82 lines
2.5 KiB
C
82 lines
2.5 KiB
C
|
/*
|
||
|
Apophysis Plugin
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to the Free Software
|
||
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
double ffive;
|
||
|
double fnatlog;
|
||
|
} Variables;
|
||
|
|
||
|
#define _USE_MATH_DEFINES
|
||
|
#define APO_NOVARIABLES
|
||
|
#define APO_VIRTUALVAR
|
||
|
#include "apoplugin.h"
|
||
|
|
||
|
// Set the name of this plugin
|
||
|
APO_PLUGIN("fibonacci");
|
||
|
|
||
|
|
||
|
// You must call the argument "vp".
|
||
|
int PluginVarPrepare(Variation* vp)
|
||
|
{
|
||
|
// Updated to use the new constants. Still calculates
|
||
|
// invserse of root five and the nat log of the Golden Ratio.
|
||
|
// I'm not sure how many decimal places were appropriate,
|
||
|
// or how many C allows, and this isn't going to take
|
||
|
// up any noticeable amount of time.
|
||
|
VAR(ffive) = 1/M_SQRT5;
|
||
|
VAR(fnatlog) = log(M_PHI);
|
||
|
// Always return TRUE.
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
// p^z - (-p)^(-z)
|
||
|
// z' = -----------------
|
||
|
// sqrt(5)
|
||
|
//
|
||
|
// Where p is the Golden Ratio.
|
||
|
// This function generates the fibonacci sequence
|
||
|
// for real integer values.
|
||
|
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 < Real Value
|
||
|
// 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 < Fib Value
|
||
|
//
|
||
|
// Negative real integers produce the negative fibonacci sequence,
|
||
|
// which is the same as the normal one, except every
|
||
|
// other number is negative.
|
||
|
// 1 0 -1 -2 -3 -4 -5 -6 -7 -8 < Real Value
|
||
|
// 1 0 1 -1 3 -3 5 -8 13 -21 < Fib Value
|
||
|
|
||
|
// You must call the argument "vp".
|
||
|
int PluginVarCalc(Variation* vp)
|
||
|
{
|
||
|
|
||
|
double snum1, cnum1, snum2, cnum2;
|
||
|
|
||
|
fsincos(FTy * VAR(fnatlog), &snum1, &cnum1);
|
||
|
fsincos((FTx * M_PI + FTy * VAR(fnatlog)) * -1, &snum2, &cnum2);
|
||
|
|
||
|
double eradius1 = exp(FTx * VAR(fnatlog));
|
||
|
double eradius2 = exp((FTx * VAR(fnatlog) - FTy * M_PI) * -1);
|
||
|
|
||
|
FPx += VVAR * (eradius1 * cnum1 - eradius2 * cnum2) * VAR(ffive);
|
||
|
FPy += VVAR * (eradius1 * snum1 - eradius2 * snum2) * VAR(ffive);
|
||
|
|
||
|
return TRUE;
|
||
|
}
|
||
|
|