asHd93lt3gccww8+GBube/IRkoiJOCzz3ybkr33hv/+Fz76CEaM8DUQRERE
RCQ+CS3DzvIaWpIFUtFKtIIP9Wec4YsuDhkC48b1YO3a5N1dNjjpJL8q4+GHoX9/v0U8HbSVqvqU
RKiBefN8j9f27aFxY1i0CO65B5o2DToyERERkeyzxWXYIkFLYyvRffaB779vwYcffsq2285nyZL4
fzcvluTIS2ayI83+/Ge/LbxBA7+9Y8GC1N+ntlJVn5II1TBtmi/60bUr7LefX4lw883QpEnQkYmI
iEgq6AyViKTbt99+BvRjw4aH6NjRF2qPRzQapaioiGgakh2ptPXW8NhjcOWVUFAATz4ZuyAVK0Kk
RpREqIJzMHGi3590yilw9NE+eXDVVbDttkFHJyIiIqmkM1TBC8PZVZGaeZBXX4XLLvP/1q8npz5I
DxgAb70FN90E550Hvy5L34oQwNetMEt6McowUBKhEps2wUsv+S0LF1/sH8SLF8MFF/jsmIiIb90p
BgAAIABJREFUiIikXljOrorURPv2MHu23z5dUABfzUrzB+ktSEdLyf32g1mzfBe8jh3hs1WNUnZf
/yODi1EGTUmEctavh3/+0+9HGjLEV0mdPx9OPx3q1g06OhERERERySXbb+9bxx93HLRrBxOWtgg6
JCB9tUy23dZ3visshA6P/YWxY1N6dxIHJRFi1q6FBx7wxTxGj4Z774Xp06FnT6ilv5KIiIhIwlRj
QqRmatWCa66Bp56Cwpd7MmgQbNwYdFTpYwYXXQTj+j3FRRf5egnr1wcdVe7K+Y/HP/4IQ4dCs2a+
9sEzz/i9N0ce6R+sIiIi1aUPSslnZiPMrMTM5pY51tvM5pvZRjNrU+7615jZYjP7xMy6piQo/T9X
W9prTOTnp/f+RFLsiCNg9rkPU1wM3bvDt99ufnl+yB/zHXb5itmzYe5cX7NuxYqgI8pNOZtEWLnS
b1Vo0cJvV5g0CV5+GQ46KOjIREQk26kYX0qMBI4ud2wecCLwbtmDZtYKOBloBXQHHjRL8qmBSMQX
TFLBrcxWWBh0BCJJt+MfVzNpErRtC23awPvv/35ZYQ485hs3hvHjfcH7du38CWBJr5xLIixf7pfC
7LmnL9AxY4ZvG7LPPkFHJiIiIpVxzk0BVpU7tsg5txgonyA4AXjaObfBObcMWAy0T2pAKrglIgGq
U8fXb3voIejVC+6803eVyxW1asH11/vPcaedBjff7AvjS3rkTBJh0SI46yw44ADYaitYsMA/6Zo3
DzoyERERSbKdgS/L/LwidkyyVNiXaIvU1HHHwbRpvlbCSSf5rdq5pEsX373izTfh2GPhu++q9/vp
6DARRqFPIsyZA336QKdOflvckiVw++2w445BRyYiIiKhpN7iSZcLS7RFaqpZM5gyxX++adsWPvoo
6IjSa6ed4O23Yd99/finTYv/d9PVYSJs6gQdQCo4B5Mnw623+noHl18OI0fCH/4QdGQiIiKSBiuA
Xcv8vEvsWIUGDRr02/cFBQUUFBQkdu/a6iAiaVa/vu8099RTcNRRfqvD2WfnTqH4unX9ieJDDoEe
PXztu4suyp3xJ0txcTHFxcVVXi9USQTnfJGNIUP8+/ZVV8HYsf5JJSIiIlnP+N/6B2UvKzUO+JeZ
3YXfxrA7MKOyGy2bRCgrEolQUlLC8OHDiUajNQpYRCSd+vXz27d79/arEx58ELbZJuio0ueEE/yK
hNLxjxgB224bdFTZo3wiffDgwRVeLxTbGTZuhKefhtat4dpr4W9/g4UL4S9/UQJBREQkDMxsDDAV
2MPMlpvZADPraWZfAh2AV83sdQDn3MfAs8DHwHjgAueqX3JMy1yTS3uPJatlUV2OVq188fgNG3zn
uUWLgo4ovZo3h6lTYfvtffeGuXOr/h2pnqxeibBuHTzxBNx2G+Tl+e0L3btr2YqIiEjYOOf6V3LR
y5VcfwgwJHURSXUpKSNZLcvqcjRo4D8nPfIIHHooPEAfTua5oMNKm622guHDffeGLl3gjjsq/i/M
y8ujpKSEvLy8tMeYzbJyJcLq1XDXXdCiBbzwAjz+uF+ucswxSiCIiIhI9ZiZzo6LSOiYwXnn+c4F
1zCEi7iH/1I36LDS6rTToLjYn3Q++2xYu3bzy6PRKEVFRdqyVk1ZlUT4/nu46Sa/ROWDD2DcOHj9
dd95QURERKSmdHZcRMKqTRuYRTu+YDc6MZkvvkjO7Zaevc/0s/h77w0zZ8Ivv8DBB8PixUFHlP2y
IonwzTdwxRWw++6wbJnvvPDss/4JISIiklVGjQo6AolTtkyQRUSq0ogfeJme9OZ52rf3J2ITlU1n
8f/wBxgzBs49Fzp29KvZpeYyOonw2Wdw/vk+e/Tf//qep48/Di1bBh2ZiIhIxSKRCMOGDav8CsuW
pS0WSUw2TZBFRLYoLw8Drsh7guefh3POgeuv9wXqc4UZXHCBT6AMHAiXXuo/Y0r1ZWQSYd48OPVU
aN8eGjf2FUXvuQeaNg06MhERkS0rKSlhzZo1QYchqVa6OkGrFEQkG0SjUFQE0SidOsHs2X57eNeu
kGu7udq18+NfsgQKCuDHH9UDsroCTyKUXSI4bZrv7XnUUbDffrB0Kdx8MzRpEmCAIiIiIuWVmZCL
iGSbvDyYMAEOOQTatoX33gs6ovT6059g7Fjo0QMeffRc3nwz6IiyS6BJhKKiIr75JsqkSdC5M5xy
is+Gff45XHUVNGwYZHQiIiIpMGwYqBOAiIgErHZtX7T+0Ufh5JPh9tth06ago0qfWrXg6quhd+/n
OOssnxfOpe0diQg0ifDJJ3vSvj1cdJHv27l4MVx4IWy9dZBRiYiIpNCaNbm3dlSyTiQSUetLkRzR
vTvMmAEvvgg9e8KqVUFHlF75+V8we7ZfjdGtG6xcGXREmS/QJMKMGUdy7bUwfz6ccQbUza22pSIi
IiIZqbTlpVpfiqRfEJ1hmjb1H6KbNfPbG2bPTttdZ4RIBCZO9DX52raF998POqLMFmgS4bPPGnPi
iX4piYiIiIiISK4LqjNMvXq+mP1tt/kz8sOHg3NpDSFQderALbf4cffqBf/gMnJo+NUS6Md3syDv
XURERETSJYizqyJSfX36+DPxDz4Ip50Gq1cHHVF6HXssTJ8Oz9CXk3iBH1ChvvK0BkBEREREUi6o
s6siEpOfH/dV99jDd86rV88v8f/448puMv7bzCb5+TCZTuzE17RjFh9+GHREmUVJBBERERERkbAr
LKzW1bfZBkaOhIED4fDDYcyYim6y8tvM9gRDff7L/fyNW7iOrl19F4tc2t6xJUoiiIiIiEigtNVB
JHOddRZMmuRbIF5wAaxbF9/vbSnBkEmqSnb05VkmT/b1IgoLfZOlXKckgoiIiIgESlsdRDLb/vvD
rFm+/eEhh8DnnwcdUfLEk+zYc09fJ8E5OOggWLgw9XFlMiURRERERERE0ql01U0lq28ycStAw4bw
3HO+2GKHDvDKKwEEEeDfpUEDGD0aLr4YOnWCsWMDCyVwSiKIiIiIiIikUzTq9wdUsvomU7cCmMEl
l8BLL8GFF8JVV8GGDWkMIOC/ixmccw5MmACzZweRRckMSiKIiIiIiIhI3Dp2hNmz4aOPoEsX+Oab
oCNKr+7dI/z97z2IRCJBhxIIJRFEREREJHCZuHxbRCrXpAmMH++TCG3bwjvvBB1R+pSUlGz2Ndco
iSAiIiJSCX2wTa4t/T0zdfm2SMqE4PWldm248UZfK6B/f7jlFti0KeiokqSKuhW5TEkEERERkUro
g21y6e8pUkaIng9HHQUzZ/qVCccdB//5T9ARJUEVdStymZIIIiIiIrlq1KigIxCRkNhlFyguhr32
8tsbpk8POiJJFSURRERERHLVsmVBRyAiIVK3LgwbBnfdBccfD/ffD84FHZUkm5IIIiIiIjURgv3M
IiKpcOKJ8MEHMGIEnHIK/Pxz0BFJMimJICIiIlITIdrPXF5erJBYngqKiUgNtWgBU6dCw4bQrh3M
mxd0RJIsSiKIiIiIyGai0ShFRUVEVVBMRBKw9dbwyCNw3XXQubPv4iDZT0kEERERkWRSWzARkc2c
cQa8/TYMGQLnnANr1wYdkSRCSQQREZEkysvLo0GDBkGHIUFSWzARkf+x776+DeTPP0PHjrB0adAR
SU0piSAiIpJE0WiUgQMHBh2GiIhIxvnjH+Gpp+Avf4GDD4aXXgo6IqkJJRFEREQk45nZCDMrMbO5
ZY41MrMJZrbIzN40s4ax43XMbJSZzTWzBWZ2dXCRi4hIWWZw4YXw6qtw6aVw+eWwfn3QUUl1KIkg
IiIi2WAkcHS5Y1cDk5xzLYG3gWtix/sA9Zxz+wHtgPPMrGnaIhURkSq1bw+zZ8PChVBQAF99FXRE
Ei8lEURERCTjOeemAKvKHT4BKK31PRroWXp1oIGZ1Qa2AdYBP6UjThERid/228Mrr8Bxx8GBB8LE
iUFHVE5+ftARZCQlEURERJIsX5OOdNnBOVcC4JyLAqXtEJ4HfgG+AZYBw5xzPwQSYbJEIn4NcCQS
dCQiIklVqxZccw2MGQNnngmDB8PGjUFHFVNYGHQEGalO0AGIiIiETaEmHUHZFPt6ELABiADbA5PN
bJJzbtmWfnnQoEEUFBRQUFCQ0iBrpKRk868iIiFzxBF+e8Mpp8DUqfDkk9CkSdBR5Zbi4mKKi4ur
vJ6SCCIiIpKtSswszzlXYmYRYGXseD/gDefcJuBbM3sfXxth2ZZubNCgQamMVUREqrDjjvDWW3D9
9dC2LTz9tG8HKelRPpE+ePDgCq+n7QwiIiKSLSz2r9Q4oDD2fSEwNvb9cqAzgJk1ADoAC9MSYals
2NISifh1w5VskdC2HBEJQp06MHQoPPAAnHgi3HUXOBd0VJvLy8vb7GuuSSiJYGYXm9m82L+LYseK
zOwrM5sT+9ctOaGKiIhIrjKzMcBUYA8zW25mA4ChwFFmtgifNBgau/oDwB/NbD4wHRjhnJuf1oCz
YUtLFVsktC1HRIJ0/PEwbRr861/Quzf8+GPQEf0uGo1SVFRENBoNOpRA1Hg7g5ntDZyNXx64AXjd
zF6LXXync+7OJMQnIiIignOufyUXHVnBddcAJ1fn9nP1bJKISCZr1gzefx8uuwzatYPnnoMDDgg6
KklkJUIrYLpzbp1zbiPwHtArdplV/msiIiIimSOXzyaJiGS6+vX91obBg+Goo2DEiMzb3pBrEkki
zAc6mVkjM9sGOAbYBd+b+f/M7CMze8zMGiYjUBEREREREclN/fvDe+/BnXfCgAHwyy9BR5S7apxE
cM4tBG4DJgLjgQ+BjcBDQHPn3AFAFNC2BhEREREREUlIq1YwYwZs2AAdOsCnnwYdUW5KqMWjc24k
MBLAzG4BvnTOfVvmKo8Cr1T2+2VbKWVsX2YREZEUi7cvs6SGuhCIiGSPBg3giSfgkUfgkEPgwQeh
T5+go8otCSURzKyJc+5bM2sKnAh0MLOIc650Y2Ev/LaHCqkfs4iISPx9mSU11IVARCS7mMF55/li
i336wJQpcMcdUK9e0JHlhoRaPAIvxNonjQUucM79BNxuZnPN7CPgcODSRIMUEREJjQYNQJ0AJE0i
kQhmRiQSCToUEZGka9sWZs+GZcvgsMNg+fKgI8oNCSURnHOHOef2cc61ds4Vx46d4Zzbzzl3gHOu
p3Ou4ubDIiIiuWjgQFAnAEmTkpKSzb6KiIRNo0bw8stw0klw4IHw+utBRxR+ia5EEBERkWQaNSro
CCQLjdLjRkRymBlccQU8/zyccw7ccANs3Bh0VOGlJIKIiEgmWbYs6AgkCy2ryeOmdFuNtteISEh0
6uS3N0ydCl27ghZhpYaSCCIiIiK5KBqFoiJtrxGRUMnLgwkToGNHXzNh8uSgIwofJRFEREREREQk
NGrXhr//HR591HdvuP12cC7oqMJDSQQREREREREJne7dYcYMePFF6NkTVq0KOqJwUBJBRERERERE
QqlpU3jvPcjP/70lpCRGSQQREZF0ys8POgIREZGcUq8e3HMP3HYbdOsGDz+s7Q2JUBJBREQknQoL
g45AREQkJ/XpA1OmwP33w+mnw+rVQUeUnZREEBERERERkZzQsiVMnw5160L79vDJJ0FHlH3qBB2A
iIiIxEQiamotIiKSYttsAyNHwuOPw2GH+a0O/fsHHVX20EoEERGRTKEEgoiISNqcdRZMnAhFRXDB
BbBuXdARZQclEURERERERCQnHXAAzJrl8/iHHgqffx50RJlPSQQRERERERHJWQ0bwvPP+y0NHTrA
K68EHVFmUxJBREQkU+TlBR2BhExe7DGVp8eWiMgWmcGll8JLL8GFF8LVV8OGDUFHlZmURBAREckU
0ajfmCmSJNFolKKiIqLRaNChiIhkhY4dYfZs+PBD6NIFvvkm6Igyj5IIIiIiIiIiIjFNmsD48dC5
M7RtC++8E3REmUVJBBERERERkWyRnx90BDmhdm2/OHD0aF8r4dZbYdOmoKPKDEoiiIiIiIiIZIvC
wqAjyClHHQUzZ8Jrr8Hxx8N//hN0RMFTEkFERERERESkErvsAsXF0KqV394wY0bQEQWrTtABiIiI
iIiIiGSyunVh2DBfePG446BTp32DDikwWokgIiIiIiIiEodevWDqVGjbNnc/SufuyEVERCRrmNkI
Mysxs7lljjUyswlmtsjM3jSzhmUu28/MpprZfDP7t5nVCyZyEREJm913h2uvPTHoMAKjJIKIiIhk
g5HA0eWOXQ1Mcs61BN4GrgEws9rAE8C5zrl9gAJgffpCFRERCS8lEURERCTjOeemAKvKHT4BGB37
fjTQM/Z9V+Dfzrn5sd9d5ZxzaQlUREQk5JREEBERkWy1g3OuBMA5FwV2iB3fA8DM3jCzWWZ2RVAB
ioiIhI26M4iIiEhYlK42qAMcArQDfgXeMrNZzrl3AotMREQkJJREEBERkWxVYmZ5zrkSM4sAK2PH
vwLec86tAjCz8UAboMIkwqBBg377vqCggIKCglTGLCIikpGKi4spLi6u8npKIoiIiEi2sNi/UuOA
QuA24ExgbOz4m8AVZrYVsAE4HLizshstm0TIRpFIhJKSEoYPH040Gg06HBERyVLlE+mDBw+u8HpK
IoiIiEjGM7Mx+C4L25vZcqAIGAo8Z2ZnAV8AJwM4534wszuBWcAm4DXn3OuBBJ4GJSUlm30VERFJ
JSURREREMkl+ftARZCTnXP9KLjqykuuPAcakLiIREZHcpO4MIiIimaSwMOgIJJcoaSUiItWkJIKI
iIhIpsvL2/xrsihpJSIi1aQkgoiIiEimi0ahqMh/FRERCZCSCCIiIiIiIiISFyURRERERERERCQu
SiKIiIiIhFi+iieKiEgSKYkgIiIiEmKFKp4oIiJJpCSCiIiIiIiIiMRFSQQRERERERERiYuSCCIi
IiIiIiISFyURRERERERERCQuSiKIiIiIiIiISFyURBARERERERGRuCiJICIiIiIiIiJxURJBRERE
REREROKiJIKIiIiIiIiIxEVJBBERERERERGJi5IIIiIiIiIiIhIXJRFEREREslheXt5mX0VERFJJ
SQQRERGRbJCfX+HhaDRKUVER0Wg0vfGIiEhOUhJBREREJBsUFgYdgYiIiJIIIiIiIiIiIhIfJRFE
REREREREJC5KIoiIiIiIiIhIXJREEBEREREREZG4KIkgIiIikuXyK+ncICIikmxKIoiIiIhkuUJ1
bhARkTRREkFERERERERE4pJQEsHMLjazebF/F8WONTKzCWa2yMzeNLOGyQlVREREcpWZjTCzEjOb
W+bYFuccZtbUzH42s8vSH7GIiEg41TiJYGZ7A2cD7YADgOPMrAVwNTDJOdcSeBu4JhmBZpLi4uKg
Q0gJjSu7aFzZRePKLmEdV5YbCRxd7lhVc45/AOPTEFtahOFxqTFkBo0hM2gMmUFjqL5EViK0AqY7
59Y55zYC7wG9gB7A6Nh1RgM9Ewsx84ThgVYRjSu7aFzZRePKLmEdVzZzzk0BVpU7fAKVzDnM7ATg
M2BBWgJMgzA8LjWGzKAxZAaNITNoDNWXSBJhPtAptpRwG+AYYFcgzzlXAuCciwI7VHYDVQ02kctT
edvLli1L2W1XdXm2jiuVcVd1ucZV/cs1ruRfrnFV/3KNS+KwQ7k5Rx6Amf0BuBIYDFhVN1LT/690
X7alx2UmxakxZP5lGkNmXKYxZMZlGkP1L6txEsE5txC4DZiIXyr4IbCxoqvWJLBEL0/lbSuJUP3L
Uxl3VZdrXNW/XONK/uUaV/Uv17ikBjbFvhYBdznnfon9vMVEQiZNBDNpkqgxVExjyIzLNIbMuExj
yIzL0j0Gc67Sz/jVYma3AF8CFwMFzrkSM4sA7zjnWlVw/eTcsYiISAg556o8g55rzGw34BXn3H6x
nz+hgjmHmb0H7BL7tUb4kxw3OucerOA2NR8RERGpREXzkTqJ3KCZNXHOfWtmTYETgQ5AM6AQv0rh
TGBsvMGIiIiIbIGx+aqCcVQw53DOHfbbL5gVAT9XlECIXVfzERERkWpIKIkAvGBmfwLWAxc4534y
s9uAZ83sLOAL4OREgxQREZHcZmZjgAJgezNbjt+yMBR4TnMOERGR9EnadgYRERERERERCbdEujNk
LTPbZGb/LPNzbTP71szGJXi73cxsoZl9amZXlTn+tJnNif373MzmJHI/W7j/VI1rhJmVmNncSi6/
PHbff0rkfrZw/0kfl5ntYmZvm9kCM5tnZheVuay3mc03s41m1ibR+LcQQ7rHtb+ZfWBmH5rZDDNr
l+gYqoilZ2yMeyThthqZ2QQzW2Rmb5pZw3KXNzWzn83sskTvK45YkjmuCh9rZvan2P/jz2Z2b6L3
E2cs6RhXHTMbZWZzY4/RqxO9rzhiSea4bjezT8zsIzN7wcy2jR3fzcx+KfM6X+GyeZEwzD/CMNcI
w7wiLHOIMMwVwjAvCMMcIJvf71P1ulrm9q4xs8WxMXWNHdvazF6NHZtnZrdW5zZzMokArAH2MbP6
sZ+PwheFjJuZ1S73cy3gfuBoYG+gn5ntCeCcO8U518Y51wZ4AXgxwfgrk/RxxYzEj6ui6+8Su58v
qnM/1ZSKcW0ALnPO7Q0cDFxY+v8FzMPX+Hi35iHHJd3juh0ocs61xi8DvqPGkcfnFGAy0K+6vxh7
PpV1NTDJOdcSeBu4ptzl/8B3iUmHZI6rssfar8D1wOU1CbCG0jGuPkC9WFG8dsB55mvqpFIyxzUB
2Ns5dwCwmM0fh0tKX+edcxfUOFoJuzDMP8Iw1wjDvCIsc4gwzBXCMC8Iwxwgm9/vE34+V8bMWuG3
+rUCugMPmllpLaA7Yg0QWgOHmlmFr8EVydUkAvgXkWNj3/cDniq9wMwONLOpZjbbzKaY2Z9jx880
s7Fm9hYwqdzttQcWO+e+cM6tB54GTqjgfk8ue18pkOxx4ZybAqyq5P7uAq5I6ggqltRxOeeizrmP
Yt+vBj4Bdo79vMg5t5g4eosnQdrGhW99VpqV3w5YkapBmVkD4BDgbMq8mJvZ4Wb2bizzubBsBjeW
XR9mZh/ii7SWdQIwOvb9aKBnmd87AfgMWJCa0fwu2eOq7LHmnPvFOTcVWJfK8ZSJMS3jwrf8bRCb
uG6DH99PqRlVSsY1yTlX2kJwGr9X/4f0vF5IOIRh/hGGuUYY5hVZPYcIw1whDPOCMMwBQvJ+X5Pn
87tmtl+Z6002s33L3e4JwNPOuQ3OuWX4pEh759xa59y7AM65DcAcNh/nFuVqEsHh32T7mc/47AdM
L3P5J8Chzrm2+GzrkDKXtQZ6OeeOKHebO7N5xugrfn/hBcDMOgFR59zSpIzif6ViXJUysx7Al865
eQlHvmUpHZeZ5QMHlLvNdEj3uC4FhpkvSHY7/5uhT6YTgDecc0uA78ysdZnLDgQuxGdEdzezXrHj
DYAPnHOtY2+UZe3gnCsBP8kB8gDM7A/AlcBg0vMhLtnjyhTpGtfzwC/AN8AyYJhz7odkDKASqRzX
WcDrZX7ON7+08R0zOzSJY5BwCcP8IwxzjTDMK8IwhwjDXCEM84IwzAGy/f2+ps/nx4ABALHEQv0K
XivLv0es4H/fI7YDjgfeijfgXE0i4JybD+TjMz2vsfmLynbA82Y2D5/93qvMZROdcz/W8G43yyql
QrrGZWZbA9fiH8i/Ha5h2FVK1bhibyzPAxfHsu5pleZx/TX2c1P8ZODxZI2jAv3wL4YAzwD9y1w2
I3bGzOGfD6UvwBuJf6ltaXa4CLjLOfdL7OdUJxJSPa6gpGtc7fHLZSNAc2BgbKKaKikZl5ldB6x3
zo2JHfoaaOr8kvHLgTGx56DI/wjD/CMMc40wzCtCMIcIw1whDPOCMMwBsv79vobP5+eBY2OrO84C
RlX3fmO/Owa4O7ZSIS6JtnjMduPwe7oKgMZljv8deNs518vMdgPeKXPZmkpuawVQdl/PLpRZ6hX7
D+oFpKxQXxnJHFdlWuAf6P82M8OPd7aZtXfOraxp4FVI6rjMrA7+yfeEc25s8sONW7rGdaZz7mIA
59zzZjYiSfGXv/9GQGf83i4H1MZnWEuXopZvCVP689rYC3xFSswszzlXYmYRoPQxdhBwkpndDjQC
NprZWldJP/hEpGhcgUvzuPrjzxRsAr41s/fx+yKX1ST2LUnVuMysEDgmdtv+F/0S8lWx7+eY2VJg
D/zSQJGKhGH+EYa5RhjmFVk5hwjDXCEM84IwzAFC9n5freezc26tmU3Eb93pA7St4DZXALuW+Xmz
9wjgEWCRc+6+6gSaqysRSjM7jwODnXPl90c15Pc/7oA4b3MmfonMbmZWD1/co2xFzaOAT5xzX9cw
5nikYlxlb/u3jJhzbr5zLuKca+6ca4ZfPtk6RQmEVI3rceBj59w9cdx3KqR7XCvM7HAAM+sCfFrN
eOPVB/inc65Z7PGxG/B5mSVf7WPPk1pAX3wRHNjy33ocUBj7/kxgLIBz7rDYfTQH7gZuTUUCISYV
4yqrsuulenVFOse1nNibsfn9ix2AhQmPoGJJH5eZdcNPSno459aVOd44djuYWXNgd/zeW5HywjD/
CMNcIwzzimyfQ4RhrhCGeUEY5gBheL9P5Pk8ArgXv+KiohVG44BTzKyemTWLxTwDwMxuBrZ1zl1a
3YBzNYngAJxzK5xz91dw+e3AUDObTZx/I+fcRuD/8NU8F+ALWHxS5ip9SfFWBlIwLgAzGwNMBfYw
s+VmVtGbkSN1H3aSPi4zOwQ4Fehsvl3RnNgLRmmLmC/xL26vmtnrW7qtBKR1XMC5wD/MF5C5OfZz
KvQFXip37AV+L3QzC19JfAGw1Dn3cuz4ljLatwFHmdkioAswNHnhxi3p49rSY83MPsdXkj4z9rzb
s7LbSVA6x/UA8Eczm4/f6zcitnwvFVLxOLwP+AMw0TZv7XQYMNd8+7xngfNcams9SPZi6Hg6AAAA
30lEQVQKw/wjDHONMMwrsn0OEYa5QhjmBWGYA4Th/b7Gz2fn3Bx8gcqRFd6wcx/HYv0YX7zxAuec
M7Od8dvF9irzfD8r3oAtQ1bTiEgOiJ3FuNw51yPoWJJJ48ouYR2XiEgYhOE1WmPIDGEYQ1XMbCf8
VodUnWyqUK6uRBARERERERHJSmZ2OvABfkVBeu9bKxFEREREREREJB5aiSAiIiIiIiIicVESQURE
RERERETioiSCiIiIiIiIiMRFSQQRERERERERiYuSCCIiIiIiIiISFyURRERERERERCQu/w/8oEbX
cAw4PwAAAABJRU5ErkJggg==
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>As we can see above, the market broke a prevailing trend on Apple in order to go down, and ultimately predict the earnings release. For Facebook, the opposite happened. While the trend was down, the earnings were fantastic and the market corrected itself much higher.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Formulating-the-Question">Formulating the Question<a class="anchor-link" href="#Formulating-the-Question">&#182;</a></h1><p>While these are two specific examples, there are plenty of other examples you could cite one way or another. Even if the preponderance of evidence shows that the market correctly predicts earnings releases, we need not accuse people of collusion; for a company like Apple with many suppliers we can generally forecast how Apple has done based on those same suppliers.</p>
<p>The question then, is this: <strong>how well does the market predict the earnings releases?</strong> It's an incredibly broad question that I want to disect in a couple of different ways:</p>
<ol>
<li>Given a stock that has been trending down over the past N days before an earnings release, how likely does it continue downward after the release?</li>
<li>Given a stock trending up, how likely does it continue up?</li>
<li>Is there a difference in accuracy between large- and small-cap stocks?</li>
<li>How often, and for how long, do markets trend before an earnings release?</li>
</ol>
<p><strong>I want to especially thank Alejandro Saltiel for helping me retrieve the data.</strong> He's great. And now for all of the interesting bits.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Event-Studies">Event Studies<a class="anchor-link" href="#Event-Studies">&#182;</a></h1><p>Before we go too much further, I want to introduce the actual event study. Each chart intends to capture a lot of information and present an easy-to-understand pattern:</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In&nbsp;[5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">pandas.tseries.holiday</span> <span class="k">import</span> <span class="n">USFederalHolidayCalendar</span>
<span class="kn">from</span> <span class="nn">pandas.tseries.offsets</span> <span class="k">import</span> <span class="n">CustomBusinessDay</span>
<span class="kn">from</span> <span class="nn">datetime</span> <span class="k">import</span> <span class="n">datetime</span><span class="p">,</span> <span class="n">timedelta</span>
<span class="c1"># If you remove rules, it removes them from *all* calendars</span>
<span class="c1"># To ensure we don&#39;t pop rules we don&#39;t want to, first make</span>
<span class="c1"># sure to fully copy the object</span>
<span class="n">trade_calendar</span> <span class="o">=</span> <span class="n">USFederalHolidayCalendar</span><span class="p">()</span>
<span class="n">trade_calendar</span><span class="o">.</span><span class="n">rules</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">6</span><span class="p">)</span> <span class="c1"># Remove Columbus day</span>
<span class="n">trade_calendar</span><span class="o">.</span><span class="n">rules</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="mi">7</span><span class="p">)</span> <span class="c1"># Remove Veteran&#39;s day</span>
<span class="n">TradeDay</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">days</span><span class="p">:</span> <span class="n">CustomBusinessDay</span><span class="p">(</span><span class="n">days</span><span class="p">,</span> <span class="n">calendar</span><span class="o">=</span><span class="n">trade_calendar</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">plot_study</span><span class="p">(</span><span class="n">array</span><span class="p">):</span>
<span class="c1"># Given a 2-d array, we assume the event happens at index `lookback`,</span>
<span class="c1"># and create all of our summary statistics from there.</span>
<span class="n">lookback</span> <span class="o">=</span> <span class="nb">int</span><span class="p">((</span><span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">norm_factor</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">array</span><span class="p">[:,</span><span class="n">lookback</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">centered_data</span> <span class="o">=</span> <span class="n">array</span> <span class="o">/</span> <span class="n">norm_factor</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">lookforward</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">lookback</span>
<span class="n">means</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">lookforward_data</span> <span class="o">=</span> <span class="n">centered_data</span><span class="p">[:,</span><span class="n">lookforward</span><span class="p">:]</span>
<span class="n">std_dev</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)])</span>
<span class="n">maxes</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">mins</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">f</span><span class="p">,</span> <span class="n">axarr</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">range_begin</span> <span class="o">=</span> <span class="o">-</span><span class="n">lookback</span>
<span class="n">range_end</span> <span class="o">=</span> <span class="n">lookforward</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">range_begin</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span> <span class="n">means</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">range_begin</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span> <span class="n">means</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">+</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">-</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=.</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;$\pm$ 1 s.d.&quot;</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">+</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">-</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=.</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;$\pm$ 1 s.d.&quot;</span><span class="p">)</span>
<span class="n">max_err</span> <span class="o">=</span> <span class="n">maxes</span> <span class="o">-</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">min_err</span> <span class="o">=</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span> <span class="o">-</span> <span class="n">mins</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:],</span>
<span class="n">yerr</span><span class="o">=</span><span class="p">[</span><span class="n">min_err</span><span class="p">,</span> <span class="n">max_err</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Max &amp; Min&#39;</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">((</span><span class="o">-</span><span class="n">lookback</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">lookback</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
<span class="n">axarr</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">((</span><span class="o">-</span><span class="n">lookback</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">lookback</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">plot_study_small</span><span class="p">(</span><span class="n">array</span><span class="p">):</span>
<span class="c1"># Given a 2-d array, we assume the event happens at index `lookback`,</span>
<span class="c1"># and create all of our summary statistics from there.</span>
<span class="n">lookback</span> <span class="o">=</span> <span class="nb">int</span><span class="p">((</span><span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">norm_factor</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">array</span><span class="p">[:,</span><span class="n">lookback</span><span class="p">]</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">centered_data</span> <span class="o">=</span> <span class="n">array</span> <span class="o">/</span> <span class="n">norm_factor</span> <span class="o">-</span> <span class="mi">1</span>
<span class="n">lookforward</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="n">lookback</span>
<span class="n">means</span> <span class="o">=</span> <span class="n">centered_data</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">lookforward_data</span> <span class="o">=</span> <span class="n">centered_data</span><span class="p">[:,</span><span class="n">lookforward</span><span class="p">:]</span>
<span class="n">std_dev</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">hstack</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)])</span>
<span class="n">maxes</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">mins</span> <span class="o">=</span> <span class="n">lookforward_data</span><span class="o">.</span><span class="n">min</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">range_begin</span> <span class="o">=</span> <span class="o">-</span><span class="n">lookback</span>
<span class="n">range_end</span> <span class="o">=</span> <span class="n">lookforward</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">range_begin</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span> <span class="n">means</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">fill_between</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">+</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="p">:]</span> <span class="o">-</span> <span class="n">std_dev</span><span class="p">,</span>
<span class="n">alpha</span><span class="o">=.</span><span class="mi">5</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;$\pm$ 1 s.d.&quot;</span><span class="p">)</span>
<span class="n">max_err</span> <span class="o">=</span> <span class="n">maxes</span> <span class="o">-</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">min_err</span> <span class="o">=</span> <span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:]</span> <span class="o">-</span> <span class="n">mins</span>
<span class="n">plt</span><span class="o">.</span><span class="n">errorbar</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">range_end</span><span class="p">),</span>
<span class="n">means</span><span class="p">[</span><span class="o">-</span><span class="n">lookforward</span><span class="o">+</span><span class="mi">1</span><span class="p">:],</span>
<span class="n">yerr</span><span class="o">=</span><span class="p">[</span><span class="n">min_err</span><span class="p">,</span> <span class="n">max_err</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Max &amp; Min&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">((</span><span class="o">-</span><span class="n">lookback</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">lookback</span><span class="o">+</span><span class="mi">1</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">fetch_event_data</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">events</span><span class="p">,</span> <span class="n">horizon</span><span class="o">=</span><span class="mi">5</span><span class="p">):</span>
<span class="c1"># Use horizon+1 to account for including the day of the event,</span>
<span class="c1"># and half-open interval - that is, for a horizon of 5,</span>
<span class="c1"># we should be including 11 events. Additionally, using the</span>
<span class="c1"># CustomBusinessDay means we automatically handle issues if</span>
<span class="c1"># for example a company reports Friday afternoon - the date</span>
<span class="c1"># calculator will turn this into a &quot;Saturday&quot; release, but</span>
<span class="c1"># we effectively shift that to Monday with the logic below.</span>
<span class="n">td_back</span> <span class="o">=</span> <span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<span class="n">td_forward</span> <span class="o">=</span> <span class="n">TradeDay</span><span class="p">(</span><span class="n">horizon</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<span class="n">start_date</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">events</span><span class="p">)</span> <span class="o">-</span> <span class="n">td_back</span>
<span class="n">end_date</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">events</span><span class="p">)</span> <span class="o">+</span> <span class="n">td_forward</span>
<span class="n">total_data</span> <span class="o">=</span> <span class="n">fetch_ticker</span><span class="p">(</span><span class="n">ticker</span><span class="p">,</span> <span class="n">start_date</span><span class="p">,</span> <span class="n">end_date</span><span class="p">)</span>
<span class="n">event_data</span> <span class="o">=</span> <span class="p">[</span><span class="n">total_data</span><span class="o">.</span><span class="n">ix</span><span class="p">[</span><span class="n">event</span><span class="o">-</span><span class="n">td_back</span><span class="p">:</span><span class="n">event</span><span class="o">+</span><span class="n">td_forward</span><span class="p">]</span>\
<span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="n">horizon</span><span class="o">*</span><span class="mi">2</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span>\
<span class="p">[</span><span class="s1">&#39;Adjusted Close&#39;</span><span class="p">]</span>
<span class="k">for</span> <span class="n">event</span> <span class="ow">in</span> <span class="n">events</span><span class="p">]</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">event_data</span><span class="p">)</span>
<span class="c1"># Generate a couple of random events</span>
<span class="n">event_dates</span> <span class="o">=</span> <span class="p">[</span><span class="n">datetime</span><span class="p">(</span><span class="mi">2016</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">27</span><span class="p">)</span> <span class="o">-</span> <span class="n">timedelta</span><span class="p">(</span><span class="n">days</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="o">-</span> <span class="n">TradeDay</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="mi">20</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">40</span><span class="p">)]</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">fetch_event_data</span><span class="p">(</span><span class="s1">&#39;CELG&#39;</span><span class="p">,</span> <span class="n">event_dates</span><span class="p">)</span>
<span class="n">plot_study_small</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">gcf</span><span class="p">()</span><span class="o">.</span><span class="n">set_size_inches</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span> <span class="mi">6</span><span class="p">);</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;Mean price for days leading up to each event&#39;</span><span class="p">,</span>
<span class="p">(</span><span class="o">-</span><span class="mi">5</span><span class="p">,</span> <span class="o">-.</span><span class="mi">01</span><span class="p">),</span> <span class="p">(</span><span class="o">-</span><span class="mf">4.5</span><span class="p">,</span> <span class="o">.</span><span class="mi">025</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="nb">dict</span><span class="p">(</span><span class="n">facecolor</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">shrink</span><span class="o">=</span><span class="mf">0.05</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;&#39;</span><span class="p">,</span> <span class="p">(</span><span class="o">-.</span><span class="mi">1</span><span class="p">,</span> <span class="o">.</span><span class="mi">005</span><span class="p">),</span> <span class="p">(</span><span class="o">-.</span><span class="mi">5</span><span class="p">,</span> <span class="o">.</span><span class="mi">02</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;facecolor&#39;</span><span class="p">:</span> <span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="s1">&#39;shrink&#39;</span><span class="p">:</span> <span class="o">.</span><span class="mi">05</span><span class="p">})</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;$\pm$ 1 std. dev. each day&#39;</span><span class="p">,</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="o">.</span><span class="mi">055</span><span class="p">),</span> <span class="p">(</span><span class="mf">2.5</span><span class="p">,</span> <span class="o">.</span><span class="mi">085</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;facecolor&#39;</span><span class="p">:</span> <span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="s1">&#39;shrink&#39;</span><span class="p">:</span> <span class="o">.</span><span class="mi">05</span><span class="p">})</span>
<span class="n">plt</span><span class="o">.</span><span class="n">annotate</span><span class="p">(</span><span class="s1">&#39;Min/Max each day&#39;</span><span class="p">,</span> <span class="p">(</span><span class="o">.</span><span class="mi">9</span><span class="p">,</span> <span class="o">-.</span><span class="mi">07</span><span class="p">),</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-.</span><span class="mi">1</span><span class="p">),</span>
<span class="n">arrowprops</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;facecolor&#39;</span><span class="p">:</span> <span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="s1">&#39;shrink&#39;</span><span class="p">:</span> <span class="o">.</span><span class="mi">05</span><span class="p">});</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VPW9//HXdyaTSTLZSICwb+pFRAIJsi8GUNyxqIj7
Ulu1anvb/qoUr1VwudfeVlzaWltrrVqvooiIRSkoxn1BURaFgGjCGkhCyL7MZL6/PyYZs5OYwGR5
Px+P85g53/mecz4zo+Gdb77nHGOtRUREREREWs4R6gJERERERDobhWgRERERkVZSiBYRERERaSWF
aBERERGRVlKIFhERERFpJYVoEREREZFWapcQbYw50xizzRiz3RizoJHXhxtjPjDGlBtjflnvtUxj
zEZjzOfGmE/aox4RERERkaMprK07MMY4gD8Cs4B9wHpjzCvW2m21uuUBPwV+0Mgu/ECatTa/rbWI
iIiIiBwL7TESPR7YYa3NstZ6geeB82t3sNbmWms/A3yNbG/aqQ4RERERkWOiPcJrf2B3rfU91W0t
ZYG1xpj1xpgft0M9IiIiIiJHVZunc7SDKdba/caYXgTC9FZr7XuhLkpEREREpCntEaL3AoNqrQ+o
bmsRa+3+6sccY8zLBKaHNAjRxhjbxjpFRERERFrEWmuae709pnOsB443xgw2xoQDlwArm+kfLMgY
E2WMia5+7gFmA1ua2tBaq6WTLnfddVfIa9Ci7647Lvr+Ou+i765zL/r+OvfSEm0eibbWVhljbgHW
EAjlT1hrtxpjbgi8bP9qjEkCPgViAL8x5j+Bk4BewMvVo8xhwLPW2jVtrUlERERE5GhqlznR1trV
wPB6bX+p9fwAMLCRTYuBMe1Rg4iIiIjIsaJLy8kxkZaWFuoS5HvSd9e56fvrvPTddW76/ro+09J5
H6FmjLGdpVYRERER6byMMdhjcGKhiIiIiEi3ohAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIi
IiIiraQQLSIiIiLSSgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQ
LSIiIiLSSgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLS
SgrRIiIiIiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIi
IiKtpBAtIiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIiIiKtpBAt
IiIiItJKCtEiIiIiIq2kEC0iIiIi0koK0SIiIiIiraQQLSIiIiLSSgrRIiIiIiKtpBAtIiIiItJK
CtEiIiIiIq2kEC0iIiIi0kphoS5ARERERDq+9Mx00jPTg8/ThqQBkDYkLfi8OzHW2lDX0CLGGNtZ
ahURERHpysxig72r6+YyYwzWWtNcH03nEBERERFpJYVoEREREZFWUogWEREREWmldgnRxpgzjTHb
jDHbjTELGnl9uDHmA2NMuTHml63ZVkRERESko2lziDbGOIA/AmcAI4FLjTEn1uuWB/wU+N332FZE
REREpENpj5Ho8cAOa22WtdYLPA+cX7uDtTbXWvsZ4GvttiIiIiIiHU17hOj+wO5a63uq2472tiIi
IiIiIaGbrYiIiIi0A92MpHtpjxC9FxhUa31AdVu7b7to0aLg87S0NNLS0lpao4iIiMhRVTssm8WG
9GvSQ1qPtFx6ejrp6emt2qbNdyw0xjiBDGAWsB/4BLjUWru1kb53AcXW2ge+x7a6Y6GIiIh0Cl3+
jn5d/f214I6FbR6JttZWGWNuAdYQmGP9hLV2qzHmhsDL9q/GmCTgUyAG8Btj/hM4yVpb3Ni2ba1J
RERERORoapc50dba1cDwem1/qfX8ADCwpduKiIiIiHRkOrFQRESkg9CJaSKdh0K0iIhIB9HVT0zT
LwnSlShEi4iIyDHR1X9JkO6lPW62IiIiIiLSrShEi4iIiIi0kkK0iIiItNp1111HUlISycnJrdqu
oKCAP//5z02+vnjxYpYsWdKqfX6fbY6FrKwsRo0a1ertOur7kboUokVERKSBPXv2UFxc3OTr1157
Lf/+979bvd/8/HweffTRtpTWqRjT7P06pBNTiBYREZEGdu7cyaFDh5p8ferUqfTo0aPZfZSWlnLu
ueeSkpJCcnIyL774IgsXLmTnzp3wGCxYsACA++67j+HDhzN9+nQyMjJaVF9T2zz77LNMmDCB1NRU
fvKTn+D3+1m4cGGd4N7Skd76+6q5c/LcuXMZN24co0aN4m9/+1uw/9NPP83o0aNJSUmBlwNtPp+P
66+/npNPPpkzzzyTioqKVr2fxo5111138fDDDwf73HHHHfzhD39owacm7cpa2ymWQKkiIiLdA4tC
++9eenq6zczMbLZPZmamHTVqVJOvv/TSS/b6668PrhcWFga3qXl/n332mU1OTrbl5eW2sLDQHn/8
8faBBx5o9rhNbbN161Z73nnnWZ/PZ6219qabbrLPPPOM/fzzz+2pp54a3P6kk06ye/bsafYYTe3L
Wmvz8/OttdaWlZXZk08+2R46dMh++eWXdvjw4fbQoUPWWmtZgM3MzLRhYWF206ZN1lprL774Yvvs
s8+2+P00dazMzEybmppqrbXW7/fb4447LnjcYyXU/30ebdW5s9lsqkvciYiICAC7du3irbfeAmDb
tm306tWLxMREjDHMmTOH+Pj4Vu1v1KhR/OpXv2LhwoWcc845TJ06tcHo9rvvvsvcuXNxu9243W7m
zJlzxP02tc2bb77JZ599xrhx47DWUl5eTp8+fbjiiivIyckhOzubgwcPkpCQQP/+/Zs9xptvvsmG
DRvq7CspKQmAhx56iBUrVgCBaS87duzgk08+Yd68ed+NzkcGHoYNGxacFz127FgyMzNb/H6aOtb4
8ePp2bMnGzduJDs7m9TU1CP+VUDan0K0iIiIADBo0CCuvvpqAN555x2GDBnCoEGDvvf+TjjhBDZs
2MBrr73GHXfcwWmnncaVV14ZnBZxNFxzzTXcd999DdrnzZvHiy++SHZ2NvPnzz/ifqy1XH311Q32
9fbbb7Nu3To+/vhj3G43M2bMoLy8PLhNfW63O/jc6XQG+7ZEc8f60Y9+xJNPPkl2djY//OEPW7xP
aT+aEy0iIiIN2O+mU37vPvv37ycyMpLLLruMW2+9lQ0bNhATE0NRUVGwz/Tp01mxYgUVFRUUFRXx
6quvHrG2praZOXMmy5YtIycnBwicxLhr1y4ALr74Yp5//nleeukl5s2bd8RjzJo1q9F9FRQU0KNH
D9xuN9u2beOjjz6qc+zgSHvZd5/R930/TR0L4Ac/+AGrV6/m008/5YwzzjjiMaT9aSRaREREgMAl
2d544w0Atm/fTs+ePUlISMAYw9y5c+tMGbjssstIT08nLy+PQYMGsXjxYq699to6+9u8eTO33nor
DoeD8PBwHnvsMRISEpgyZQpZj2axoHQBv/3tb7n44otJTk4mKSmJ8ePHB7c/55xzeOKJJ+jTp0+d
/aakpDB//vwG24wYMYJ7772X2bNn4/f7CQ8P509/+hODBg3ipJNOoqioiAEDBgSnZTR3jKb2deaZ
Z/LYY48xcuRIhg8fzqRJkwA46aST+K//+i9OPfVUwsKq49VPWnZ1jqbez1lnndXosQBcLhczZsyg
R48eugJIiJij+SeV9mSMsZ2lVhERkbYyiw32rq77757eX9v4/X7Gjh3LsmXLOO64447acZrS5b8/
Y7DWNvvbiaZziIiIiHQiW7du5YQTTuD0008PSYCWAE3nEBEREelERowYEbjWtoSURqJFRERERFpJ
IVpEREREpJUUokVERES6sK1bt+L3+0NdRpejEC0iIiLSBVlrufvuuxk5ciS//OUvQ11Ol6MQLSIi
ItLFVFZWcskll/Db3/4Way2PP/44f/3rX0NdVpeiEC0iIiLSxZx99tmsXLmS0tJSAEpLS/n5z3/O
W2+9FeLKug6FaBEREZEuZtq0aTgcdWNeWVkZ559/Ptu3bw9RVV2LQrSIiIhIF3PnnXdyzjnnEBkZ
Wae9uLiYGTNmkJeXF6LKug6FaBEREZEuxhjDM888w4gRI3C5XMF2ay05OTmcccYZVFRUhLDCzk8h
WkRERKQLcrvd/Pvf/6Znz54YY4LtXq+Xr776iquuugprbQgr7NwUokVERES6qJ49e7Ju3To8Hk+d
9rKyMv71r39xzz33hKiyzk8hWkRERKQLO/HEE3n55ZcbzI8uLS3l/vvv54UXXghRZZ2bQrSIiIhI
F3faaaexZMkSoqKi6rSXlZVx7bXXsn79+hBV1nkpRIuIiIh0AzfeeCPXXXddgyBdWlrK7Nmz2bVr
V4gq65zCQl2AiIhIa6RnppOemR58njYkDYC0IWnB5yLSuAcffJBt27bxzjvv1Lk6R2FhITNnzuTz
zz8nJiYmhBV2HgrRIiLSqdQOy2axIf2a9JDWI9KZOJ1OXn75ZVJTU9m5cydVVVUA+P1+9uzZw5w5
c3jjjTdwOp1Ya7n//vv517/+xfvvvx/iyjseTecQERER6UY8Hg/r1q0jLi6uTntFRQWffPIJN998
M16vl6uuuop7772XTz/9lNzc3BBV23EpRIuIiIh0M/3792ft2rWNzo9+5plnGD58OC+99BKlpaVE
RETw3nvvhajSjkshWkRERKQbSk1N5Z///Gejl7779ttvKSsrA6CoqIg1a9aEosQOTSFaREREpJua
O3cud9xxR4MR6dqstQrRjVCIFhEREenGFi5cSEpKCmFhTV9vYvfu3RQUFBzDqjo+hWgRERGRbsrv
93Pbbbfx+eef4/P5muynedENKUSLiIiIdEPl5eXMmTOHRx99lNLS0mb7FhcX8+abbx6jyjoHhWgR
ERGRbmjnzp2kp6e3qK/f7+f1118/ugV1MgrRIiIiIt3QyJEjOXjwIEuWLGHIkCF4PJ5m++/cuZPi
4uJjVF3HpxAtIiIi0k1FRUVxww038M0337Bq1SrOOOMMIiIiCA8Pb9A3MjKSDz/8MARVdkwK0SIi
IiLdnDGGU089ldWrV5ORkcEtt9xCdHR0ndHpkpISzYuuRSFaRERERIIGDRrEAw88wMGDB3n44Yc5
7rjj8Hg8VFVV8dprr4W6vA5DIVpEREREGoiMjOS6665jx44drF69mrPPPpvc3NxQl9VhNH1VbRER
ERHp9owxTJ06lVWrVmGtDXU5HYZGokVERESkRYwxoS6hw2iXEG2MOdMYs80Ys90Ys6CJPo8YY3YY
Y74wxqTUas80xmw0xnxujPmkPeoRERERETma2jydwxjjAP4IzAL2AeuNMa9Ya7fV6nMWcJy19gRj
zATgz8DE6pf9QJq1Nr+ttYiIiIiIHAvtMRI9Hthhrc2y1nqB54Hz6/U5H3gawFr7MRBnjEmqfs20
Ux0iIiIiIsdEe4TX/sDuWut7qtua67O3Vh8LrDXGrDfG/Lgd6hERERGRo0QnFwZ0hKtzTLHW7jfG
9CIQprdaa98LdVEiIiIi3ZHf76ewsJCCggIOHz7M4cMF7N9/mP37D3PwYAG5uQUwINRVhl57hOi9
wKBa6wOq2+r3GdhYH2vt/urHHGPMywSmhzQaohctWhR8npaWRlpaWtsqFxEREelmvF4vBQUFwZB8
6FAB+/Yd5sCBAg4cOEx+fjHWejAmDojH748jPLwfbvcIIiLiiYjIB34T6rfRrtLT00lPT2/VNu0R
otcDxxtjBgP7gUuAS+v1WQncDCw1xkwEDltrDxhjogCHtbbYGOMBZgOLmzpQ7RAtIiIiIg2Vl5dz
+PDhYEjOzQ2MJGdnF5CTc5jCwgqMiQXisDYea+OIiBiG2x1HREQ8AwbE4nA4m9y/11ty7N7MMVJ/
cHbx4ibjaFCbQ7S1tsoYcwuwhsAc6yestVuNMTcEXrZ/tda+Zow52xjzNVACXFu9eRLwsjHGVtfy
rLV2TVtrEhEREemKrLWUlJQEQ3J+fmCKRc1Ui4MHD1NWZnE6A+HY2niMiSMioh9udxxRUfHEx0fr
es/toF3mRFtrVwPD67X9pd76LY1s9y0wpj1qEBEREensmpqPnJ0dmGqRm1uAzxeOw/FdSHY6E4Ij
yQkJ8YSFRSgkHwMd4cRCERERkW6hpfORa0Ky3x9PeHg/IiJOwu2Oo0+fOJzO8FC/DUEhWkRERKTd
VFVVkZ8fuH/cxx9/TG7udyH54MHDFBUF5iMbEzhhD+Jxu4cRERGP2x13xPnI0nEoRIuIiIi0grWW
oqIi8vLyyMvLY//+XLKy8ti9O4+cnEIgFgbDY4/lYkw8ERH9iIiIx+OJo0cPzUfuKhSiRURERBpR
Xl4eDMoHD+aRlZXLnj157Nt3iMrKcByOnlibiDGJREYOJSoqkQEDelSPJP8ngwefE+q3IEeRQrSI
iIh0Wz6fj/z8fPLy8sjNzWP37lx27cpj3748Cgq8OByJQCAsR0ScSFRUIr16JRIW5g516RJiCtEi
IiLSpVlrKSwsrDX9Io/MzFz27s0jJ6cIiMOYnlRVJRIePoCoqNFERSXqUnDSLIVoERER6RLKysrq
TL/YtSuPXbty2b//ED5fBJCItT1xOBKJihpGZGQiAwbE60Q++V4UokVERKTT8Pl8HDp0qNb0i8Cy
Z08uxcVVOByJWBsIy5GRI4iMTKR37wRNv5B2pxAtIiIiHYq1loKCguCo8r59gVHl3btzycsrxph4
IBG/vyfh4QOJjBxDTEwiCQkeTb+QY0YhWkREREKitLS03tUv8tizJ696+kUkxiTi9yfidPYkMvJ4
oqISGTgwHmMcoS5dRCFaRERE2p/f76eoqKjW3fkKyMkpIDu7kIMHC8DAzTc/Umv6RSKRkSOJikok
KSlBd+WTDk8hWkRERFrFWktZWVkwIBcUFHDoUCH79xdw4EABubkF5OeXAB6MicPawOJ09iQi4jjc
7jiI/QmDBi3Q9AvptBSiRUREpI7KykoKCwtrjSIXkp1dUH3r6gLy8grxesNwOOIwJo6qqliMicPt
7kNERBxudxwDB8YccdqFArR0ZgrRIiIi3Uj9aRYFBYHpFTUBOSengOJiL05nICD7/bFYG0d4+EDc
7pOJiIgjKSlW0y2k21OIFhER6SLqT7MI3GCkIDiKnJNTe5pFLBBHVVUcYWGJREQMw+2OJTY2jsTE
KI0SixyBQrSIiEgn4fV66wTk/PxAOM7O/m6ahc8XFgzIfn9ccJqF2x1LREQcAwbE6OYiIu1AIbob
czgcXHHFFTz99NMAVFVV0adPHyZNmsTKlStDXB189tlnPPPMMzz00ENt2k9GRgaXXHIJDoeDZcuW
MXTo0Dbt7+233+b3v/89r776apv205SYmBiKioravJ+nnnqKzz77jEceeYS//OUveDwerrjiinao
8PsrKCjg//7v//jJT35yzI/91FNP8emnn/KHP/zhmB+7to0bN7Jv3z7OOuuskNYhHUfN6HFpaWmd
BeDll18LBuTc3EKKiysxJrbOyXou1wAiIkbidsfRu3esbioicowoRHdjHo+HLVu2UFFRgdvtZu3a
tQwcODDUZQGBQD927FjGjh3b5n2tWLGCefPmcfvtt7d4G2tts3/KPJp/5jwa+77hhhvafZ/fR35+
Po8++mhIQjR0jJOYvvjiCz799FOF6C7KWktlZWWDQFxaWkpRUSmHD5eSn1/C4cOlFBYGlpKScqx1
43BEAYHF2igYDKtWJeB2DyUiIo6YmDgSEjTNQqSj0NXKu7mzzz6bVatWAfDcc89x6aWXBl8rLS3l
uuuuY+LEiYwdOzY48pqVlcX06dM55ZRTOOWUU/joo4+AwAjtjBkzmDdvHiNGjODKK69s9JgzZszg
5z//OSkpKSQnJ/Ppp58CsHjxYq666iqmTp3KVVddxdtvv815550HQElJCT/84Q9JTk5mzJgxvPzy
ywCsXbuWyZMnc8oppzB//vzg6E2N119/nYceeog///nPzJo1C4AlS5YwatQokpOTefjhh4Pv6cQT
T+Tqq69m1KhR7Nmzp85+Vq9ezYgRIzjllFNYvnx5sH39+vVMnjyZsWPHMnXqVHbs2AHAqaeeyqZN
m4L9pk2bxubNm3nnnXdISUkhNTWVsWPHUlJS0uz38/vf/57x48czZswYFi9eHGyfO3cu48aNY9So
Ufztb38Ltj/55JMMHz6ciRMn8v777wfbFy9ezJIlS4Kf/69//WsmTJjAiSeeGOxXVlbG/PnzOfnk
k7nggguYOHEiGzZsaFDT0KFDOXToEBD4a8GMGTPqfH+TJ09m+PDhdeqqsXDhQr755htSU1NZsGAB