New blog post on Kaggle competition

This commit is contained in:
Bradlee Speice
2016-03-05 11:58:46 -05:00
parent e682eb2a35
commit f60cb5f8ef
31 changed files with 3765 additions and 210 deletions

View File

@ -28,6 +28,17 @@
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
<!-- Google Analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-74711362-1', 'auto');
ga('send', 'pageview');
</script>
<!-- /Google Analytics -->
</head>
@ -82,7 +93,7 @@
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="If-you-can-see-into-the-future,-that-is.">If you can see into the future, that is.<a class="anchor-link" href="#If-you-can-see-into-the-future,-that-is.">&#182;</a></h3><p>My previous class in Stochastic Calculus covered a lot of interesting topics, and the important one for today
is the <a href="https://en.wikipedia.org/wiki/Gambler's_ruin">Gambler's Ruin</a> problem. If you're interested in some of the theory behind it, also make sure to check out
is the <a href="https://en.wikipedia.org/wiki/Gambler&#39;s_ruin">Gambler's Ruin</a> problem. If you're interested in some of the theory behind it, also make sure to check out
<a href="https://en.wikipedia.org/wiki/Random_walk">random walks</a>. The important bit is that we studied the <a href="https://en.wikipedia.org/wiki/Martingale_%28betting_system%29">Martingale Betting Strategy</a>, which describes for us
a <strong>guaranteed way</strong> to <span style='font-size: x-small'>eventually</span> make money.</p>
<p>The strategy goes like this: You are going to toss a fair coin with a friend. If you guess heads or tails correctly, you get back double the money you bet. If you guess incorrectly, you lose money. How should you bet?</p>
@ -142,7 +153,7 @@ d_n &> \frac{o_n}{c_n - o_n} \sum_{i=1}^{n-1} d_i(1 - \frac{1}{o_i})
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span class="k">using</span> <span class="n">Quandl</span>
<div class=" highlight hl-julia"><pre><span></span><span class="k">using</span> <span class="n">Quandl</span>
<span class="n">api_key</span> <span class="o">=</span> <span class="s">&quot;&quot;</span>
<span class="n">daily_investment</span> <span class="o">=</span> <span class="n">function</span><span class="p">(</span><span class="n">current_open</span><span class="p">,</span> <span class="n">current_close</span><span class="p">,</span> <span class="n">purchase_history</span><span class="p">,</span> <span class="n">open_history</span><span class="p">)</span>
<span class="c"># We&#39;re not going to safeguard against divide by 0 - that&#39;s the user&#39;s responsibility</span>
@ -172,7 +183,7 @@ d_n &> \frac{o_n}{c_n - o_n} \sum_{i=1}^{n-1} d_i(1 - \frac{1}{o_i})
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span class="n">is_profitable</span> <span class="o">=</span> <span class="n">function</span><span class="p">(</span><span class="n">current_price</span><span class="p">,</span> <span class="n">purchase_history</span><span class="p">,</span> <span class="n">open_history</span><span class="p">)</span>
<div class=" highlight hl-julia"><pre><span></span><span class="n">is_profitable</span> <span class="o">=</span> <span class="n">function</span><span class="p">(</span><span class="n">current_price</span><span class="p">,</span> <span class="n">purchase_history</span><span class="p">,</span> <span class="n">open_history</span><span class="p">)</span>
<span class="n">shares</span> <span class="o">=</span> <span class="n">sum</span><span class="p">(</span><span class="n">purchase_history</span> <span class="o">./</span> <span class="n">open_history</span><span class="p">)</span>
<span class="k">return</span> <span class="n">current_price</span><span class="o">*</span><span class="n">shares</span> <span class="o">&gt;</span> <span class="n">sum</span><span class="p">(</span><span class="n">purchase_history</span><span class="p">)</span>
<span class="k">end</span>
@ -207,8 +218,8 @@ d_n &> \frac{o_n}{c_n - o_n} \sum_{i=1}^{n-1} d_i(1 - \frac{1}{o_i})
<span class="n">leverages</span> <span class="o">=</span> <span class="p">[</span><span class="n">sum</span><span class="p">(</span><span class="n">investments</span><span class="p">[</span><span class="mi">1</span><span class="p">:</span><span class="n">i</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span><span class="o">=</span><span class="mi">1</span><span class="p">:</span><span class="n">length</span><span class="p">(</span><span class="n">investments</span><span class="p">)]</span>
<span class="n">max_leverage</span> <span class="o">=</span> <span class="n">maximum</span><span class="p">(</span><span class="n">leverages</span><span class="p">)</span> <span class="o">/</span> <span class="n">investments</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">println</span><span class="p">(</span><span class="s">&quot;Max leverage: </span><span class="si">$(max_leverage)</span><span class="s">&quot;</span><span class="p">)</span>
<span class="n">println</span><span class="p">(</span><span class="s">&quot;Days invested: </span><span class="si">$</span><span class="s">(length(investments))&quot;</span><span class="p">)</span>
<span class="n">println</span><span class="p">(</span><span class="s">&quot;Profit: </span><span class="si">$</span><span class="s">profit&quot;</span><span class="p">)</span>
<span class="n">println</span><span class="p">(</span><span class="s">&quot;Days invested: </span><span class="si">$(length(investments))</span><span class="s">&quot;</span><span class="p">)</span>
<span class="n">println</span><span class="p">(</span><span class="s">&quot;Profit: </span><span class="si">$profit</span><span class="s">&quot;</span><span class="p">)</span>
<span class="k">end</span><span class="p">;</span>
</pre></div>
@ -235,7 +246,7 @@ d_n &> \frac{o_n}{c_n - o_n} \sum_{i=1}^{n-1} d_i(1 - \frac{1}{o_i})
<div class="prompt input_prompt">In&nbsp;[3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span class="n">investments</span><span class="p">,</span> <span class="n">profit</span> <span class="o">=</span> <span class="n">simulate</span><span class="p">(</span><span class="s">&quot;YAHOO/LMT&quot;</span><span class="p">,</span> <span class="n">Date</span><span class="p">(</span><span class="mi">2015</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">29</span><span class="p">),</span> <span class="mi">100</span><span class="p">,</span> <span class="mf">1.01</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<div class=" highlight hl-julia"><pre><span></span><span class="n">investments</span><span class="p">,</span> <span class="n">profit</span> <span class="o">=</span> <span class="n">simulate</span><span class="p">(</span><span class="s">&quot;YAHOO/LMT&quot;</span><span class="p">,</span> <span class="n">Date</span><span class="p">(</span><span class="mi">2015</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">29</span><span class="p">),</span> <span class="mi">100</span><span class="p">,</span> <span class="mf">1.01</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="n">sim_summary</span><span class="p">(</span><span class="n">investments</span><span class="p">,</span> <span class="n">profit</span><span class="p">)</span>
</pre></div>
@ -278,7 +289,7 @@ Profit: 0.6894803101560001
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-julia"><pre><span class="n">investments</span><span class="p">,</span> <span class="n">profit</span> <span class="o">=</span> <span class="n">simulate</span><span class="p">(</span><span class="s">&quot;YAHOO/LMT&quot;</span><span class="p">,</span> <span class="n">Date</span><span class="p">(</span><span class="mi">2015</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">29</span><span class="p">),</span> <span class="mi">100</span><span class="p">,</span> <span class="mf">1.02</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<div class=" highlight hl-julia"><pre><span></span><span class="n">investments</span><span class="p">,</span> <span class="n">profit</span> <span class="o">=</span> <span class="n">simulate</span><span class="p">(</span><span class="s">&quot;YAHOO/LMT&quot;</span><span class="p">,</span> <span class="n">Date</span><span class="p">(</span><span class="mi">2015</span><span class="p">,</span> <span class="mi">11</span><span class="p">,</span> <span class="mi">29</span><span class="p">),</span> <span class="mi">100</span><span class="p">,</span> <span class="mf">1.02</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="n">sim_summary</span><span class="p">(</span><span class="n">investments</span><span class="p">,</span> <span class="n">profit</span><span class="p">)</span>
</pre></div>
@ -341,6 +352,20 @@ MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\(','\)']]}});
<script async src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML'></script>
<div class="comments">
<div id="disqus_thread"></div>
<script type="text/javascript">
var disqus_shortname = 'bradleespeice';
var disqus_identifier = 'guaranteed-money-maker.html';
var disqus_url = 'https://bspeice.github.io/guaranteed-money-maker.html';
(function() {
var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
})();
</script>
<noscript>Please enable JavaScript to view the comments.</noscript>
</div>
</div>
<!-- /Content -->