apophysis7x/Plugin/dc_mandelbrot.c

302 lines
8.6 KiB
C
Raw Permalink Normal View History

/*
Apophysis Plugin
Mandelbrot Set Plugin v2 - Copyright 2008,2009 Jed Kelsey
Changed to work with Apophysis 7X / DC in 2010 by Georg Kiehne
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
typedef struct
{
int dcm_iter;
int dcm_miniter;
int dcm_smooth_iter;
int dcm_retries;
int dcm_mode;
int dcm_pow;
int dcm_color_method;
double dcm_invert;
double dcm_xmin;
double dcm_xmax;
double dcm_ymin;
double dcm_ymax;
double dcm_scatter;
double dcm_sx;
double dcm_sy;
double dcm_zscale;
double x0, y0;
double zs, sc;
} Variables;
#define _USE_MATH_DEFINES
#include "apoplugin.h"
APO_PLUGIN("dc_mandelbrot");
APO_VARIABLES(
VAR_INTEGER_RANGE(dcm_iter, 5, INT_MAX, 25),
VAR_INTEGER_RANGE(dcm_miniter, 0, INT_MAX, 1),
VAR_INTEGER_RANGE(dcm_smooth_iter, 0, INT_MAX, 0),
VAR_INTEGER_RANGE(dcm_retries, 0, INT_MAX, 50),
VAR_INTEGER_RANGE(dcm_mode, 0, 5, 0),
VAR_INTEGER_RANGE(dcm_pow, -6, 6, 2), // TODO: negative powers
VAR_INTEGER_RANGE(dcm_color_method, 0, 7, 0),
VAR_REAL_RANGE(dcm_invert, 0.0, 1.0, 0.0),
VAR_REAL(dcm_xmin, -2.0),
VAR_REAL(dcm_xmax, 2.0),
VAR_REAL(dcm_ymin, -1.5),
VAR_REAL(dcm_ymax, 1.5),
VAR_REAL_RANGE(dcm_scatter, -1000.0, 1000.0, 0.0),
// Following parameters don't affect iterations, just the output point positions.
VAR_REAL(dcm_sx, 0.0),
VAR_REAL(dcm_sy, 0.0),
VAR_REAL(dcm_zscale, 0.0)
);
int PluginVarPrepare(Variation* vp)
{
VAR(zs) = VVAR * VAR(dcm_zscale) / VAR(dcm_iter);
VAR(sc) = VAR(dcm_scatter) / 10.0;
return TRUE;
}
inline double fmod2(double h, double q) { return fmod(fabs(h),q); }
int PluginVarCalc(Variation* vp)
{
double x=0.0, y=0.0, x1=0.0, y1=0.0, x2, y2, xtemp=0.0;
double cx=0.0, cy=0.0;
int maxiter = VAR(dcm_iter);
int miniter = VAR(dcm_miniter); // = 0.1*(maxiter*(1-scatter));
double xmax = VAR(dcm_xmax);
double xmin = VAR(dcm_xmin);
double ymax = VAR(dcm_ymax);
double ymin = VAR(dcm_ymin);
int maxRetries = VAR(dcm_retries);
int mode = VAR(dcm_mode); /* 0=Mandelbrot, 1=Julia, 3=Tricorn(Mandelbar) */
int color_method = VAR(dcm_color_method);
double xp = 0.0, yp = 0.0;
int smooth_iter=0, max_smooth_iter=VAR(dcm_smooth_iter);
int inverted, iter=0, retries=0;
int isblur = (VAR(sc)>=0);
double smoothed_iter = 0.0, inv_iter = 1.0;
double mag2 = 0.0;
int m_power = VAR(dcm_pow);
int m_power_abs = ((m_power<0) ? -m_power : m_power);
inverted = random01() < VAR(dcm_invert);
if (!isblur) {
VAR(x0) = FTx;
VAR(y0) = FTy;
}
do {
if (VAR(sc)==0) {
// Force selection of point at random
VAR(x0) = VAR(y0) = 0;
}
if (VAR(x0)==0 && VAR(y0)==0) {
// Choose a point at random
VAR(x0) = (xmax-xmin)*random01() + xmin;
VAR(y0) = (ymax-ymin)*random01() + ymin;
} else {
// Choose a point close to previous point
VAR(x0) += VAR(sc)*(random01()-0.5);
VAR(y0) += VAR(sc)*(random01()-0.5);
}
// default to Mandelbrot Set
cx = x1 = x = xp = VAR(x0);
cy = y1 = y = yp = VAR(y0);
switch(mode) {
case 1: // Julia Set
cx = TM(e);
cy = TM(f);
break;
case 2: // tricorn (Mandelbar)
// leave as-is, handled below
break;
default: // Regular Mandelbrot set
// Leave as-is
break;
}
iter = smooth_iter = 0;
while ( (((x2=x*x) + (y2=y*y) < 4) && (iter < maxiter)) || (smooth_iter++<max_smooth_iter) ) {
if (smooth_iter==0)
xp=x; yp=y;
if (mode==2) y=-y;
switch(m_power_abs) {
case 3:
xtemp = x*(x2 - 3*y2) + cx;
y = y*(3*x2 - y2) + cy;
x = xtemp;
break;
case 4:
xtemp = (x2-y2)*(x2-y2)-4*x2*y2 + cx;
y = 4*x*y*(x2 - y2) + cy;
x = xtemp;
break;
case 5:
xtemp = x2*x2*x - 10*x2*x*y2 + 5*x*y2*y2 + cx;
y = 5*x2*x2*y - 10*x2*y2*y + y2*y2*y + cy;
x = xtemp;
break;
case 6:
xtemp = x2*x2*x2 - 15*x2*x2*y2 + 15*x2*y2*y2 - y2*y2*y2 + cx;
y = 6*x2*x2*x*y - 20*x2*x*y2*y + 6*x*y2*y2*y + cy;
x = xtemp;
break;
case 1:
if ((m_power>0) && (iter<maxiter)) // (more iterations not helpful)
iter = maxiter-1;
break;
case 2:
default:
xtemp = x2 - y2 + cx;
y = 2*x*y + cy;
x = xtemp;
break;
}
if ((m_power<0) && (xtemp=x2+y2)>0) {
x = x/xtemp;
y = -y/xtemp;
}
iter++;
}
iter -= (smooth_iter-1);
// could probably bypass check and always select next point at random
if ( (miniter==0) || (!inverted && (iter>=maxiter)) /*|| (iter < miniter)*/ ) {
VAR(x0) = VAR(y0) = 0; // Random point next time
} else if ( (iter < miniter) || (inverted && (iter<maxiter/2)) ) {
//if (retries>maxRetries-5) {
// VAR(x0) /= 100;
// VAR(y0) /= 100;
//} else
VAR(x0) = VAR(y0) = 0;
}
if (++retries > maxRetries)
break;
} while ((inverted && (iter < maxiter)) || (!inverted && ((iter >= maxiter) || ((miniter>0) && (iter < miniter)))));
smoothed_iter = iter;
if (max_smooth_iter>0) {
// use Normalized Iteration Count Algorithm for smoothing
mag2 = x2 + y2;
if (mag2 > 1.1) //FIXME: change this back to if(mag2>4) ?
smoothed_iter += 1 - log(log(mag2)/2)/M_LN2;
}
if (smoothed_iter>0)
inv_iter = 1/smoothed_iter;
else
inv_iter = 1;
// Adjust location of point according to sx,sy and final iterated point (x,y)
// (use of inv_iter reduces effect of factor near regions of high gradient
FPx += VVAR*(x1 + VAR(dcm_sx)*x*inv_iter);
FPy += VVAR*(y1 + VAR(dcm_sy)*y*inv_iter);
//FPx += VVAR*(x1 + VAR(dcm_sx)*x);
//FPy += VVAR*(y1 + VAR(dcm_sy)*y);
// TODO: add check to see whether this Apo supports 3D?
if (VAR(dcm_zscale)) {
FPz += smoothed_iter * VAR(zs);
}
// Allow plugin to influence coloring (-X- changed for Apo7X/DC)
if (smoothed_iter<0) smoothed_iter=0;
if (smoothed_iter>maxiter) smoothed_iter=maxiter;
switch (color_method) {
case 1:
// scale colormap indexing extent by the final angle of the iterated point
// after the extra "smoothing" iterations complete
xtemp = 0.0;
if (y != 0.0) xtemp = atan2(x,y) * M_1_2PI;
TC = fmod2(xtemp, 1);
break;
case 2:
// scale colormap indexing extent by the angle of the iterated point at time of escape
xtemp = 0.0;
if (yp != 0.0) xtemp = atan2(xp,yp) * M_1_2PI;
TC = fmod2(xtemp, 1);
break;
case 3:
// combination of mode 4 and 2
xtemp = 0.0;
if (y-yp != 0.0) xtemp = atan2(x-xp,y-yp) * M_1_2PI;
TC = fmod2((smoothed_iter/maxiter * xtemp), 1);
break;
case 4:
// scale colormap indexing extent by the product of the scaled iteration count and
// the angle of the iterated point at time of escape
xtemp = 0.0;
if (yp != 0.0) xtemp = atan2(xp,yp) * M_1_2PI;
TC = fmod2((smoothed_iter/maxiter * xtemp), 1);
break;
case 5:
// scale colormap indexing extent by a combination of scaled iteration count,
// the squared magnitude and adjusted angle of the iterated point at time of escape
xtemp = 0.0;
if (yp != 0.0) xtemp = (0.5 + atan2(xp,yp) * M_1_2PI) * (xp*xp+yp*yp);
TC = fmod2((smoothed_iter/maxiter * xtemp), 1);
break;
case 6:
// scale colormap indexing extent by a combination of scaled iteration count and
// the squared magnitude of the iterated point at time of escape
xtemp = xp*xp+yp*yp;
TC = fmod2((smoothed_iter/maxiter * xtemp), 1);
break;
case 7:
// scale colormap indexing extent by a combination of scaled iteration count and
// the squared magnitude of the iterated point at time of escape
// (slightly more relaxed color rolloff than case 6)
xtemp = sqrt(xp*xp+yp*yp);
TC = fmod2((smoothed_iter/maxiter * xtemp), 1);
break;
case 0:
// default coloring method: scale colormap indexing extent by the scaled "escape time"
// (iteration count)
default:
TC = fmod2(smoothed_iter/maxiter, 1);
break;
}
return TRUE;
}