Add a new Rust article!

This commit is contained in:
Bradlee Speice
2016-10-22 22:29:18 -04:00
parent f9e8c08491
commit 6910e70b66
26 changed files with 2728 additions and 1520 deletions

View File

@ -4,7 +4,7 @@
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="In [1]: import pickle import pandas as pd import numpy as np from bokeh.plotting import output_notebook, figure, show from bokeh.palettes import RdBu4 as Palette from datetime import datetime import ...">
<meta name="description" content="In [1]: import pickle import pandas as pd import numpy as np from bokeh.plotting import output_notebook, figure, show from bokeh.palettes import RdBu4 as Palette from datetime import datetime ...">
<meta name="keywords" content="data science, weather">
<link rel="icon" href="https://bspeice.github.io/favicon.ico">
@ -359,7 +359,7 @@
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="n">city_forecasts</span> <span class="o">=</span> <span class="n">pickle</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="nb">open</span><span class="p">(</span><span class="s">&#39;city_forecasts.p&#39;</span><span class="p">,</span> <span class="s">&#39;rb&#39;</span><span class="p">))</span>
<div class=" highlight hl-ipython3"><pre><span class="n">city_forecasts</span> <span class="o">=</span> <span class="n">pickle</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="nb">open</span><span class="p">(</span><span class="s1">&#39;city_forecasts.p&#39;</span><span class="p">,</span> <span class="s1">&#39;rb&#39;</span><span class="p">))</span>
<span class="n">forecasts_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="o">.</span><span class="n">from_dict</span><span class="p">(</span><span class="n">city_forecasts</span><span class="p">)</span>
</pre></div>
@ -373,24 +373,24 @@
<div class="prompt input_prompt">In&nbsp;[3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="n">cities</span> <span class="o">=</span> <span class="p">[</span><span class="s">&#39;binghamton&#39;</span><span class="p">,</span> <span class="s">&#39;cary&#39;</span><span class="p">,</span> <span class="s">&#39;nyc&#39;</span><span class="p">,</span> <span class="s">&#39;seattle&#39;</span><span class="p">]</span>
<div class=" highlight hl-ipython3"><pre><span class="n">cities</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;binghamton&#39;</span><span class="p">,</span> <span class="s1">&#39;cary&#39;</span><span class="p">,</span> <span class="s1">&#39;nyc&#39;</span><span class="p">,</span> <span class="s1">&#39;seattle&#39;</span><span class="p">]</span>
<span class="n">city_colors</span> <span class="o">=</span> <span class="p">{</span><span class="n">cities</span><span class="p">[</span><span class="n">i</span><span class="p">]:</span> <span class="n">Palette</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">4</span><span class="p">)}</span>
<span class="k">def</span> <span class="nf">safe_cover</span><span class="p">(</span><span class="n">frame</span><span class="p">):</span>
<span class="k">if</span> <span class="n">frame</span> <span class="ow">and</span> <span class="s">&#39;cloudCover&#39;</span> <span class="ow">in</span> <span class="n">frame</span><span class="p">:</span>
<span class="k">return</span> <span class="n">frame</span><span class="p">[</span><span class="s">&#39;cloudCover&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">frame</span> <span class="ow">and</span> <span class="s1">&#39;cloudCover&#39;</span> <span class="ow">in</span> <span class="n">frame</span><span class="p">:</span>
<span class="k">return</span> <span class="n">frame</span><span class="p">[</span><span class="s1">&#39;cloudCover&#39;</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">NaN</span>
<span class="k">def</span> <span class="nf">monthly_avg_cloudcover</span><span class="p">(</span><span class="n">city</span><span class="p">,</span> <span class="n">year</span><span class="p">,</span> <span class="n">month</span><span class="p">):</span>
<span class="n">dates</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DatetimeIndex</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">datetime</span><span class="p">(</span><span class="n">year</span><span class="p">,</span> <span class="n">month</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">12</span><span class="p">),</span>
<span class="n">end</span><span class="o">=</span><span class="n">datetime</span><span class="p">(</span><span class="n">year</span><span class="p">,</span> <span class="n">month</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">12</span><span class="p">),</span>
<span class="n">freq</span><span class="o">=</span><span class="s">&#39;D&#39;</span><span class="p">,</span> <span class="n">closed</span><span class="o">=</span><span class="s">&#39;left&#39;</span><span class="p">)</span>
<span class="n">cloud_cover_vals</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">safe_cover</span><span class="p">(</span><span class="n">forecasts_df</span><span class="p">[</span><span class="n">city</span><span class="p">][</span><span class="n">x</span><span class="p">][</span><span class="s">&#39;currently&#39;</span><span class="p">]),</span> <span class="n">dates</span><span class="p">))</span>
<span class="n">freq</span><span class="o">=</span><span class="s1">&#39;D&#39;</span><span class="p">,</span> <span class="n">closed</span><span class="o">=</span><span class="s1">&#39;left&#39;</span><span class="p">)</span>
<span class="n">cloud_cover_vals</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">safe_cover</span><span class="p">(</span><span class="n">forecasts_df</span><span class="p">[</span><span class="n">city</span><span class="p">][</span><span class="n">x</span><span class="p">][</span><span class="s1">&#39;currently&#39;</span><span class="p">]),</span> <span class="n">dates</span><span class="p">))</span>
<span class="n">cloud_cover_samples</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">np</span><span class="o">.</span><span class="n">NaN</span><span class="p">,</span> <span class="n">cloud_cover_vals</span><span class="p">)))</span>
<span class="c"># Ignore an issue with nanmean having all NaN values. We&#39;ll discuss the data issues below.</span>
<span class="c1"># Ignore an issue with nanmean having all NaN values. We&#39;ll discuss the data issues below.</span>
<span class="k">with</span> <span class="n">warnings</span><span class="o">.</span><span class="n">catch_warnings</span><span class="p">():</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">simplefilter</span><span class="p">(</span><span class="s">&#39;ignore&#39;</span><span class="p">)</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">simplefilter</span><span class="p">(</span><span class="s1">&#39;ignore&#39;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">cloud_cover_vals</span><span class="p">),</span> <span class="n">cloud_cover_samples</span>
</pre></div>
@ -409,18 +409,18 @@
<span class="k">return</span> <span class="p">[</span><span class="n">monthly_avg_cloudcover</span><span class="p">(</span><span class="n">city</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">month</span><span class="p">)</span> <span class="k">for</span> <span class="n">y</span> <span class="ow">in</span> <span class="n">years</span><span class="p">]</span>
<span class="n">months</span> <span class="o">=</span> <span class="p">[</span>
<span class="p">(</span><span class="s">&#39;July&#39;</span><span class="p">,</span> <span class="mi">7</span><span class="p">),</span>
<span class="p">(</span><span class="s">&#39;August&#39;</span><span class="p">,</span> <span class="mi">8</span><span class="p">),</span>
<span class="p">(</span><span class="s">&#39;September&#39;</span><span class="p">,</span> <span class="mi">9</span><span class="p">),</span>
<span class="p">(</span><span class="s">&#39;October&#39;</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span>
<span class="p">(</span><span class="s">&#39;November&#39;</span><span class="p">,</span> <span class="mi">11</span><span class="p">)</span>
<span class="p">(</span><span class="s1">&#39;July&#39;</span><span class="p">,</span> <span class="mi">7</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;August&#39;</span><span class="p">,</span> <span class="mi">8</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;September&#39;</span><span class="p">,</span> <span class="mi">9</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;October&#39;</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span>
<span class="p">(</span><span class="s1">&#39;November&#39;</span><span class="p">,</span> <span class="mi">11</span><span class="p">)</span>
<span class="p">]</span>
<span class="k">for</span> <span class="n">month</span><span class="p">,</span> <span class="n">month_id</span> <span class="ow">in</span> <span class="n">months</span><span class="p">:</span>
<span class="n">month_averages</span> <span class="o">=</span> <span class="p">{</span><span class="n">city</span><span class="p">:</span> <span class="n">city_avg_cc</span><span class="p">(</span><span class="n">city</span><span class="p">,</span> <span class="n">month_id</span><span class="p">)</span> <span class="k">for</span> <span class="n">city</span> <span class="ow">in</span> <span class="n">cities</span><span class="p">}</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">figure</span><span class="p">(</span><span class="n">title</span><span class="o">=</span><span class="s">&quot;{} Average Cloud Cover&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">month</span><span class="p">),</span>
<span class="n">x_axis_label</span><span class="o">=</span><span class="s">&#39;Year&#39;</span><span class="p">,</span>
<span class="n">y_axis_label</span><span class="o">=</span><span class="s">&#39;Cloud Cover Percentage&#39;</span><span class="p">)</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">figure</span><span class="p">(</span><span class="n">title</span><span class="o">=</span><span class="s2">&quot;{} Average Cloud Cover&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">month</span><span class="p">),</span>
<span class="n">x_axis_label</span><span class="o">=</span><span class="s1">&#39;Year&#39;</span><span class="p">,</span>
<span class="n">y_axis_label</span><span class="o">=</span><span class="s1">&#39;Cloud Cover Percentage&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">city</span> <span class="ow">in</span> <span class="n">cities</span><span class="p">:</span>
<span class="n">f</span><span class="o">.</span><span class="n">line</span><span class="p">(</span><span class="n">years</span><span class="p">,</span> <span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">month_averages</span><span class="p">[</span><span class="n">city</span><span class="p">]],</span>
<span class="n">legend</span><span class="o">=</span><span class="n">city</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">city_colors</span><span class="p">[</span><span class="n">city</span><span class="p">])</span>
@ -610,20 +610,20 @@
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span class="k">def</span> <span class="nf">safe_precip</span><span class="p">(</span><span class="n">frame</span><span class="p">):</span>
<span class="k">if</span> <span class="n">frame</span> <span class="ow">and</span> <span class="s">&#39;precipProbability&#39;</span> <span class="ow">in</span> <span class="n">frame</span><span class="p">:</span>
<span class="k">return</span> <span class="n">frame</span><span class="p">[</span><span class="s">&#39;precipProbability&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="n">frame</span> <span class="ow">and</span> <span class="s1">&#39;precipProbability&#39;</span> <span class="ow">in</span> <span class="n">frame</span><span class="p">:</span>
<span class="k">return</span> <span class="n">frame</span><span class="p">[</span><span class="s1">&#39;precipProbability&#39;</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">NaN</span>
<span class="k">def</span> <span class="nf">monthly_avg_precip</span><span class="p">(</span><span class="n">city</span><span class="p">,</span> <span class="n">year</span><span class="p">,</span> <span class="n">month</span><span class="p">):</span>
<span class="n">dates</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DatetimeIndex</span><span class="p">(</span><span class="n">start</span><span class="o">=</span><span class="n">datetime</span><span class="p">(</span><span class="n">year</span><span class="p">,</span> <span class="n">month</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">12</span><span class="p">),</span>
<span class="n">end</span><span class="o">=</span><span class="n">datetime</span><span class="p">(</span><span class="n">year</span><span class="p">,</span> <span class="n">month</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">12</span><span class="p">),</span>
<span class="n">freq</span><span class="o">=</span><span class="s">&#39;D&#39;</span><span class="p">,</span> <span class="n">closed</span><span class="o">=</span><span class="s">&#39;left&#39;</span><span class="p">)</span>
<span class="n">precip_vals</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">safe_precip</span><span class="p">(</span><span class="n">forecasts_df</span><span class="p">[</span><span class="n">city</span><span class="p">][</span><span class="n">x</span><span class="p">][</span><span class="s">&#39;currently&#39;</span><span class="p">]),</span> <span class="n">dates</span><span class="p">))</span>
<span class="n">freq</span><span class="o">=</span><span class="s1">&#39;D&#39;</span><span class="p">,</span> <span class="n">closed</span><span class="o">=</span><span class="s1">&#39;left&#39;</span><span class="p">)</span>
<span class="n">precip_vals</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">safe_precip</span><span class="p">(</span><span class="n">forecasts_df</span><span class="p">[</span><span class="n">city</span><span class="p">][</span><span class="n">x</span><span class="p">][</span><span class="s1">&#39;currently&#39;</span><span class="p">]),</span> <span class="n">dates</span><span class="p">))</span>
<span class="n">precip_samples</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span> <span class="ow">is</span> <span class="ow">not</span> <span class="n">np</span><span class="o">.</span><span class="n">NaN</span><span class="p">,</span> <span class="n">precip_vals</span><span class="p">)))</span>
<span class="c"># Ignore an issue with nanmean having all NaN values. We&#39;ll discuss the data issues below.</span>
<span class="c1"># Ignore an issue with nanmean having all NaN values. We&#39;ll discuss the data issues below.</span>
<span class="k">with</span> <span class="n">warnings</span><span class="o">.</span><span class="n">catch_warnings</span><span class="p">():</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">simplefilter</span><span class="p">(</span><span class="s">&#39;ignore&#39;</span><span class="p">)</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">simplefilter</span><span class="p">(</span><span class="s1">&#39;ignore&#39;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">precip_vals</span><span class="p">),</span> <span class="n">precip_samples</span>
<span class="k">def</span> <span class="nf">city_avg_precip</span><span class="p">(</span><span class="n">city</span><span class="p">,</span> <span class="n">month</span><span class="p">):</span>
@ -631,9 +631,9 @@
<span class="k">for</span> <span class="n">month</span><span class="p">,</span> <span class="n">month_id</span> <span class="ow">in</span> <span class="n">months</span><span class="p">:</span>
<span class="n">month_averages</span> <span class="o">=</span> <span class="p">{</span><span class="n">city</span><span class="p">:</span> <span class="n">city_avg_cc</span><span class="p">(</span><span class="n">city</span><span class="p">,</span> <span class="n">month_id</span><span class="p">)</span> <span class="k">for</span> <span class="n">city</span> <span class="ow">in</span> <span class="n">cities</span><span class="p">}</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">figure</span><span class="p">(</span><span class="n">title</span><span class="o">=</span><span class="s">&quot;{} Average Precipitation Chance&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">month</span><span class="p">),</span>
<span class="n">x_axis_label</span><span class="o">=</span><span class="s">&#39;Year&#39;</span><span class="p">,</span>
<span class="n">y_axis_label</span><span class="o">=</span><span class="s">&#39;Precipitation Chance Percentage&#39;</span><span class="p">)</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">figure</span><span class="p">(</span><span class="n">title</span><span class="o">=</span><span class="s2">&quot;{} Average Precipitation Chance&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">month</span><span class="p">),</span>
<span class="n">x_axis_label</span><span class="o">=</span><span class="s1">&#39;Year&#39;</span><span class="p">,</span>
<span class="n">y_axis_label</span><span class="o">=</span><span class="s1">&#39;Precipitation Chance Percentage&#39;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">city</span> <span class="ow">in</span> <span class="n">cities</span><span class="p">:</span>
<span class="n">f</span><span class="o">.</span><span class="n">line</span><span class="p">(</span><span class="n">years</span><span class="p">,</span> <span class="p">[</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">month_averages</span><span class="p">[</span><span class="n">city</span><span class="p">]],</span>
<span class="n">legend</span><span class="o">=</span><span class="n">city</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="n">city_colors</span><span class="p">[</span><span class="n">city</span><span class="p">])</span>