/* Apophysis Plugin This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ typedef struct { // expo_real represents the real part of the base (a) double expo_real; // expo_imaginary represents the imaginary part of the base (b) double expo_imaginary; double expo_k; double expo_t; } Variables; #include "apoplugin.h" // Set the name of this plugin APO_PLUGIN("expo"); // Define the Variables APO_VARIABLES( VAR_REAL(expo_real, -1.0), VAR_REAL(expo_imaginary, 1.0) ); // You must call the argument "vp". int PluginVarPrepare(Variation* vp) { double ereal = VAR(expo_real); double eimag = VAR(expo_imaginary); VAR(expo_k) = 0.5 * log(ereal * ereal + eimag * eimag + 1e-300); VAR(expo_t) = atan2(eimag,ereal); // Always return TRUE. return TRUE; } // You must call the argument "vp". int PluginVarCalc(Variation* vp) { double expor = exp(FTx * VAR(expo_k) - FTy * VAR(expo_t)); double snv, csv; fsincos(FTx * VAR(expo_t) + FTy * VAR(expo_k), &snv, &csv); FPx += VVAR * expor * csv; FPy += VVAR * expor * snv; return TRUE; } // Given the equation (a + ib)^z, or c^z, where c = a + ib... // We can rewrite it as e^(ln(c^z))... // Using the laws of Logs, we get e^(z * ln(c))... // The ln of a complex number is ln(r) + itheta, where // r is the radius and theta is the angle. Thus, we need // the radius and angle of our base number c. // k is what I've used to represent the radius of the number // c, or a + ib. t is used to represent the angle. // Thus, expok is the radius of c and expot is the angle. // Now we have e^(z * (ln(k) + it)), or e^((x + iy) * (ln(k) + it)) // Simplifying this down, we get... // e^(xln(k) - yt) * e^i(xt + yln(k)) // Because a Complex Number can be presented as // r * e^itheta, where r is the radius and theta is the angle, // We can say that r' = e^(xln(k) - yt) // And that theta' = xt + yln(k) // For optimization (as recommended by Joel) we calculate k, // the radius of our complex number, as the ln of k, // because we never need k to be on its own (it is always // logged before it is used). // That's the equation!