apophysis7x/Plugin/crackle.c

763 lines
62 KiB
C
Raw Normal View History

/*
Apophysis Plugin
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// "Crackle" variation is a type of blur - it is not affected by incoming data, simply
// generates a texture.
// These set cache size for cell centres, they take a lot of processing, so it's handy to
// keep values between calls
#define _USE_MATH_DEFINES
#define CACHE_NUM 10
#define CACHE_WIDTH 21
#define VORONOI_MAXPOINTS 25
// voronoi and noiseb are additional, not required in all Apophysis plugins
#define _x_ 0
#define _y_ 1
#define _z_ 2
double vratio( double P[2], double Q[2], double U[2] );
int closest( double P[VORONOI_MAXPOINTS][2], int n, double U[2] );
double voronoi( double P[VORONOI_MAXPOINTS][2], int n, int q, double U[2] );
double simplexNoise3D( double V[3] );
double perlinNoise3D( double V[3], double aScale, double fScale, int octaves );
// Must define this structure before we include apoplugin.h
typedef struct
{
double crackle_cellsize;
double crackle_power;
double crackle_distort;
double crackle_scale;
double crackle_z;
// P is a working list of points
double P[VORONOI_MAXPOINTS][2];
// C is a cache of pre-calculated centres
double C[CACHE_WIDTH][CACHE_WIDTH][2];
} Variables;
#include "apoplugin.h"
static int p[2050] = {
127, 71, 882, 898, 798, 463, 517, 451, 454, 634, 578, 695, 728, 742, 325, 350, 684, 153, 340,
311, 992, 706, 218, 285, 96, 486, 160, 98, 686, 288, 193, 119, 410, 246, 536, 415, 953, 417,
784, 573, 734, 1, 136, 381, 177, 678, 773, 22, 301, 51, 874, 844, 775, 744, 633, 468, 1019,
287, 475, 78, 294, 724, 519, 17, 323, 191, 187, 446, 262, 212, 170, 33, 7, 227, 566, 526, 264,
556, 717, 477, 815, 671, 225, 207, 692, 663, 969, 393, 658, 877, 353, 788, 128, 303, 614, 501,
490, 387, 53, 941, 951, 736, 539, 102, 163, 175, 584, 988, 35, 347, 442, 649, 642, 198, 727,
939, 913, 811, 894, 858, 181, 412, 307, 830, 154, 479, 704, 326, 681, 619, 698, 621, 552, 598,
74, 890, 299, 922, 701, 481, 867, 214, 817, 731, 768, 673, 315, 338, 576, 222, 484, 305, 623,
239, 269, 46, 748, 608, 546, 537, 125, 667, 998, 714, 529, 823, 247, 289, 771, 808, 973, 735,
516, 974, 702, 636, 357, 455, 600, 80, 336, 696, 963, 297, 92, 980, 670, 958, 625, 712, 406,
173, 19, 763, 470, 793, 283, 655, 59, 421, 1016, 219, 13, 105, 840, 111, 38, 408, 945, 242,
559, 206, 443, 331, 737, 580, 767, 1020, 220, 31, 968, 15, 527, 833, 139, 129, 859, 739, 418,
783, 933, 49, 789, 178, 124, 772, 627, 0, 23, 388, 950, 976, 940, 485, 685, 21, 523, 723, 244,
637, 488, 835, 379, 342, 452, 862, 295, 765, 897, 507, 370, 567, 416, 100, 914, 300, 120, 392,
694, 94, 265, 791, 171, 200, 787, 441, 868, 672, 769, 983, 911, 427, 82, 69, 224, 176, 920,
500, 462, 263, 513, 797, 293, 322, 645, 469, 635, 40, 215, 687, 960, 818, 826, 34, 603, 316,
994, 611, 511, 93, 899, 114, 73, 241, 585, 327, 674, 280, 957, 471, 24, 502, 355, 159, 1017,
855, 270, 538, 521, 162, 880, 334, 986, 740, 719, 266, 820, 97, 41, 52, 750, 893, 838, 616, 83,
896, 777, 464, 562, 183, 362, 411, 478, 398, 384, 912, 599, 587, 609, 822, 243, 504, 753, 857,
157, 964, 65, 261, 81, 371, 435, 924, 885, 884, 863, 613, 721, 669, 121, 639, 989, 487, 238,
448, 216, 852, 643, 713, 676, 277, 879, 133, 123, 304, 547, 396, 70, 141, 909, 848, 900, 318,
146, 356, 802, 4, 807, 558, 764, 545, 588, 872, 554, 467, 544, 505, 149, 62, 901, 64, 45, 813,
27, 109, 718, 803, 853, 996, 1014, 476, 575, 28, 199, 688, 6, 482, 703, 560, 395, 66, 341, 794,
422, 376, 601, 76, 14, 569, 480, 39, 1011, 1001, 854, 55, 89, 335, 761, 363, 419, 252, 799,
358, 324, 1012, 152, 312, 496, 235, 916, 582, 615, 979, 1005, 891, 1013, 641, 18, 148, 185,
512, 378, 58, 211, 495, 594, 87, 762, 366, 660, 449, 520, 424, 886, 819, 281, 147, 290, 390,
32, 572, 993, 720, 683, 309, 254, 607, 568, 256, 533, 394, 620, 429, 67, 831, 103, 423, 668,
693, 518, 551, 697, 253, 949, 54, 875, 116, 434, 743, 644, 590, 279, 843, 589, 11, 647, 586,
806, 549, 375, 226, 851, 499, 450, 978, 29, 982, 189, 107, 508, 373, 796, 20, 700, 110, 26,
461, 782, 591, 828, 57, 904, 847, 328, 122, 630, 711, 44, 397, 404, 209, 365, 84, 194, 1021,
675, 135, 965, 329, 557, 691, 79, 352, 498, 629, 869, 90, 921, 233, 622, 871, 755, 439, 955,
228, 63, 825, 43, 943, 438, 144, 961, 359, 330, 682, 626, 425, 259, 249, 801, 754, 1003, 230,
377, 217, 878, 1007, 313, 2, 915, 550, 271, 437, 846, 548, 145, 715, 346, 251, 372, 99, 543,
16, 47, 195, 679, 174, 905, 188, 804, 169, 785, 231, 726, 814, 339, 531, 420, 258, 1009, 134,
972, 458, 234, 690, 260, 666, 646, 142, 184, 91, 628, 987, 10, 210, 926, 348, 386, 161, 60,
409, 680, 204, 164, 444, 708, 276, 68, 383, 491, 382, 42, 816, 483, 699, 150, 9, 565, 555, 433,
593, 86, 952, 839, 618, 751, 889, 108, 361, 595, 677, 407, 856, 255, 604, 85, 648, 928, 824,
213, 192, 267, 902, 792, 656, 631, 403, 389, 493, 333, 756, 602, 925, 113, 632, 354, 37, 873,
577, 56, 278, 930, 367, 428, 332, 317, 530, 364, 800, 774, 497, 1023, 12, 137, 845, 653, 101,
888, 542, 167, 48, 158, 1002, 745, 292, 944, 456, 990, 574, 25, 1018, 937, 298, 966, 430, 400,
349, 860, 689, 320, 117, 778, 104, 314, 786, 205, 606, 440, 936, 457, 932, 934, 948, 168, 445,
931, 757, 291, 571, 919, 360, 284, 509, 296, 245, 836, 166, 3, 257, 50, 282, 151, 810, 344,
947, 236, 946, 865, 752, 77, 610, 967, 795, 131, 302, 760, 781, 190, 938, 61, 1022, 652, 138,
984, 832, 202, 140, 985, 5, 657, 997, 401, 319, 431, 662, 405, 275, 650, 651, 887, 310, 1004,
368, 208, 596, 248, 758, 8, 126, 730, 489, 343, 337, 506, 515, 432, 232, 250, 532, 954, 524,
115, 229, 522, 908, 729, 186, 561, 995, 156, 196, 118, 805, 399, 918, 991, 849, 273, 747, 640,
143, 321, 624, 268, 306, 30, 722, 540, 534, 710, 130, 155, 883, 716, 525, 426, 812, 345, 929,
975, 472, 837, 605, 664, 391, 581, 272, 746, 112, 659, 665, 780, 240, 841, 474, 563, 36, 579,
286, 436, 907, 369, 201, 402, 962, 106, 749, 172, 494, 88, 466, 473, 414, 597, 374, 942, 308,
766, 459, 821, 592, 881, 380, 759, 866, 779, 809, 876, 541, 829, 528, 999, 221, 661, 927, 413,
977, 182, 583, 733, 892, 741, 570, 351, 617, 956, 72, 709, 850, 732, 770, 870, 95, 935, 223,
179, 861, 917, 447, 385, 132, 827, 923, 75, 465, 612, 460, 725, 492, 553, 1008, 910, 981, 503,
165, 895, 834, 1000, 180, 638, 906, 510, 274, 776, 971, 564, 738, 903, 654, 864, 959, 1015,
453, 535, 237, 197, 1006, 790, 514, 842, 970, 705, 707, 1010, 203,
// 1k Block repeats here
127, 71, 882, 898, 798, 463, 517, 451, 454, 634, 578, 695, 728, 742, 325, 350, 684, 153, 340,
311, 992, 706, 218, 285, 96, 486, 160, 98, 686, 288, 193, 119, 410, 246, 536, 415, 953, 417,
784, 573, 734, 1, 136, 381, 177, 678, 773, 22, 301, 51, 874, 844, 775, 744, 633, 468, 1019,
287, 475, 78, 294, 724, 519, 17, 323, 191, 187, 446, 262, 212, 170, 33, 7, 227, 566, 526, 264,
556, 717, 477, 815, 671, 225, 207, 692, 663, 969, 393, 658, 877, 353, 788, 128, 303, 614, 501,
490, 387, 53, 941, 951, 736, 539, 102, 163, 175, 584, 988, 35, 347, 442, 649, 642, 198, 727,
939, 913, 811, 894, 858, 181, 412, 307, 830, 154, 479, 704, 326, 681, 619, 698, 621, 552, 598,
74, 890, 299, 922, 701, 481, 867, 214, 817, 731, 768, 673, 315, 338, 576, 222, 484, 305, 623,
239, 269, 46, 748, 608, 546, 537, 125, 667, 998, 714, 529, 823, 247, 289, 771, 808, 973, 735,
516, 974, 702, 636, 357, 455, 600, 80, 336, 696, 963, 297, 92, 980, 670, 958, 625, 712, 406,
173, 19, 763, 470, 793, 283, 655, 59, 421, 1016, 219, 13, 105, 840, 111, 38, 408, 945, 242,
559, 206, 443, 331, 737, 580, 767, 1020, 220, 31, 968, 15, 527, 833, 139, 129, 859, 739, 418,
783, 933, 49, 789, 178, 124, 772, 627, 0, 23, 388, 950, 976, 940, 485, 685, 21, 523, 723, 244,
637, 488, 835, 379, 342, 452, 862, 295, 765, 897, 507, 370, 567, 416, 100, 914, 300, 120, 392,
694, 94, 265, 791, 171, 200, 787, 441, 868, 672, 769, 983, 911, 427, 82, 69, 224, 176, 920,
500, 462, 263, 513, 797, 293, 322, 645, 469, 635, 40, 215, 687, 960, 818, 826, 34, 603, 316,
994, 611, 511, 93, 899, 114, 73, 241, 585, 327, 674, 280, 957, 471, 24, 502, 355, 159, 1017,
855, 270, 538, 521, 162, 880, 334, 986, 740, 719, 266, 820, 97, 41, 52, 750, 893, 838, 616, 83,
896, 777, 464, 562, 183, 362, 411, 478, 398, 384, 912, 599, 587, 609, 822, 243, 504, 753, 857,
157, 964, 65, 261, 81, 371, 435, 924, 885, 884, 863, 613, 721, 669, 121, 639, 989, 487, 238,
448, 216, 852, 643, 713, 676, 277, 879, 133, 123, 304, 547, 396, 70, 141, 909, 848, 900, 318,
146, 356, 802, 4, 807, 558, 764, 545, 588, 872, 554, 467, 544, 505, 149, 62, 901, 64, 45, 813,
27, 109, 718, 803, 853, 996, 1014, 476, 575, 28, 199, 688, 6, 482, 703, 560, 395, 66, 341, 794,
422, 376, 601, 76, 14, 569, 480, 39, 1011, 1001, 854, 55, 89, 335, 761, 363, 419, 252, 799,
358, 324, 1012, 152, 312, 496, 235, 916, 582, 615, 979, 1005, 891, 1013, 641, 18, 148, 185,
512, 378, 58, 211, 495, 594, 87, 762, 366, 660, 449, 520, 424, 886, 819, 281, 147, 290, 390,
32, 572, 993, 720, 683, 309, 254, 607, 568, 256, 533, 394, 620, 429, 67, 831, 103, 423, 668,
693, 518, 551, 697, 253, 949, 54, 875, 116, 434, 743, 644, 590, 279, 843, 589, 11, 647, 586,
806, 549, 375, 226, 851, 499, 450, 978, 29, 982, 189, 107, 508, 373, 796, 20, 700, 110, 26,
461, 782, 591, 828, 57, 904, 847, 328, 122, 630, 711, 44, 397, 404, 209, 365, 84, 194, 1021,
675, 135, 965, 329, 557, 691, 79, 352, 498, 629, 869, 90, 921, 233, 622, 871, 755, 439, 955,
228, 63, 825, 43, 943, 438, 144, 961, 359, 330, 682, 626, 425, 259, 249, 801, 754, 1003, 230,
377, 217, 878, 1007, 313, 2, 915, 550, 271, 437, 846, 548, 145, 715, 346, 251, 372, 99, 543,
16, 47, 195, 679, 174, 905, 188, 804, 169, 785, 231, 726, 814, 339, 531, 420, 258, 1009, 134,
972, 458, 234, 690, 260, 666, 646, 142, 184, 91, 628, 987, 10, 210, 926, 348, 386, 161, 60,
409, 680, 204, 164, 444, 708, 276, 68, 383, 491, 382, 42, 816, 483, 699, 150, 9, 565, 555, 433,
593, 86, 952, 839, 618, 751, 889, 108, 361, 595, 677, 407, 856, 255, 604, 85, 648, 928, 824,
213, 192, 267, 902, 792, 656, 631, 403, 389, 493, 333, 756, 602, 925, 113, 632, 354, 37, 873,
577, 56, 278, 930, 367, 428, 332, 317, 530, 364, 800, 774, 497, 1023, 12, 137, 845, 653, 101,
888, 542, 167, 48, 158, 1002, 745, 292, 944, 456, 990, 574, 25, 1018, 937, 298, 966, 430, 400,
349, 860, 689, 320, 117, 778, 104, 314, 786, 205, 606, 440, 936, 457, 932, 934, 948, 168, 445,
931, 757, 291, 571, 919, 360, 284, 509, 296, 245, 836, 166, 3, 257, 50, 282, 151, 810, 344,
947, 236, 946, 865, 752, 77, 610, 967, 795, 131, 302, 760, 781, 190, 938, 61, 1022, 652, 138,
984, 832, 202, 140, 985, 5, 657, 997, 401, 319, 431, 662, 405, 275, 650, 651, 887, 310, 1004,
368, 208, 596, 248, 758, 8, 126, 730, 489, 343, 337, 506, 515, 432, 232, 250, 532, 954, 524,
115, 229, 522, 908, 729, 186, 561, 995, 156, 196, 118, 805, 399, 918, 991, 849, 273, 747, 640,
143, 321, 624, 268, 306, 30, 722, 540, 534, 710, 130, 155, 883, 716, 525, 426, 812, 345, 929,
975, 472, 837, 605, 664, 391, 581, 272, 746, 112, 659, 665, 780, 240, 841, 474, 563, 36, 579,
286, 436, 907, 369, 201, 402, 962, 106, 749, 172, 494, 88, 466, 473, 414, 597, 374, 942, 308,
766, 459, 821, 592, 881, 380, 759, 866, 779, 809, 876, 541, 829, 528, 999, 221, 661, 927, 413,
977, 182, 583, 733, 892, 741, 570, 351, 617, 956, 72, 709, 850, 732, 770, 870, 95, 935, 223,
179, 861, 917, 447, 385, 132, 827, 923, 75, 465, 612, 460, 725, 492, 553, 1008, 910, 981, 503,
165, 895, 834, 1000, 180, 638, 906, 510, 274, 776, 971, 564, 738, 903, 654, 864, 959, 1015,
453, 535, 237, 197, 1006, 790, 514, 842, 970, 705, 707, 1010, 203,
// 2k block overlaps by two items here . . . (to allow for over-runs caused by taking
// "next item in sequence")
127, 71
};
// grad[][] contains gradient values that will be associated with grid points for
// the simplex code to interpolate. They are chosen using the hash codes
// from p[], above
static double grad3[1024][3] = {
{0.79148875, 0.11986299, -0.59931496}, {0.51387411, -0.61170974, 0.60145208}, {-0.95395128, -0.21599571, 0.20814132}, {0.59830026, 0.67281067, 0.43515813},
{-0.93971346, 0.16019818, -0.30211777}, {-0.74549699, -0.35758846, 0.56246309}, {-0.78850321, -0.29060783, 0.54204223}, {0.61332339, 0.38915256, 0.68730976},
{-0.64370632, -0.40843865, 0.64716307}, {-0.23922684, 0.70399949, -0.66869667}, {-0.82882802, -0.00130741, 0.55950192}, {0.07987672, 0.62439350, -0.77701510},
{-0.46863456, -0.57517073, 0.67049257}, {0.30792870, 0.42464616, -0.85138449}, {-0.06972001, 0.30439513, 0.94999091}, {0.58798450, -0.00151777, 0.80887077},
{-0.32757867, 0.51578941, 0.79161449}, {-0.44745031, 0.86883688, 0.21192142}, {-0.38042636, 0.71222019, 0.58993066}, {-0.32616370, 0.61421101, -0.71858339},
{0.45483340, 0.19928843, -0.86799234}, {-0.81020233, -0.05930352, 0.58314259}, {0.81994145, 0.39825895, 0.41120046}, {0.49257662, 0.74240487, 0.45409612},
{0.95124863, -0.26667257, -0.15495734}, {-0.95745656, 0.09203090, -0.27350914}, {0.20842499, -0.82482150, -0.52557446}, {0.46829293, -0.47740985, -0.74349282},
{-0.65000311, -0.74754355, 0.13665502}, {0.83566743, 0.53294928, -0.13275921}, {0.90454761, -0.35449497, -0.23691126}, {-0.64270969, 0.21532175, 0.73522839},
{-0.39693478, -0.17553935, -0.90090439}, {0.45073049, 0.65155528, 0.61017845}, {0.69618384, -0.07989842, 0.71340333}, {0.09059934, 0.85274641, -0.51440773},
{-0.00560267, 0.69197466, 0.72190005}, {0.23586856, -0.95830502, 0.16129945}, {0.20354340, -0.96925430, -0.13826128}, {-0.45516395, 0.63885905, 0.62022970},
{0.80792021, 0.47917579, 0.34300946}, {0.40886670, -0.32579857, -0.85245722}, {-0.83819701, -0.30910810, 0.44930831}, {-0.57602641, -0.75801200, 0.30595978},
{-0.16591524, -0.96579983, -0.19925569}, {0.27174061, 0.93638167, -0.22214053}, {-0.45758922, 0.73185326, -0.50497812}, {-0.18029934, -0.78067110, -0.59836843},
{0.14087163, -0.39189764, -0.90915974}, {-0.03534787, -0.02750024, 0.99899663}, {0.91016878, 0.06772570, 0.40866370}, {0.70142578, 0.70903193, 0.07263332},
{-0.49486157, -0.54111502, -0.67993129}, {-0.26972486, -0.84418773, -0.46324462}, {0.91931005, 0.03121901, 0.39229378}, {-0.15332070, -0.87495538, 0.45928842},
{-0.59010107, -0.66883868, 0.45214549}, {0.51964273, -0.78565398, -0.33573688}, {-0.25845001, 0.87348329, -0.41259003}, {-0.64741807, -0.59846669, 0.47189773},
{-0.79348688, -0.32782128, -0.51274923}, {-0.86280237, -0.14342378, -0.48476972}, {0.19469709, -0.76349966, 0.61576076}, {0.39371236, -0.70742193, -0.58697938},
{0.62103834, -0.50000004, -0.60358209}, {-0.19652824, -0.51508695, 0.83430335}, {-0.96016549, -0.26826630, -0.07820118}, {0.52655683, 0.84118729, 0.12305219},
{0.56222101, 0.70557745, -0.43135599}, {0.06395307, 0.99025162, -0.12374061}, {-0.65379289, 0.52521996, 0.54470070}, {0.81206590, -0.38643765, 0.43728128},
{-0.69449067, -0.71926243, -0.01855435}, {0.33968533, 0.75504287, 0.56082452}, {-0.52402654, -0.70537870, -0.47732282}, {-0.65379327, -0.46369816, 0.59794512},
{-0.08582021, -0.01217948, 0.99623619}, {-0.66287577, 0.49604924, 0.56083051}, {0.70911302, 0.68748287, -0.15660789}, {-0.58662137, -0.46475685, 0.66323181},
{-0.76681755, 0.63310950, -0.10565607}, {0.68601816, -0.59353001, 0.42083395}, {0.64792478, -0.72668696, 0.22829704}, {0.68756542, -0.69062543, 0.22425499},
{-0.46901797, -0.72307343, -0.50713604}, {-0.71418521, -0.11738817, 0.69004312}, {0.50880449, -0.80611081, 0.30216445}, {0.27793962, -0.58372922, -0.76289565},
{-0.39417207, 0.91575060, -0.07764800}, {-0.84724113, -0.47860304, 0.23048124}, {0.67628991, 0.54362408, -0.49709638}, {0.65073821, -0.09420630, 0.75343544},
{0.66910202, 0.73566783, -0.10533437}, {0.72191995, -0.00305613, 0.69196983}, {-0.00313125, 0.06634333, 0.99779194}, {-0.06908811, 0.28990653, -0.95455803},
{0.17507626, 0.73870621, 0.65089280}, {-0.57470594, 0.75735703, 0.31003777}, {-0.91870733, 0.08883536, 0.38481830}, {-0.27399536, 0.39846316, 0.87530203},
{0.99772699, -0.05473919, 0.03929993}, {0.22663907, 0.97393801, -0.00891541}, {0.62338001, 0.59656797, -0.50547405}, {0.59177247, 0.49473684, -0.63642816},
{-0.24457664, -0.31345545, 0.91756632}, {-0.44691491, -0.89198404, -0.06805539}, {-0.83115967, -0.44685014, 0.33090566}, {-0.39940345, 0.67719937, -0.61796270},
{0.55460272, -0.63265953, -0.54051619}, {0.82284412, 0.14794174, -0.54867185}, {-0.39887172, -0.82890906, -0.39218761}, {0.28591109, 0.71270085, 0.64055628},
{-0.15438831, 0.66966606, 0.72643762}, {-0.75134796, 0.54289699, 0.37515211}, {0.32016243, 0.77691605, -0.54212311}, {0.50884942, 0.15171482, -0.84738119},
{0.08945627, 0.73684807, 0.67011379}, {-0.68792851, -0.71885270, -0.10002580}, {0.02292266, -0.07249674, 0.99710520}, {0.94083723, -0.10191422, 0.32316993},
{-0.81053204, 0.43703808, 0.38991733}, {-0.19558496, -0.07485841, 0.97782552}, {0.68911052, -0.49915226, -0.52533200}, {0.19796974, 0.93342057, 0.29922235},
{-0.79540501, -0.26473293, 0.54520395}, {-0.27945416, -0.91288360, 0.29757168}, {0.82074194, 0.43648314, 0.36859889}, {-0.20594999, -0.70696486, -0.67659832},
{-0.05687654, -0.70968577, 0.70221874}, {-0.26280466, 0.69993747, -0.66409430}, {-0.54551347, -0.78469719, 0.29438983}, {0.90609571, 0.39319111, 0.15617717},
{0.69129692, 0.67317351, 0.26257571}, {0.98391565, -0.05206160, 0.17087883}, {0.63806303, 0.67740288, -0.36606134}, {-0.50096077, 0.83542684, -0.22605378},
{0.65237128, 0.35509583, 0.66956603}, {-0.85711882, -0.19885856, 0.47518691}, {0.79383271, -0.12451513, 0.59525256}, {-0.63301076, 0.07907192, 0.77009416},
{0.57925311, -0.49077742, 0.65084818}, {0.14070842, 0.97298117, 0.18305403}, {-0.59601232, 0.69646383, -0.39963413}, {-0.68205637, -0.47455943, 0.55641033},
{0.47997775, -0.84805982, -0.22453484}, {0.83562547, -0.48273957, 0.26209270}, {0.59180830, 0.36411758, 0.71915320}, {0.66057023, -0.66033264, 0.35722231},
{0.53319130, 0.75511965, 0.38144639}, {-0.21631797, -0.12712992, 0.96801060}, {-0.23971441, 0.89928294, -0.36582400}, {-0.72825564, 0.27377922, -0.62824252},
{0.02135570, 0.73882696, 0.67355672}, {0.48112026, 0.78759215, 0.38499597}, {-0.58250985, -0.09956878, 0.80670213}, {0.21323385, 0.36856735, 0.90481459},
{-0.36459960, -0.93062781, -0.03160697}, {-0.68684541, 0.17314748, -0.70587771}, {0.68032531, -0.07909205, -0.72863017}, {0.25007484, -0.61882132, 0.74466284},
{0.77055613, 0.59380162, 0.23160935}, {0.67996118, -0.03835970, 0.73224403}, {0.43079959, 0.38901749, -0.81429547}, {0.76815116, -0.63831184, 0.05001794},
{-0.13601015, 0.75596033, -0.64033211}, {0.36884321, -0.45188838, -0.81225093}, {0.79562623, -0.43647179, 0.42008485}, {-0.65875496, 0.39126701, -0.64261344},
{-0.68899899, 0.44217527, 0.57424858}, {0.25292617, 0.96620732, -0.04971687}, {-0.68558843, -0.70460233, 0.18304118}, {0.86382379, 0.29507865, 0.40833448},
{0.13627838, 0.31500179, 0.93925613}, {0.67187940, 0.64336667, 0.36695693}, {0.37977583, 0.31123423, 0.87115072}, {-0.03326050, -0.99451574, -0.09915731},
{-0.66427749, -0.01424397, -0.74735033}, {0.68859558, 0.44744486, -0.57063931}, {-0.56738045, 0.30154774, -0.76625608}, {-0.58488004, 0.63357146, 0.50646080},
{0.38842469, 0.92016339, 0.04925032}, {0.15316057, -0.97495961, -0.16123153}, {0.57623375, 0.51659393, 0.63331301}, {0.32392581, -0.79816566, -0.50794059},
{0.73136440, -0.54179646, 0.41420129}, {-0.58929886, -0.58690534, -0.55521975}, {0.64030162, 0.32487137, -0.69604054}, {0.80502987, -0.00635101, 0.59320028},
{0.46595373, 0.62005710, -0.63120227}, {0.83612498, 0.53677947, 0.11297261}, {-0.60753284, -0.29028728, -0.73934913}, {-0.45583848, 0.84488003, 0.27998037},
{-0.27320563, -0.39709327, 0.87617100}, {0.84893256, -0.09000823, 0.52078021}, {-0.35708766, -0.73203774, 0.58018027}, {0.10507148, -0.71032871, 0.69598355},
{0.68468508, 0.26788814, -0.67782172}, {-0.94602428, -0.13594737, -0.29420466}, {0.27104088, 0.95431757, 0.12575696}, {-0.55840113, 0.14909310, 0.81606337},
{0.47553129, 0.80729730, 0.34948685}, {-0.01891509, -0.97526220, 0.22024047}, {-0.65760518, -0.45924250, -0.59720327}, {-0.70549425, 0.70862555, 0.01129989},
{-0.88864223, 0.43707946, -0.13883994}, {0.49252849, -0.43814774, 0.75195894}, {-0.01398277, 0.69598571, 0.71791947}, {-0.67265622, 0.27228276, -0.68803758},
{-0.91724038, -0.01083918, -0.39818663}, {-0.24468025, 0.75690032, 0.60599792}, {-0.49070434, -0.48530058, 0.72366608}, {0.67110346, -0.55453760, -0.49204492},
{-0.95532877, -0.26328211, -0.13427388}, {-0.66012945, 0.41730904, 0.62456567}, {0.96822786, -0.03273592, 0.24791766}, {0.91952853, 0.23575545, -0.31446248},
{0.63712542, 0.06762652, 0.76778763}, {-0.21680947, 0.65843559, 0.72073312}, {0.06143588, 0.47272235, -0.87906724}, {0.70541616, -0.21884659, 0.67416186},
{-0.04396589, -0.67487644, -0.73661984}, {-0.65032618, 0.75012744, 0.11993615}, {-0.78840054, 0.58187068, -0.19962741}, {0.99318416, 0.11467779, 0.02083796},
{0.76775820, 0.46845611, -0.43714554}, {-0.70891635, -0.54302381, -0.45006972}, {0.55548849, -0.71825576, -0.41897638}, {-0.62167600, 0.77500231, 0.11353575},
{0.38413022, -0.79687865, 0.46629218}, {-0.56271512, 0.54186596, -0.62428597}, {0.62019121, -0.70563211, -0.34270424}, {0.85913131, 0.50529005, 0.08108862},
{0.54973106, -0.66129569, -0.51037612}, {-0.74254469, -0.49670185, -0.44934914}, {-0.75780366, 0.59195518, -0.27444976}, {-0.40050287, 0.04302113, -0.91528500},
{-0.60859484, 0.35063171, 0.71180736}, {-0.57297537, 0.81938865, -0.01736289}, {0.98721933, 0.09373543, -0.12888621}, {0.30397213, 0.87942861, 0.36634172},
{0.32615126, -0.64515144, -0.69094498}, {0.83015604, 0.30783918, 0.46483974}, {0.42822875, -0.04288671, -0.90265213}, {0.16585965, 0.53714643, 0.82702133},
{-0.37193298, 0.88497229, 0.28016051}, {0.73544877, 0.67744273, 0.01365471}, {-0.66150496, 0.09327263, -0.74411787}, {0.41664753, -0.23786298, -0.87739731},
{-0.78513086, -0.42653313, 0.44904233}, {0.08029855, 0.84803303, 0.52382451}, {-0.09507221, 0.50524394, -0.85772364}, {0.66939507, -0.17805679, 0.72125309},
{-0.76923153, 0.41652205, -0.48455364}, {0.51989556, 0.79632686, 0.30914743}, {0.85617969, -0.51024476, 0.08128121}, {0.71830013, 0.03208003, 0.69499337},
{-0.96000528, -0.11640072, -0.25463844}, {0.66084196, -0.19355993, 0.72513617}, {-0.57661819, -0.54757438, 0.60636109}, {0.65123443, -0.64818909, -0.39464494},
{0.36952748, -0.22540306, -0.90146708}, {0.34048182, -0.33515083, 0.87849078}, {0.11132435, -0.75280467, 0.64876191}, {0.67563520, 0.64934616, -0.34909404},
{0.23316576, 0.69276343, -0.68243135}, {0.30368064, -0.87532007, 0.37628825}, {-0.27080673, -0.74246398, 0.61270789}, {-0.21655683, -0.49565083, -0.84109060},
{-0.98776592, -0.14473189, 0.05806181}, {0.64562720, 0.38598860, 0.65892209}, {-0.63746045, -0.57205546, 0.51613635}, {0.06117405, -0.78423981, -0.61743474},
{0.74829362, 0.59119862, 0.30090006}, {-0.42571462, 0.51302568, -0.74536683}, {-0.56331794, 0.48608227, -0.66812943}, {-0.75919788, -0.64885422, 0.05105673},
{0.14385006, -0.53933953, 0.82971081}, {-0.77031548, -0.28344830, 0.57120148}, {-0.98358057, 0.17900745, 0.02292584}, {-0.25051205, 0.10358351, 0.96255606},
{-0.32867861, -0.83176115, -0.44737430}, {-0.36281449, -0.92995082, -0.05964161}, {-0.53796595, -0.03614791, 0.84219117}, {0.92960703, 0.10461247, 0.35339354},
{0.64021850, 0.61360003, 0.46218532}, {0.22343529, 0.69409296, 0.68433299}, {0.01781074, 0.89088149, 0.45388648}, {-0.63004672, -0.26934609, 0.72835007},
{0.48560056, -0.35192051, -0.80021500}, {0.62050161, 0.57366872, 0.53467931}, {0.00265452, 0.71539198, -0.69871830}, {0.64229521, 0.41380752, 0.64515130},
{0.23080049, -0.43573115, 0.86998247}, {0.14620517, 0.61171896, -0.77744708}, {-0.27436021, -0.61900378, 0.73590814}, {0.69959023, 0.71050058, 0.07591065},
{0.70362024, 0.62044755, -0.34635731}, {-0.29622242, -0.71700405, -0.63099721}, {0.31094340, -0.84299864, -0.43893905}, {0.07704196, -0.46344069, -0.88277248},
{-0.94533514, -0.04418570, 0.32309301}, {0.65845027, -0.36172634, -0.65999795}, {0.76069300, -0.18013255, 0.62361721}, {0.18607691, -0.45751624, -0.86951382},
{-0.67626808, -0.39178398, -0.62383235}, {-0.58782719, 0.55645189, -0.58721418}, {0.37531624, 0.80640206, 0.45700485}, {0.32610790, -0.50457786, 0.79940905},
{0.62915643, 0.76094546, -0.15850616}, {0.62803678, -0.75273385, -0.19738681}, {0.42539119, -0.89094420, 0.15893638}, {0.17668676, -0.40626331, 0.89651096},
{0.02778178, -0.78957083, -0.61303024}, {-0.25950053, -0.16244258, 0.95198313}, {-0.44117714, 0.73727502, -0.51165249}, {-0.30827444, 0.94136275, 0.13712420},
{0.97572111, -0.04258044, -0.21483768}, {0.55607688, 0.60474525, -0.57014181}, {-0.67430479, 0.12532345, 0.72774109}, {-0.31325824, -0.81393777, -0.48925921},
{-0.34811982, -0.70956566, 0.61264114}, {0.22583632, 0.72502572, -0.65064250}, {0.76936493, 0.63742123, -0.04209247}, {-0.55303394, -0.38417341, -0.73929984},
{-0.20953448, -0.92686077, -0.31148742}, {-0.18786352, 0.39920999, 0.89740664}, {0.46307517, -0.88470611, 0.05344618}, {-0.70328479, 0.30353783, 0.64284935},
{0.85916171, 0.15710234, 0.48699077}, {-0.26398391, 0.42122173, 0.86768932}, {0.82468427, 0.55134621, 0.12614757}, {0.05993298, 0.63414584, 0.77088721},
{-0.57291678, 0.81909656, -0.02910645}, {0.64075141, 0.74416542, -0.18882655}, {0.67112660, -0.55747979, -0.48867716}, {0.89932863, 0.23426637, -0.36922525},
{0.59146340, -0.44386974, 0.67316469}, {0.46684506, 0.19781570, -0.86193076}, {0.18536399, 0.76259887, 0.61974443}, {0.84144446, -0.53500771, -0.07574940},
{0.31212800, 0.82898453, -0.46406977}, {-0.88440729, -0.27020677, -0.38054178}, {0.20051055, 0.77523319, 0.59900670}, {0.48749115, 0.44082691, -0.75367368},
{0.24971103, -0.88242146, 0.39871892}, {-0.29777449, -0.95158243, -0.07629705}, {-0.37776905, -0.58777023, 0.71541366}, {0.22179317, 0.14730715, -0.96390269},
{0.58348153, 0.68630504, 0.43420582}, {-0.96759942, 0.14572096, 0.20619593}, {-0.15181654, 0.47495708, 0.86681458}, {0.26580537, 0.74350537, -0.61363447},
{-0.39189499, 0.72950601, 0.56057051}, {-0.01888074, 0.73557245, -0.67718290}, {0.73486517, 0.20569655, -0.64626783}, {-0.26354754, -0.23595215, -0.93534447},
{-0.62584298, -0.65116585, 0.42930594}, {-0.66666701, 0.61406968, 0.42246127}, {0.71799877, 0.67101619, 0.18497305}, {0.80098282, -0.45681211, -0.38697444},
{0.13205975, 0.91574792, -0.37942847}, {0.68891728, 0.72389791, -0.03694308}, {0.50346408, 0.46323331, -0.72934136}, {0.84557323, 0.53378861, -0.00869685},
{0.08666773, -0.81879883, 0.56750082}, {-0.50044423, 0.65858460, -0.56198033}, {0.35669785, 0.32248792, -0.87679427}, {-0.97346629, -0.22237373, -0.05397509},
{-0.53358835, -0.29312069, -0.79332448}, {0.12615748, 0.47083230, 0.87315591}, {-0.97022570, 0.19065350, 0.14937651}, {-0.57777643, 0.36008023, 0.73247295},
{0.60132454, 0.72398065, 0.33802488}, {0.19047827, -0.94729649, -0.25757988}, {-0.45904437, 0.69100108, 0.55838676}, {0.39148612, -0.51878308, 0.76000180},
{0.04137949, -0.75662546, -0.65253786}, {0.20020542, -0.76439245, -0.61288006}, {0.07933739, -0.21074410, 0.97431643}, {-0.40807425, 0.80614533, 0.42849166},
{-0.95397962, -0.09342040, -0.28494828}, {-0.31365384, 0.14377778, -0.93858895}, {0.84618575, -0.39191761, 0.36106822}, {-0.90177404, 0.07825801, -0.42506385},
{-0.19689944, -0.97296956, 0.12066831}, {0.61145370, 0.51715369, -0.59889601}, {-0.57329050, -0.80450317, -0.15528251}, {-0.27749150, -0.76245284, 0.58452044},
{-0.74877628, 0.66124357, 0.04572758}, {0.60284514, 0.58208119, 0.54567318}, {0.17695878, -0.67360184, 0.71759748}, {-0.83953853, 0.41240184, 0.35369447},
{0.37802442, -0.60322405, 0.70229501}, {0.51050450, -0.42970396, 0.74480847}, {-0.48366785, -0.20902730, -0.84992529}, {-0.87971286, -0.14820690, -0.45181855},
{-0.11520437, -0.59044778, -0.79881123}, {0.38877393, 0.92116844, -0.01742240}, {0.94330646, -0.27385756, -0.18754989}, {-0.66585548, 0.46928680, -0.58000550},
{0.20659390, -0.97226278, -0.10965425}, {0.70114934, 0.70875543, -0.07781609}, {0.50683262, 0.81003447, 0.29489803}, {-0.75501572, 0.56485827, -0.33299610},
{-0.43930454, -0.48824131, 0.75407688}, {-0.43442626, 0.51174617, 0.74120826}, {-0.97139119, -0.22722375, 0.06905442}, {-0.27189670, 0.51890879, -0.81043559},
{0.34109465, 0.91412005, -0.21917797}, {0.23216825, -0.66497033, 0.70986785}, {0.87281521, 0.48669099, 0.03640737}, {-0.60266004, -0.34235001, -0.72083101},
{-0.01994494, -0.52747354, 0.84933731}, {-0.27000504, -0.77679344, -0.56893693}, {-0.12330809, 0.85744248, -0.49958734}, {-0.69270982, 0.61145042, -0.38246763},
{-0.60277814, 0.55015465, 0.57791727}, {0.64946165, -0.22132925, -0.72747023}, {0.24257305, 0.26557728, 0.93307397}, {-0.66814908, 0.64881591, -0.36416303},
{-0.74538727, -0.44634982, -0.49514609}, {0.25115903, 0.38535072, -0.88793241}, {-0.61584597, -0.69782826, -0.36574509}, {0.13745929, 0.92666227, 0.34985995},
{-0.50342245, -0.82980249, -0.24081874}, {0.11249648, 0.99333196, -0.02522230}, {0.83241096, 0.21922825, -0.50895085}, {0.50175590, 0.86108612, 0.08229039},
{-0.35527286, -0.56925625, -0.74143679}, {0.31441654, -0.91653449, 0.24719782}, {0.62936968, 0.70222610, 0.33282475}, {0.77755375, -0.56236234, -0.28135169},
{-0.80098254, -0.37712493, 0.46497715}, {0.59310190, -0.68181911, -0.42819720}, {0.15392285, -0.98282954, 0.10175390}, {-0.96618662, 0.25781497, 0.00385483},
{0.33750940, -0.86020836, 0.38226820}, {-0.09597976, -0.40348179, -0.90993974}, {-0.70910783, 0.60681107, -0.35909108}, {0.41726791, -0.90380775, 0.09496860},
{-0.03646000, 0.99581799, -0.08376873}, {0.35348135, -0.70899268, 0.61022972}, {0.66002017, 0.74115740, -0.12271547}, {0.18515044, 0.96534454, -0.18392727},
{-0.29364182, -0.88826809, -0.35320572}, {0.99692330, 0.02436644, -0.07449968}, {-0.13529570, 0.35908874, 0.92344483}, {-0.76888326, -0.29702475, 0.56621095},
{-0.31931644, 0.72859881, 0.60595444}, {0.52827199, -0.82385659, 0.20539968}, {-0.83281688, -0.27413556, 0.48090097}, {-0.76899198, 0.23377782, 0.59497837},
{-0.60599231, 0.54438401, -0.58001670}, {-0.59616975, -0.18605791, 0.78100198}, {-0.83753036, 0.32458912, -0.43952794}, {0.62016934, 0.71285793, 0.32745011},
{-0.62489231, 0.01790151, 0.78050570}, {-0.44050813, -0.31396367, 0.84105850}, {0.82831903, 0.51349534, 0.22407615}, {-0.54638365, -0.42878084, -0.71945250},
{-0.30690837, -0.54588407, -0.77962673}, {-0.51419246, 0.49668914, 0.69921814}, {0.12759508, 0.79794754, 0.58906640}, {0.59812622, 0.53597438, 0.59579904},
{0.75450428, 0.31026344, 0.57832507}, {-0.34806954, -0.09710281, 0.93242621}, {-0.40140375, -0.85287390, 0.33388792}, {0.57290191, 0.32347021, -0.75309390},
{-0.53362688, -0.81285892, 0.23345818}, {-0.74679447, 0.64927639, 0.14400758}, {-0.80251380, -0.59638095, 0.01736004}, {-0.56868668, 0.61763086, -0.54325646},
{-0.72976559, 0.04179896, -0.68241852}, {0.57244144, -0.09255805, -0.81470474}, {0.97741613, 0.07186077, -0.19873032}, {0.72298477, 0.06613486, 0.68769121},
{-0.42596585, -0.65375247, -0.62542850}, {0.64840687, 0.16136696, -0.74399545}, {0.34352050, -0.92950264, 0.13423304}, {0.74687236, 0.45351768, -0.48631613},
{-0.51873425, -0.73762481, -0.43223191}, {0.29790392, 0.44209023, 0.84605525}, {-0.67740274, 0.46717430, -0.56821977}, {-0.36224935, -0.42773177, 0.82814307},
{-0.44192484, 0.73919980, 0.50821855}, {-0.92680658, -0.18163204, -0.32869343}, {-0.71384582, -0.70014113, 0.01505111}, {0.70600729, -0.70152253, 0.09705589},
{0.90031692, -0.36943663, 0.23010002}, {0.25264659, -0.65121757, -0.71560141}, {0.96727807, 0.19056552, 0.16750499}, {-0.65770755, -0.65887301, 0.36511251},
{0.05208955, -0.10417910, 0.99319353}, {-0.65282932, -0.40832320, 0.63803294}, {-0.00628739, -0.99502463, -0.09943061}, {-0.51900794, -0.62993523, 0.57776497},
{0.83046729, -0.16527060, 0.53198657}, {0.66869945, -0.56606479, -0.48209097}, {-0.54299772, -0.48639669, -0.68452300}, {0.52407156, -0.42268239, 0.73938393},
{0.71446999, -0.30844019, -0.62801057}, {-0.67320882, 0.39978543, 0.62206228}, {-0.53289859, -0.05079670, -0.84465306}, {0.67708925, -0.71979254, 0.15313018},
{-0.61369683, 0.65230332, 0.44483321}, {-0.26453665, -0.69129417, -0.67240816}, {0.85045794, 0.03075140, 0.52514345}, {-0.76757885, -0.10940324, 0.63154861},
{0.72754104, -0.17450402, -0.66350011}, {-0.34075755, -0.67303082, 0.65644026}, {0.70044829, 0.13095479, -0.70158609}, {0.43950040, -0.88211196, 0.16946353},
{-0.35706397, 0.48041126, 0.80106825}, {-0.77687193, 0.33320308, -0.53427120}, {0.51274543, 0.77662232, 0.36599165}, {0.33380578, 0.79591657, 0.50506486},
{-0.76587225, -0.03670574, 0.64194422}, {-0.23491078, 0.43695339, -0.86826762}, {0.25698923, -0.62346599, 0.73840822}, {0.13009757, -0.93331414, -0.33466303},
{-0.54841950, 0.64297666, -0.53461861}, {0.69823865, 0.51710521, -0.49504039}, {-0.64058874, -0.76638614, -0.04794108}, {-0.99383538, 0.10829476, 0.02373760},
{0.53702674, -0.26620457, -0.80046075}, {0.95618706, 0.14762618, 0.25280983}, {0.46882627, -0.32353926, -0.82190284}, {0.37771393, -0.17580406, -0.90907927},
{-0.38046162, 0.14393199, -0.91352752}, {0.99319923, -0.09757638, -0.06351493}, {0.50851715, 0.83898531, 0.19368521}, {0.32506349, -0.66811447, 0.66929574},
{-0.48035988, -0.63636898, -0.60356351}, {-0.06435942, 0.26733173, 0.96145286}, {0.60598929, -0.04278909, 0.79432114}, {-0.24869997, 0.88809619, -0.38656626},
{0.37370464, 0.04464997, -0.92647246}, {-0.48971589, -0.59472073, 0.63756224}, {0.69752714, 0.12358938, 0.70581978}, {0.52787180, 0.64468756, -0.55292794},
{-0.10489693, 0.16880171, -0.98005235}, {-0.63336451, -0.45121552, -0.62869226}, {0.54866356, 0.65678858, 0.51729785}, {-0.85968969, 0.49557488, -0.12385145},
{-0.47320716, -0.15150042, 0.86782637}, {0.19900943, -0.10259966, 0.97461200}, {-0.52893938, 0.84740153, 0.04619294}, {0.65121421, -0.49243156, -0.57743503},
{0.45693424, 0.73751862, 0.49726994}, {-0.47661222, -0.77374319, -0.41732752}, {-0.04808540, 0.90050093, 0.43218730}, {0.91129978, -0.31013948, 0.27082507},
{0.58778939, -0.42668247, -0.68734686}, {0.82297839, -0.34772114, -0.44921773}, {0.29494223, -0.86544442, -0.40498769}, {-0.39161493, 0.79055212, 0.47081322},
{0.79434783, -0.59398096, -0.12727195}, {0.77174313, 0.29796481, 0.56180915}, {0.78482345, -0.44974833, 0.42635500}, {-0.58988658, -0.54565594, 0.59522551},
{-0.97115669, 0.13450224, 0.19688532}, {0.42988246, 0.15513097, -0.88945796}, {-0.30013401, -0.45617888, 0.83774722}, {0.50990724, -0.38026491, -0.77161727},
{-0.68923129, 0.29274099, -0.66276914}, {-0.81531731, -0.42344291, -0.39490984}, {0.26048163, -0.96468719, -0.03908901}, {0.32147033, 0.32614689, -0.88897977},
{0.70055924, -0.70700997, 0.09671429}, {-0.58890140, -0.17999683, 0.78790626}, {0.70222863, 0.69308083, -0.16283095}, {-0.75366081, -0.65098223, -0.09065052},
{-0.19053922, -0.78772343, -0.58582130}, {-0.58846812, 0.34955220, 0.72905317}, {-0.60563594, -0.40529546, -0.68479244}, {-0.71315551, 0.69904447, 0.05240265},
{-0.45479055, 0.81186703, -0.36611129}, {-0.29059626, 0.05377439, 0.95533352}, {0.56290473, 0.78501299, 0.25863657}, {-0.43010366, -0.47609705, 0.76703484},
{0.63372606, -0.06214270, -0.77105744}, {0.28788198, -0.78226752, -0.55243234}, {-0.55506056, 0.67832002, -0.48144545}, {-0.47229498, 0.84794057, -0.24069533},
{-0.27628326, 0.87423025, -0.39923556}, {0.97754921, -0.01429369, -0.21022189}, {-0.78483628, 0.30941478, -0.53693064}, {-0.35769150, -0.53057471, 0.76847073},
{0.56804560, 0.59946775, -0.56388173}, {0.80328735, -0.57298006, -0.16255243}, {-0.34327107, -0.35133498, -0.87105034}, {0.80357102, -0.01979284, -0.59487970},
{-0.87804782, 0.46346126, 0.11931336}, {-0.11872912, -0.93845057, 0.32436695}, {0.68065237, 0.69467363, 0.23268195}, {-0.71974506, -0.36713686, 0.58921776},
{0.52822234, 0.82314813, -0.20834663}, {-0.67654042, -0.73158271, 0.08414148}, {-0.39062516, 0.89358947, -0.22115571}, {-0.62142505, 0.43386674, -0.65237302},
{-0.48099381, -0.18611372, -0.85674188}, {0.05036514, -0.74987003, 0.65966528}, {-0.49984895, -0.80920390, -0.30877188}, {0.50496868, 0.85618105, 0.10936472},
{-0.54084761, 0.24485715, 0.80469176}, {-0.81973873, -0.50777759, 0.26493457}, {0.72082268, -0.43713926, -0.53788839}, {0.91725234, -0.15187152, 0.36821621},
{-0.17151325, 0.57985483, 0.79646192}, {-0.74076471, 0.06061813, -0.66902398}, {0.32541463, -0.08200506, 0.94200875}, {-0.10818362, 0.99402161, -0.01474260},
{-0.61710380, -0.78296663, 0.07839742}, {-0.38878719, -0.57916742, 0.71652608}, {0.37911419, 0.92170992, 0.08199541}, {-0.60810067, -0.43108035, 0.66662082},
{-0.11745691, 0.38395577, 0.91585034}, {0.47694470, -0.81050760, 0.34000174}, {0.40287244, 0.88894800, 0.21786522}, {0.46780815, -0.54966937, 0.69211207},
{0.07109649, 0.79259959, -0.60558333}, {-0.52073054, -0.06778631, 0.85102569}, {-0.36866700, 0.77676019, -0.51061556}, {-0.71702100, -0.35727116, 0.59853004},
{-0.59010862, -0.73536014, -0.33319257}, {-0.66875911, 0.58597660, 0.45759445}, {-0.59798034, -0.69169805, 0.40493619}, {-0.20490060, 0.79048994, 0.57718402},
{0.48765302, 0.85851673, 0.15856717}, {0.88918101, 0.10371433, 0.44564612}, {0.48664272, 0.83596000, 0.25367252}, {-0.24554119, 0.50230038, -0.82909822},
{0.03554055, -0.41884154, -0.90736356}, {-0.03701100, -0.61772404, 0.78552352}, {0.42824046, 0.20582938, -0.87991158}, {-0.06839464, -0.43555129, -0.89756183},
{-0.40866952, -0.70331213, -0.58167111}, {-0.74822692, 0.38256599, 0.54203297}, {0.71541445, 0.51615594, 0.47091953}, {0.60759905, -0.70288934, -0.36982423},
{-0.01648745, -0.13394229, -0.99085197}, {-0.64568452, -0.13342451, 0.75185730}, {-0.42008783, 0.33302268, 0.84416948}, {-0.63557180, -0.46817632, 0.61388877},
{-0.82478405, -0.45636029, 0.33386606}, {-0.66628051, 0.24058840, 0.70582399}, {-0.60499178, -0.78374178, -0.14047697}, {0.63041860, -0.60894989, -0.48140672},
{-0.07945150, -0.91288865, -0.40040202}, {-0.66942344, 0.18523930, 0.71941550}, {-0.00849762, -0.47038898, 0.88241827}, {0.66223413, -0.33585751, 0.66981019},
{0.82512667, -0.23099667, -0.51556427}, {-0.75186864, 0.65450118, -0.07950940}, {0.87383910, 0.08193441, 0.47926192}, {-0.26554211, 0.78650504, 0.55758158},
{-0.49574252, 0.70523568, 0.50683527}, {-0.49212635, -0.64694353, 0.58247381}, {0.32264136, 0.78159510, -0.53386482}, {0.71510371, -0.22498049, 0.66182359},
{0.61434883, -0.51790453, 0.59527340}, {-0.82551670, -0.14228251, -0.54614821}, {-0.46251954, 0.64306734, -0.61036060}, {-0.52117891, -0.69061769, 0.50141773},
{0.27468699, -0.88951139, -0.36512537}, {0.65713642, -0.75365863, -0.01305358}, {0.94136220, -0.21960140, -0.25614924}, {-0.85554460, 0.30842011, -0.41583708},
{-0.35233681, -0.15379949, 0.92314922}, {-0.74432132, 0.44164975, -0.50093040}, {0.53994954, -0.79953954, -0.26304184}, {0.42964607, 0.11880600, 0.89514769},
{-0.87921789, 0.18018271, 0.44103298}, {-0.80353079, 0.36514238, 0.47011628}, {0.50404538, 0.65465655, -0.56334986}, {-0.92083981, -0.30381360, -0.24444087},
{0.13956423, -0.96009192, -0.24237437}, {-0.71698508, 0.68682212, 0.11919639}, {-0.76698836, 0.61675487, -0.17703754}, {-0.21874818, -0.57847904, -0.78581883},
{0.55494484, -0.79971185, 0.22912262}, {0.79660662, -0.41090893, 0.44336412}, {0.66489466, 0.00947646, -0.74687703}, {-0.59920476, 0.36935905, 0.71030103},
{-0.57524868, -0.51402380, -0.63629277}, {0.20536135, -0.69296940, 0.69110066}, {-0.05544564, -0.99802158, 0.02964287}, {0.13201661, 0.16519726, -0.97738502},
{0.46510187, 0.64584669, -0.60544390}, {-0.80108393, -0.59762086, 0.03337417}, {-0.39806873, -0.44410006, -0.80269323}, {0.95136791, -0.21916666, -0.21648342},
{-0.82086395, 0.17982074, 0.54207645}, {0.79513089, 0.37056075, 0.48005374}, {0.77112323, 0.56616567, 0.29124800}, {0.81176337, -0.24837815, 0.52853432},
{-0.81842091, 0.50060656, 0.28209979}, {-0.38248924, -0.72602893, 0.57147525}, {0.46198573, 0.37950267, 0.80159024}, {-0.59524911, 0.04222053, 0.80243126},
{-0.52273882, 0.79497643, -0.30782561}, {-0.79922245, 0.45390541, 0.39397125}, {0.38051244, -0.76512679, 0.51941436}, {0.83818590, 0.22605420, 0.49633043},
{0.63218067, 0.48127057, 0.60722832}, {0.59242495, 0.18424992, -0.78427333}, {0.85249021, -0.48552132, 0.19372531}, {-0.43548364, -0.58439144, 0.68471939},
{0.73179011, 0.29594379, -0.61392223}, {-0.45280534, -0.80755156, 0.37792566}, {0.55557939, 0.30092870, -0.77509578}, {0.42575514, 0.70893498, 0.56226662},
{0.60528173, -0.51550786, 0.60653580}, {-0.51076670, 0.84729685, -0.14562083}, {-0.33474095, 0.69713420, -0.63399716}, {-0.48650711, 0.74561924, 0.45537104},
{-0.41670009, -0.87381546, -0.25061440}, {0.92586094, -0.34254116, -0.15952140}, {-0.10682502, 0.59910669, 0.79351092}, {-0.44718479, -0.59299328, 0.66961536},
{0.69862855, -0.48858264, 0.52269031}, {-0.74718902, 0.51933770, -0.41472512}, {-0.56931667, 0.42835158, 0.70170753}, {0.05154068, 0.16647211, 0.98469823},
{0.74568360, -0.66371406, 0.05864824}, {0.64686641, 0.41668704, 0.63869849}, {0.27796256, -0.73021674, 0.62411563}, {0.77079499, -0.62615383, 0.11750087},
{-0.06833979, 0.90160690, 0.42712371}, {-0.98003087, -0.09480635, 0.17478914}, {-0.85191651, 0.47279136, 0.22518122}, {0.52473004, -0.19693989, -0.82817454},
{0.16081399, 0.75081437, -0.64063768}, {0.71441816, 0.52488995, -0.46270642}, {-0.23333515, -0.88652173, 0.39954216}, {0.54760612, -0.74897952, -0.37303782},
{0.48186221, -0.57810371, 0.65848683}, {-0.21255857, -0.53489421, -0.81774509}, {0.77930308, 0.57549405, -0.24797842}, {0.60279872, -0.76604104, -0.22319235},
{0.37230136, -0.52720909, 0.76383393}, {-0.13321231, -0.92277683, 0.36157627}, {-0.47833070, -0.49076061, -0.72825392}, {0.28828612, -0.93601402, 0.20191301},
{-0.66460360, -0.65589055, 0.35792406}, {0.90686144, 0.30403802, 0.29182738}, {-0.00682204, 0.42199214, 0.90657382}, {-0.33221520, 0.26584830, -0.90496284},
{-0.59515132, 0.55081686, 0.58514588}, {0.77123373, 0.59869357, -0.21625109}, {-0.69765329, -0.61042387, 0.37505011}, {0.02426772, -0.55656860, -0.83044715},
{0.65180023, 0.75814507, 0.01930051}, {-0.01531784, -0.78276243, 0.62213209}, {0.63847163, 0.03936370, 0.76863807}, {0.40703600, -0.09783879, -0.90815707},
{-0.46223121, -0.64783550, -0.60551753}, {0.82788442, -0.46539053, 0.31307993}, {-0.75467147, 0.24001984, 0.61062382}, {-0.70062375, -0.69087941, 0.17835919},
{0.35457466, 0.88605939, -0.29862279}, {0.20159504, -0.88658663, -0.41632150}, {-0.32096612, 0.72494426, -0.60945597}, {0.14147986, 0.53949815, -0.83001518},
{0.28297638, 0.93772862, 0.20146813}, {0.67192636, 0.43759891, -0.59751332}, {0.98497844, 0.01967209, 0.17155312}, {0.60388215, -0.68969665, 0.39955586},
{0.41200242, 0.85002960, 0.32818240}, {-0.83375884, 0.39266173, -0.38815328}, {-0.70938505, -0.58502714, -0.39308535}, {-0.63048972, 0.77513872, 0.04053013},
{0.10261233, -0.69355480, -0.71305852}, {0.65702752, -0.38976767, -0.64528753}, {-0.41388260, 0.33890875, 0.84489174}, {0.03028400, -0.46424256, -0.88519022},
{0.45068344, -0.52775066, -0.71997478}, {0.48930093, 0.41323002, -0.76800101}, {0.28350070, 0.66390322, 0.69199701}, {0.42450922, -0.60916900, 0.66985450},
{0.67306932, 0.51724488, -0.52861652}, {0.31095891, 0.94487804, -0.10251852}, {-0.25569777, 0.90632689, -0.33643754}, {-0.21431592, 0.07778980, -0.97366187},
{0.27676605, -0.87464593, 0.39798876}, {0.00288072, -0.88726140, -0.46125796}, {0.51138622, 0.12353356, 0.85042554}, {0.59734197, 0.76052363, 0.25453168},
{-0.43336730, -0.76588813, 0.47498227}, {0.34180565, -0.68750195, -0.64071052}, {-0.65078280, 0.51803512, 0.55508681}, {-0.89824124, 0.40466264, -0.17149586},
{0.54253116, 0.81082175, -0.21960883}, {-0.53994336, 0.54836630, 0.63855741}, {0.68778819, 0.33483595, -0.64407475}, {-0.63530446, -0.39864092, 0.66141792},
{0.80728009, -0.58358794, -0.08788616}, {0.94835277, 0.26419320, 0.17558181}, {-0.15823843, -0.51165316, 0.84449490}, {0.17510951, -0.22389002, 0.95875436},
{0.13697442, -0.88598087, 0.44303037}, {-0.73457485, -0.23332652, -0.63714874}, {0.95521505, -0.11801760, 0.27135964}, {-0.40184319, -0.90170455, -0.15953355},
{0.16857866, -0.70975159, -0.68398386}, {-0.55230772, 0.37144476, 0.74631426}, {0.29875717, -0.61848962, -0.72678383}, {0.62465217, -0.76131685, 0.17379963},
{0.75759704, 0.19352541, 0.62337360}, {-0.10375594, 0.61563856, 0.78116827}, {0.52725731, 0.25296549, 0.81117704}, {-0.71292545, -0.53989924, -0.44748867},
{0.78246146, 0.54867457, 0.29446609}, {0.31458005, 0.63401883, -0.70644145}, {-0.09360697, -0.99481997, -0.03963538}, {-0.59000956, 0.10880136, -0.80003186},
{0.49713243, 0.77379744, -0.39255173}, {-0.92985377, 0.17383167, 0.32427537}, {0.73574353, -0.63730495, -0.22918086}, {-0.04383386, -0.80273910, -0.59471719},
{0.68411849, 0.52929683, -0.50182344}, {-0.19561815, -0.57428906, -0.79493749}, {0.90257811, -0.06366895, -0.42579222}, {0.62294256, 0.39027502, -0.67795868},
{-0.39046281, -0.70398950, 0.59324327}, {0.70990020, 0.62433400, -0.32595821}, {-0.99157404, 0.01300690, 0.12888658}, {-0.55765988, -0.46179257, 0.68975581},
{-0.53736280, -0.34635255, -0.76894807}, {0.25083685, 0.44726649, -0.85850659}, {0.45758528, 0.86982087, -0.18446507}, {-0.18615519, 0.23441065, -0.95414773},
{0.56359579, -0.41325118, -0.71525048}, {-0.48542469, 0.59678985, -0.63890903}, {-0.72243931, -0.40815930, 0.55811059}, {-0.23748605, 0.68466361, -0.68908354},
{-0.69257361, 0.27959985, -0.66495543}, {-0.10352601, -0.17369566, -0.97934273}, {0.00192480, -0.09194122, 0.99576258}, {0.36297645, 0.86362173, 0.34986513},
{-0.71118388, -0.10242990, 0.69550385}, {0.45146824, 0.43080300, 0.78139952}, {-0.13265094, -0.68773403, -0.71374059}, {0.56016516, -0.56270148, -0.60793259},
{-0.95871022, -0.27465634, -0.07374694}, {-0.84169709, 0.06533746, -0.53598230}, {0.69711911, -0.61618111, -0.36653212}, {-0.01620384, 0.59778204, -0.80149490},
{-0.34911215, 0.65899531, -0.66621760}, {-0.19279427, -0.50540811, -0.84106659}, {-0.60506152, 0.72292944, 0.33357695}, {0.79789244, -0.59553505, 0.09330415},
{-0.48173680, -0.74189415, 0.46639331}, {0.84140763, 0.31839867, 0.43664115}, {0.79614481, 0.60391839, -0.03789486}, {0.19384456, 0.57096572, 0.79776089},
{0.83441754, -0.25078854, -0.49076723}, {-0.62605441, 0.72550166, 0.28583776}, {0.55337866, -0.75558589, 0.35051679}, {0.80543476, -0.01571309, 0.59247611},
{-0.00851542, 0.98991715, 0.14139139}, {-0.94076275, -0.29730096, -0.16302633}, {-0.75465549, -0.41353736, -0.50939371}, {0.37739255, -0.63080384, 0.67798332},
{0.47325376, -0.73145333, -0.49092453}, {0.12930721, -0.49066326, -0.86170135}, {0.71173142, -0.11663112, 0.69270165}, {0.41952295, -0.63051086, -0.65303641},
{0.85916103, 0.42641569, 0.28286390}, {0.54792224, -0.66418740, 0.50856299}, {0.28479416, 0.43856869, 0.85237890}, {-0.59050384, -0.68486024, -0.42693285},
{0.54884141, 0.60847988, 0.57317130}, {0.87567478, 0.25649070, -0.40915304}, {0.02961573, 0.33496172, 0.94176619}, {0.67428181, 0.70665199, 0.21444580},
{0.23609059, -0.51982231, 0.82100305}, {0.93726653, 0.00671493, 0.34854893}, {-0.39891590, -0.91536143, -0.05458531}, {0.93359117, -0.35793085, 0.01711843},
{0.53572079, -0.56879583, 0.62407896}, {-0.61516933, -0.36856434, -0.69694119}, {0.74630703, -0.65946218, -0.09019675}, {0.50607373, -0.59204544, -0.62719342},
{-0.89793356, 0.43675114, 0.05444050}, {-0.91682171, 0.07126199, 0.39288634}, {-0.61178292, -0.15203616, -0.77627744}, {-0.14028895, 0.63023583, 0.76362413},
{0.71475895, -0.54060748, 0.44369268}, {-0.31764961, 0.92630790, -0.20261391}, {0.59833443, -0.58864018, -0.54359788}, {-0.81450219, 0.22699691, -0.53390879},
{0.00452737, -0.06652318, 0.99777461}, {0.59311614, 0.19797584, -0.78039657}, {-0.71375488, -0.02586188, 0.69991795}, {-0.75600145, -0.26384588, -0.59903853},
{0.25716644, 0.77480857, -0.57752671}, {0.71712423, 0.61984999, -0.31862018}, {-0.28194922, -0.55108799, 0.78537040}, {0.57068285, -0.67066160, 0.47385030},
{0.48969101, -0.22604767, -0.84208382}, {-0.93763991, -0.34062289, 0.06933579}, {-0.67376035, 0.15110895, -0.72333469}, {-0.72414406, -0.65877431, -0.20403872},
{-0.71204285, 0.41163046, -0.56881926}, {0.23641604, -0.86280490, 0.44685026}, {0.84208951, 0.19949878, -0.50108432}, {-0.67481860, 0.67904385, -0.28899707},
{0.52167146, 0.66360202, 0.53618211}, {-0.49330390, -0.48590434, 0.72149029}, {-0.18240720, 0.04137646, -0.98235208}, {0.30714395, 0.55170433, 0.77542564},
{-0.14577549, 0.95376355, -0.26283949}, {-0.54373260, -0.69781662, -0.46626905}, {0.01799205, -0.81833182, 0.57446437}, {0.51019037, -0.56615200, -0.64743934},
{0.48463473, 0.59436639, 0.64176146}, {0.09115853, -0.52830175, -0.84414891}, {-0.62962436, -0.38408030, -0.67531880}, {0.50864721, -0.48401592, -0.71204396},
{-0.69669235, -0.63427804, -0.33512853}, {0.60735178, -0.18339351, 0.77297518}, {0.74102699, 0.67064566, 0.03336744}, {-0.47352242, -0.76145583, -0.44267543},
{0.47751531, -0.79737827, -0.36900816}, {0.74175025, -0.64892413, 0.16942269}, {0.65484829, -0.70924167, -0.26105549}, {0.60455058, -0.64392987, -0.46890608},
{-0.61878613, -0.77223405, 0.14407742}, {-0.72376655, -0.65562529, 0.21521492}, {0.24420910, -0.52118606, -0.81775731}, {0.61291622, 0.39870471, -0.68217906},
{0.67751893, 0.65970488, 0.32520389}, {-0.04366879, -0.96113671, 0.27259726}, {0.36541094, 0.62808212, 0.68701361}, {-0.92572867, 0.10611717, -0.36299528},
{0.80766374, -0.02031352, -0.58929335}, {-0.82117076, 0.53034081, 0.21075390}, {-0.62778197, -0.51872129, 0.58036025}, {0.37696186, 0.57743439, -0.72420251},
{-0.56818895, -0.47089866, -0.67484500}, {-0.61126182, -0.69853192, 0.37203783}, {0.57901952, 0.81284241, -0.06343191}, {-0.53287943, 0.70445351, 0.46881208},
{0.22300157, -0.93258969, 0.28380764}, {-0.63832115, -0.40157013, -0.65672486}, {-0.22074780, 0.50999380, 0.83137040}, {-0.59081050, -0.13684815, -0.79511982},
{-0.79824305, 0.52060475, -0.30295004}, {-0.56871170, 0.76435226, 0.30386284}, {0.12786983, -0.64236825, -0.75565358}, {-0.17631562, -0.76167939, -0.62350405},
{0.34713709, 0.61125835, -0.71123770}, {-0.39238887, -0.52886732, 0.75254922}, {0.38116332, 0.71358998, -0.58779577}, {-0.72949527, -0.67040404, 0.13562844},
{-0.62057913, 0.45165344, -0.64100757}, {-0.10668918, -0.98309252, -0.14881706}, {0.59490400, -0.46196716, -0.65778079}, {0.22433782, 0.49054463, 0.84204424},
{0.77498791, -0.57220981, 0.26827165}, {0.26474565, 0.93986866, -0.21576987}, {-0.01328623, 0.99975439, 0.01773780}, {0.53097408, 0.47771884, 0.69989373},
{0.24635212, -0.37499947, -0.89369236}, {0.31300988, -0.54171955, 0.78010560}, {0.77494650, -0.52634980, 0.34987684}, {0.65518408, 0.51410661, -0.55355958},
{0.78000762, -0.61855443, -0.09475515}, {0.58176976, 0.62638121, 0.51883574}, {-0.62371886, -0.59433046, 0.50768699}, {0.85206333, 0.17478222, -0.49339564},
{0.69974170, -0.42963013, 0.57077098}, {-0.44953934, 0.62956163, -0.63369277}, {0.63562255, 0.51965998, -0.57090935}, {-0.02766532, -0.52812789, -0.84871406},
{0.78698609, 0.04742916, -0.61514500}, {0.37827449, 0.78614098, 0.48876454}, {0.90534508, -0.25600916, -0.33883565}, {-0.37701605, 0.47347359, -0.79604124},
{-0.43802429, 0.40756165, -0.80126664}, {-0.87945568, -0.47372426, -0.04629300}, {-0.22787901, -0.82242670, 0.52123457}, {0.48721529, 0.74652617, -0.45312243},
{-0.68473990, -0.68222429, 0.25632263}, {-0.33289944, 0.62102263, -0.70958358}, {-0.07838790, -0.85438083, -0.51370101}, {0.18575601, 0.96209034, 0.19969195},
{0.09048656, -0.68256793, -0.72519874}, {0.29506068, -0.68306389, -0.66810397}, {-0.94937153, -0.17748927, 0.25921277}, {-0.38725072, 0.16372291, 0.90732116},
{-0.02691563, 0.81898594, 0.57318198}, {-0.65244629, -0.52276924, -0.54865851}, {0.15270967, -0.00097578, 0.98827061}, {0.39108739, 0.55471383, -0.73439990},
{0.85379797, -0.05140234, 0.51806064}, {0.31443713, 0.14998906, -0.93735403}, {-0.44277186, -0.56474741, -0.69642907}, {-0.31521736, 0.37268196, 0.87278071},
{0.97997903, -0.16829529, 0.10638514}, {-0.25174419, -0.84939324, 0.46384910}, {0.03867740, -0.72044135, 0.69243651}, {-0.80207202, 0.48047131, 0.35472214},
{0.48200634, -0.48413492, 0.73026246}, {-0.41800015, 0.44068588, -0.79440029}, {0.58661859, -0.43233611, 0.68480955}, {0.40830998, -0.53710845, 0.73810397},
{0.61242611, -0.72220206, -0.32149407}, {-0.34159283, -0.62199145, -0.70458567}, {-0.29885191, 0.58492128, -0.75402562}, {-0.62924060, 0.77130626, -0.09561862},
{0.91118189, 0.27762192, 0.30442344}, {0.08064464, -0.99213777, -0.09570315}, {0.93083382, -0.34928416, -0.10746612}, {0.66101659, -0.67569323, 0.32633681},
{0.07148482, -0.97619739, -0.20476469}, {0.30440743, -0.78193565, -0.54397863}, {-0.35656518, -0.19962907, 0.91269355}, {0.82151650, -0.31061678, 0.47815045},
{-0.69709423, -0.71173375, -0.08657198}, {-0.46044170, -0.78565215, -0.41321197}, {-0.70275364, -0.21121895, 0.67935548}, {0.38087769, 0.63933041, 0.66797366} };
// Simplex noise is evaluated on a tetrahedral grid, as opposed to a regular
// cube-based one. The two "skew factors" are used to convert between views
// of the grid so that calculations of which gridpoints to use are simpler.
// These numbers are straightforward for 3D, but the geometry is not so kind in
// 2D or 4D
static const double skewF3 = 1.0/3.0;
static const double skewG3 = 1.0/6.0;
// simplexNoise3D - given a vector in (x,y,z) returns the noise value for the
// location
double simplexNoise3D( double V[3] ) {
double C[4][3]; // Co-ordinates of four simplex shape corners in (x,y,z)
double n = 0.0; // Noise total value
int gi[4]; // Hashed grid index for each corner, used to determine gradient
double* U; // Pointer to current gradient vector . . .
int corner; // Iterator for which corner is being processed
double t; // Temp double
// Convert input co-ordinates ( x, y, z ) to
// integer-based simplex grid ( i, j, k )
double skewIn = ( V[_x_] + V[_y_] + V[_z_] ) * skewF3;
int i = floor( V[_x_] + skewIn );
int j = floor( V[_y_] + skewIn );
int k = floor( V[_z_] + skewIn );
t = (i + j + k) * skewG3;
// Cell origin co-ordinates in input space (x,y,z)
double X0 = i - t;
double Y0 = j - t;
double Z0 = k - t;
// This value of t finished with, not used later . . .
// Point offset within cell, in input space (x,y,z)
C[0][_x_] = V[_x_] - X0;
C[0][_y_] = V[_y_] - Y0;
C[0][_z_] = V[_z_] - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// The nested logic determines which simplex we are in, and therefore in which
// order to get gradients for the four corners
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
// The fourth corner is always i3 = 1, j3 = 1, k3 = 1, so no need to
// calculate values
if ( C[0][_x_] >= C[0][_y_] ) {
if ( C[0][_y_] >= C[0][_z_] ) {
i1=1; j1=0; k1=0; i2=1; j2=1; k2=0;
} else { // y0<z0
if( C[0][_x_] >= C[0][_z_] ) {
i1=1; j1=0; k1=0; i2=1; j2=0; k2=1;
} else {
i1=0; j1=0; k1=1; i2=1; j2=0; k2=1;
}
}
} else { // x0<y0
if( C[0][_y_] < C[0][_z_] ) {
i1=0; j1=0; k1=1; i2=0; j2=1; k2=1;
} else {
if( C[0][_x_] < C[0][_z_] ) {
i1=0; j1=1; k1=0; i2=0; j2=1; k2=1;
} else {
i1=0; j1=1; k1=0; i2=1; j2=1; k2=0;
} // Y X Z order
}
}
// A step of 1i in (i,j,k) is a step of (1-skewG3, -skewG3, -skewG3) in (x,y,z),
// and this is similar for j and k . . .
// Offsets for second corner in (x,y,z) coords
C[1][_x_] = C[0][_x_] - i1 + skewG3;
C[1][_y_] = C[0][_y_] - j1 + skewG3;
C[1][_z_] = C[0][_z_] - k1 + skewG3;
// Offsets for third corner in (x,y,z) coords
C[2][_x_] = C[0][_x_] - i2 + 2.0 * skewG3;
C[2][_y_] = C[0][_y_] - j2 + 2.0 * skewG3;
C[2][_z_] = C[0][_z_] - k2 + 2.0 * skewG3;
// Offsets for last corner in (x,y,z) coords
C[3][_x_] = C[0][_x_] - 1.0 + 3.0 * skewG3;
C[3][_y_] = C[0][_y_] - 1.0 + 3.0 * skewG3;
C[3][_z_] = C[0][_z_] - 1.0 + 3.0 * skewG3;
// Work out the hashed gradient indices of the four simplex corners
int ii = i & 0x3ff;
int jj = j & 0x3ff;
int kk = k & 0x3ff;
gi[0] = p[ii + p[jj + p[kk]]];
gi[1] = p[ii + i1 + p[jj + j1 + p[kk + k1]]];
gi[2] = p[ii + i2 +p[jj + j2 + p[kk + k2]]];
gi[3] = p[ii + 1 + p[jj + 1 + p[kk + 1]]];
// Calculate the contribution from the four corners, and add to total
for( corner = 0; corner < 4; corner++ ) {
t = 0.6 - C[corner][_x_] * C[corner][_x_] - C[corner][_y_] * C[corner][_y_] - C[corner][_z_] * C[corner][_z_] ;
if(t > 0.0) {
U = grad3[ gi[corner] ];
t *= t;
n += t * t * ( U[_x_] * C[corner][_x_] + U[_y_] * C[corner][_y_] + U[_z_] * C[corner][_z_] );
}
}
// The result is scaled be fit -1.0 to 1.0
return 32.0 * n;
}
// The Perlin noise function is based on summing coherent noise in "octaves"
double perlinNoise3D(double V[3], double aScale, double fScale, int octaves) {
int i; // Iterator
double n = 0.0; // Sum of noise values
double U[3];
double a = 1.0;
U[_x_] = V[_x_];
U[_y_] = V[_y_];
U[_z_] = V[_z_];
for (i=0; i < octaves; i++) {
n += simplexNoise3D(U) / a;
// None of the below required for last octave . . .
a *= aScale;
U[_x_] *= fScale;
U[_y_] *= fScale;
U[_z_] *= fScale;
}
return n;
}
double vratio( double P[2], double Q[2], double U[2] ) {
double PmQx, PmQy;
PmQx = P[_x_] - Q[_x_];
PmQy = P[_y_] - Q[_y_];
if ( 0.0 == PmQx && 0.0 == PmQy ) {
return 1.0;
}
return 2.0 * ( ( U[_x_] - Q[_x_] ) * PmQx + ( U[_y_] - Q[_y_] ) * PmQy ) / ( PmQx * PmQx + PmQy * PmQy );
}
// Closest point to U from array P.
// P is an array of points
// n is number of points to check
// U is location to find closest
int closest( double P[VORONOI_MAXPOINTS][2], int n, double U[2] ) {
double d2;
double d2min = 1.0e100;
int i, j;
for( i = 0; i < n; i++ ) {
d2 = (P[i][_x_] - U[_x_]) * (P[i][_x_] - U[_x_]) + (P[i][_y_] - U[_y_]) * (P[i][_y_] - U[_y_]);
if ( d2 < d2min ) {
d2min = d2;
j = i;
}
}
return j;
}
// Voronoi "value" is 0.0 (centre) to 1.0 (edge) if inside cell . . . higher values
// mean that point is not in the cell defined by chosen centre.
// P is an array of points defining cell centres
// n is number of points in array
// q is chosen centre to measure distance from
// U is point to test
double voronoi( double P[VORONOI_MAXPOINTS][2], int n, int q, double U[2] ) {
double ratio;
double ratiomax = -1.0e100;
int i;
for( i = 0; i < n; i++ ) {
if ( i != q ) {
ratio = vratio( P[i], P[q], U );
if ( ratio > ratiomax ) {
ratiomax = ratio;
}
}
}
return ratiomax;
}
// Waffle's cells are based on a simple square grid which is distorted using a noise function
// position() calculates cell centre for cell (x, y), given plane slice z, scale factor s, distortion d
// and stores in supplied array
void position( int x, int y, double z, double s, double d, double V[2] ) {
double E[3], F[3];
// Values here are arbitrary, chosen simply to be far enough apart so they do not correlate
E[_x_] = x * 2.5;
E[_y_] = y * 2.5;
E[_z_] = z * 2.5;
// Cross-over between x and y is intentional
F[_x_] = y * 2.5 + 30.2;
F[_y_] = x * 2.5 - 12.1;
F[_z_] = z * 2.5 + 19.8;
V[_x_] = ( x + d * simplexNoise3D( E ) ) * s;
V[_y_] = ( y + d * simplexNoise3D( F ) ) * s;
}
// cached_position gives centre co-ordinates either from cache, or calculated from scratch if needed
void cached_position( double Cache[CACHE_WIDTH][CACHE_WIDTH][2], int x, int y, double z, double s, double d, double V[2] ) {
if ( abs(x) <= CACHE_NUM && abs(y) <= CACHE_NUM ) {
V[_x_] = Cache[x+CACHE_NUM][y+CACHE_NUM][_x_];
V[_y_] = Cache[x+CACHE_NUM][y+CACHE_NUM][_y_];
} else {
position( x,y,z,s,d,V );
}
}
// Set the name of this plugin
APO_PLUGIN("crackle");
// Define the Variables
APO_VARIABLES(
VAR_REAL(crackle_cellsize, 1.0),
VAR_REAL(crackle_power, 0.2),
VAR_REAL(crackle_distort, 0.0),
VAR_REAL(crackle_scale, 1.0),
VAR_REAL(crackle_z, 0.0)
);
// You must call the argument "vp".
int PluginVarPrepare(Variation* vp)
{
// Pre-calculate cache of grid centres, to save time later . . .
int x,y;
for ( x= -CACHE_NUM; x <= CACHE_NUM; x++ ) { for ( y= -CACHE_NUM; y <= CACHE_NUM; y++ ) {
position( x, y, VAR(crackle_z), VAR(crackle_cellsize) / 2.0, VAR(crackle_distort), VAR(C)[x+CACHE_NUM][y+CACHE_NUM] );
} }
return TRUE; // Always return TRUE.
}
// You must call the argument "vp".
int PluginVarCalc(Variation* vp)
{
double XCo, YCo, DXo, DYo, L, R, s, trgL;
double U[2];
int XCv, YCv;
// An infinite number of invisible cells? No thanks!
if ( 0.0 == VAR(crackle_cellsize) ) {
return TRUE;
}
// Scaling factor
s = VAR(crackle_cellsize) / 2.0;
// For a blur effect, base everything starting on a circle radius 1.0
// (as opposed to reading the values from FTx and FTy)
double blurr = (random01() + random01()) / 2.0 + ( random01() - 0.5 ) / 4.0;
double theta = 2 * M_PI * random01();
U[_x_] = blurr * sin(theta);
U[_y_] = blurr * cos(theta);
// Use integer values as Voronoi grid co-ordinates
XCv = (int) floor( U[_x_] / s );
YCv = (int) floor( U[_y_] / s );
// Get a set of 9 square centre points, based around the one above
int di, dj;
int i = 0;
for (di = -1; di < 2; di++) { for (dj = -1; dj < 2; dj++) {
cached_position( VAR(C), XCv+di, YCv+dj, VAR(crackle_z), s, VAR(crackle_distort), VAR(P)[i] );
i++;
} }
int q = closest( VAR(P), 9, U );
int offset[9][2] = { { -1, -1}, { -1, 0}, { -1, 1},
{ 0, -1}, { 0, 0}, { 0, 1},
{ 1, -1}, { 1, 0}, { 1, 1} };
// Remake list starting from chosen square, ensure it is completely surrounded (total 9 points)
// First adjust centres according to which one was found to be closest
XCv += offset[q][_x_];
YCv += offset[q][_y_];
// Get a new set of 9 square centre points, based around the definite closest point
i=0;
for (di = -1; di < 2; di++) { for (dj = -1; dj < 2; dj++) {
cached_position( VAR(C), XCv+di, YCv+dj, VAR(crackle_z), s, VAR(crackle_distort), VAR(P)[i] );
i++;
} }
L = voronoi( VAR(P), 9, 4, U ); // index 4 is centre cell
// Delta vector from centre
DXo = U[_x_] - VAR(P)[4][_x_];
DYo = U[_y_] - VAR(P)[4][_y_];
/////////////////////////////////////////////////////////////////
// Apply "interesting bit" to cell's DXo and DYo co-ordinates
// trgL is the new value of L
trgL = pow(L + 1e-100, VAR(crackle_power)) * VAR(crackle_scale); // ( 0.9 )
R = trgL / ( L + 1e-100 );
DXo *= R;
DYo *= R;
// Add cell centre co-ordinates back in
DXo += VAR(P)[4][_x_];
DYo += VAR(P)[4][_y_];
// Finally add values in
FPx += VVAR * DXo;
FPy += VVAR * DYo;
return TRUE;
}