1712 lines
40 KiB
ObjectPascal
1712 lines
40 KiB
ObjectPascal
unit XForm;
|
|
|
|
interface
|
|
|
|
uses
|
|
XFormMan, baseVariation;
|
|
|
|
type
|
|
TCalcMethod = procedure of object;
|
|
|
|
type
|
|
TCPpoint = record
|
|
x, y, c: double;
|
|
end;
|
|
PCPpoint = ^TCPpoint;
|
|
|
|
TXYpoint = record
|
|
x, y: double;
|
|
end;
|
|
PXYpoint = ^TXYpoint;
|
|
|
|
TMatrix = array[0..2, 0..2] of double;
|
|
|
|
type
|
|
TXForm = class
|
|
private
|
|
FNrFunctions: Integer;
|
|
FFunctionList: array of TCalcMethod;
|
|
FCalcFunctionList: array[0..64] of TCalcMethod;
|
|
|
|
FTx, FTy: double;
|
|
FPx, FPy: double;
|
|
FAngle: double;
|
|
FSinA: double;
|
|
FCosA: double;
|
|
FLength: double;
|
|
// CalculateAngle, CalculateLength, CalculateSinCos: boolean;
|
|
|
|
FRegVariations: array of TBaseVariation;
|
|
|
|
procedure PrecalcAngle;
|
|
procedure PrecalcSinCos;
|
|
procedure PrecalcAll;
|
|
procedure DoPostTransform;
|
|
|
|
procedure Linear; // var[0]
|
|
procedure Sinusoidal; // var[1]
|
|
procedure Spherical; // var[2]
|
|
procedure Swirl; // var[3]
|
|
procedure Horseshoe; // var[4]
|
|
procedure Polar; // var[5]
|
|
procedure FoldedHandkerchief; // var[6]
|
|
procedure Heart; // var[7]
|
|
procedure Disc; // var[8]
|
|
procedure Spiral; // var[9]
|
|
procedure hyperbolic; // var[10]
|
|
procedure Square; // var[11]
|
|
procedure Ex; // var[12]
|
|
procedure Julia; // var[13]
|
|
procedure Bent; // var[14]
|
|
procedure Waves; // var[15]
|
|
procedure Fisheye; // var[16]
|
|
procedure Popcorn; // var[17]
|
|
procedure Exponential; // var[18]
|
|
procedure Power; // var[19]
|
|
procedure Cosine; // var[20]
|
|
procedure Rings; // var[21]
|
|
procedure Fan; // var[22]
|
|
|
|
// procedure Triblob; // var[23]
|
|
// procedure Daisy; // var[24]
|
|
// procedure Checkers; // var[25]
|
|
// procedure CRot; // var[26]
|
|
|
|
function Mul33(const M1, M2: TMatrix): TMatrix;
|
|
function Identity: TMatrix;
|
|
|
|
procedure BuildFunctionlist;
|
|
procedure AddRegVariations;
|
|
|
|
public
|
|
vars: array of double; // normalized interp coefs between variations
|
|
c: array[0..2, 0..1] of double; // the coefs to the affine part of the function
|
|
p: array[0..2, 0..1] of double; // post-transform coefs!
|
|
density: double; // prob is this function is chosen. 0 - 1
|
|
color: double; // color coord for this function. 0 - 1
|
|
color2: double; // Second color coord for this function. 0 - 1
|
|
symmetry: double;
|
|
c00, c01, c10, c11, c20, c21: double;
|
|
p00, p01, p10, p11, p20, p21: double;
|
|
|
|
// nx,ny,x,y: double;
|
|
// script: TatPascalScripter;
|
|
|
|
Orientationtype: integer;
|
|
|
|
constructor Create;
|
|
destructor Destroy; override;
|
|
procedure Prepare;
|
|
|
|
procedure Assign(Xform: TXForm);
|
|
|
|
procedure PreviewPoint(var px, py: double);
|
|
procedure NextPoint(var px, py, pc: double); overload;
|
|
procedure NextPoint(var CPpoint: TCPpoint); overload;
|
|
// procedure NextPoint(var px, py, pz, pc: double); overload;
|
|
procedure NextPointXY(var px, py: double);
|
|
procedure NextPoint2C(var px, py, pc1, pc2: double);
|
|
|
|
procedure Rotate(const degrees: double);
|
|
procedure Translate(const x, y: double);
|
|
procedure Multiply(const a, b, c, d: double);
|
|
procedure Scale(const s: double);
|
|
|
|
procedure SetVariable(const name: string; var Value: double);
|
|
procedure GetVariable(const name: string; var Value: double);
|
|
|
|
function ToXMLString: string;
|
|
end;
|
|
|
|
implementation
|
|
|
|
uses
|
|
SysUtils, Math;
|
|
|
|
const
|
|
EPS = 1E-10;
|
|
|
|
procedure SinCos(const Theta: double; var Sin, Cos: double); // I'm not sure, but maybe it'll help...
|
|
asm
|
|
FLD Theta
|
|
FSINCOS
|
|
FSTP qword ptr [edx] // Cos
|
|
FSTP qword ptr [eax] // Sin
|
|
FWAIT
|
|
end;
|
|
|
|
{ TXForm }
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
constructor TXForm.Create;
|
|
var
|
|
i: Integer;
|
|
begin
|
|
density := 0;
|
|
Color := 0;
|
|
Symmetry := 0;
|
|
|
|
c[0, 0] := 1;
|
|
c[0, 1] := 0;
|
|
c[1, 0] := 0;
|
|
c[1, 1] := 1;
|
|
c[2, 0] := 0;
|
|
c[2, 1] := 0;
|
|
|
|
p[0, 0] := 1;
|
|
p[0, 1] := 0;
|
|
p[1, 0] := 0;
|
|
p[1, 1] := 1;
|
|
p[2, 0] := 0;
|
|
p[2, 1] := 0;
|
|
|
|
AddRegVariations;
|
|
BuildFunctionlist;
|
|
|
|
SetLength(vars, NRLOCVAR + Length(FRegVariations));
|
|
Vars[0] := 1;
|
|
for i := 1 to High(vars) do
|
|
Vars[i] := 0;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Prepare;
|
|
var
|
|
i: integer;
|
|
CalculateAngle, CalculateSinCos, CalculateLength: boolean;
|
|
begin
|
|
c00 := c[0][0];
|
|
c01 := c[0][1];
|
|
c10 := c[1][0];
|
|
c11 := c[1][1];
|
|
c20 := c[2][0];
|
|
c21 := c[2][1];
|
|
|
|
FNrFunctions := 0;
|
|
|
|
for i := 0 to High(FRegVariations) do begin
|
|
FRegVariations[i].FPX := @FPX;
|
|
FRegVariations[i].FPY := @FPY;
|
|
FRegVariations[i].FTX := @FTX;
|
|
FRegVariations[i].FTY := @FTY;
|
|
|
|
FRegVariations[i].vvar := vars[i + NRLOCVAR];
|
|
FRegVariations[i].prepare;
|
|
end;
|
|
|
|
CalculateAngle := (vars[5] <> 0.0) or (vars[6] <> 0.0) or (vars[7] <> 0.0) or (vars[8] <> 0.0) or
|
|
(vars[12] <> 0.0) or (vars[13] <> 0.0) or (vars[21] <> 0.0) or (vars[22] <> 0.0);
|
|
// CalculateLength := False;
|
|
CalculateSinCos := (vars[9] <> 0.0) or (vars[11] <> 0.0) or (vars[19] <> 0.0) or (vars[21] <> 0.0);
|
|
|
|
if CalculateAngle or CalculateSinCos then
|
|
begin
|
|
if CalculateAngle and CalculateSinCos then
|
|
FCalcFunctionList[FNrFunctions] := PrecalcAll
|
|
else if CalculateAngle then
|
|
FCalcFunctionList[FNrFunctions] := PrecalcAngle
|
|
else //if CalculateSinCos then
|
|
FCalcFunctionList[FNrFunctions] := PrecalcSinCos;
|
|
Inc(FNrFunctions);
|
|
end;
|
|
|
|
for i := 0 to NrVar - 1 do begin
|
|
if (vars[i] <> 0.0) then begin
|
|
FCalcFunctionList[FNrFunctions] := FFunctionList[i];
|
|
Inc(FNrFunctions);
|
|
end;
|
|
end;
|
|
|
|
if (p[0,0]<>1) or (p[0,1]<>0) or(p[1,0]<>0) or (p[1,1]<>1) or (p[2,0]<>0) or (p[2,1]<>0) then
|
|
begin
|
|
p00 := p[0][0];
|
|
p01 := p[0][1];
|
|
p10 := p[1][0];
|
|
p11 := p[1][1];
|
|
p20 := p[2][0];
|
|
p21 := p[2][1];
|
|
|
|
FCalcFunctionList[FNrFunctions] := DoPostTransform;
|
|
Inc(FNrFunctions);
|
|
end;
|
|
|
|
(*
|
|
if (vars[27] <> 0.0) then begin
|
|
FFunctionList[FNrFunctions] := TestScript;
|
|
Inc(FNrFunctions);
|
|
|
|
Script := TatPascalScripter.Create(nil);
|
|
Script.SourceCode.Text :=
|
|
'function test(x, y; var nx, ny);' + #10#13 +
|
|
'begin' + #10#13 +
|
|
'nx := x;' + #10#13 +
|
|
'ny := y;' + #10#13 +
|
|
'end;' + #10#13 +
|
|
'function test2;' + #10#13 +
|
|
'begin' + #10#13 +
|
|
'nx := x;' + #10#13 +
|
|
'ny := y;' + #10#13 +
|
|
'end;' + #10#13 +
|
|
'nx := x;' + #10#13 +
|
|
'ny := y;' + #10#13;
|
|
Script.AddVariable('x',x);
|
|
Script.AddVariable('y',y);
|
|
Script.AddVariable('nx',nx);
|
|
Script.AddVariable('ny',ny);
|
|
Script.Compile;
|
|
end;
|
|
|
|
if (vars[NRLOCVAR -1] <> 0.0) then begin
|
|
FFunctionList[FNrFunctions] := TestVar;
|
|
Inc(FNrFunctions);
|
|
end;
|
|
*)
|
|
end;
|
|
|
|
procedure TXForm.PrecalcAngle;
|
|
asm
|
|
fld qword ptr [eax + FTx]
|
|
fld qword ptr [eax + FTy]
|
|
fpatan
|
|
fstp qword ptr [eax + FAngle]
|
|
fwait
|
|
end;
|
|
|
|
procedure TXForm.PrecalcSinCos;
|
|
asm
|
|
fld qword ptr [eax + FTx]
|
|
fld qword ptr [eax + FTy]
|
|
fld st(1)
|
|
fmul st, st
|
|
fld st(1)
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fdiv st(1), st
|
|
fdiv st(2), st
|
|
fstp qword ptr [eax + FLength]
|
|
fstp qword ptr [eax + FCosA]
|
|
fstp qword ptr [eax + FSinA]
|
|
fwait
|
|
end;
|
|
|
|
procedure TXForm.PrecalcAll;
|
|
asm
|
|
fld qword ptr [eax + FTx]
|
|
fld qword ptr [eax + FTy]
|
|
fld st(1)
|
|
fld st(1)
|
|
fpatan
|
|
fstp qword ptr [eax + FAngle]
|
|
fld st(1)
|
|
fmul st, st
|
|
fld st(1)
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fdiv st(1), st
|
|
fdiv st(2), st
|
|
fstp qword ptr [eax + FLength]
|
|
fstp qword ptr [eax + FCosA]
|
|
fstp qword ptr [eax + FSinA]
|
|
fwait
|
|
end;
|
|
|
|
procedure TXForm.DoPostTransform;
|
|
// x := p00 * FPx + p10 * FPy + p20;
|
|
// y := p01 * FPx + p11 * FPy + p21;
|
|
asm
|
|
fld qword ptr [eax + FPy]
|
|
fld qword ptr [eax + FPx]
|
|
fld st(1)
|
|
fmul qword ptr [eax + p10]
|
|
fld st(1)
|
|
fmul qword ptr [eax + p00]
|
|
faddp
|
|
fadd qword ptr [eax + p20]
|
|
fstp qword ptr [eax + FPx] // + px]
|
|
fmul qword ptr [eax + p01]
|
|
fld qword ptr [eax + p11]
|
|
fmulp st(2), st
|
|
faddp
|
|
fadd qword ptr [eax + p21]
|
|
fstp qword ptr [eax + FPy] // + py]
|
|
fwait
|
|
end;
|
|
|
|
//--0--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Linear;
|
|
//begin
|
|
// FPx := FPx + vars[0] * FTx;
|
|
// FPy := FPy + vars[0] * FTy;
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx]
|
|
fld st
|
|
fmul qword ptr [eax + FTx]
|
|
fadd qword ptr [eax + FPx]
|
|
fstp qword ptr [eax + FPx]
|
|
fmul qword ptr [eax + FTy]
|
|
fadd qword ptr [eax + FPy]
|
|
fstp qword ptr [eax + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--1--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Sinusoidal;
|
|
//begin
|
|
//FPx := FPx + vars[1] * sin(FTx);
|
|
//FPy := FPy + vars[1] * sin(FTy);
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 1*8]
|
|
fld qword ptr [eax + FTx]
|
|
fsin
|
|
fmul st, st(1)
|
|
fadd qword ptr [eax + FPx]
|
|
fstp qword ptr [eax + FPx]
|
|
fld qword ptr [eax + FTy]
|
|
fsin
|
|
fmulp
|
|
fadd qword ptr [eax + FPy]
|
|
fstp qword ptr [eax + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--2--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Spherical;
|
|
var
|
|
r: double;
|
|
begin
|
|
r := vars[2] / (sqr(FTx) + sqr(FTy) + 1E-6);
|
|
FPx := FPx + FTx * r;
|
|
FPy := FPy + FTy * r;
|
|
end;
|
|
|
|
//--3--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Swirl;
|
|
var
|
|
sinr, cosr: double;
|
|
begin
|
|
{
|
|
r2 := FTx * FTx + FTy * FTy;
|
|
c1 := sin(r2);
|
|
c2 := cos(r2);
|
|
FPx := FPx + vars[3] * (c1 * FTx - c2 * FTy);
|
|
FPy := FPy + vars[3] * (c2 * FTx + c1 * FTy);
|
|
}
|
|
// SinCos(sqr(FTx) + sqr(FTy), rsin, rcos);
|
|
asm
|
|
fld qword ptr [eax + FTx]
|
|
fmul st, st
|
|
fld qword ptr [eax + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsincos
|
|
fstp qword ptr [cosr]
|
|
fstp qword ptr [sinr]
|
|
fwait
|
|
end;
|
|
FPx := FPx + vars[3] * (sinr * FTx - cosr * FTy);
|
|
FPy := FPy + vars[3] * (cosr * FTx + sinr * FTy);
|
|
end;
|
|
|
|
//--4--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Horseshoe;
|
|
//var
|
|
// a, c1, c2: double;
|
|
//begin
|
|
// if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
// a := arctan2(FTx, FTy)
|
|
// else
|
|
// a := 0.0;
|
|
// c1 := sin(FAngle);
|
|
// c2 := cos(FAngle);
|
|
|
|
// --Z-- he he he...
|
|
// FTx/FLength FTy/FLength
|
|
// FPx := FPx + vars[4] * (FSinA * FTx - FCosA * FTy);
|
|
// FPy := FPy + vars[4] * (FCosA* FTx + FSinA * FTy);
|
|
var
|
|
r: double;
|
|
begin
|
|
r := vars[4] / sqrt(sqr(FTx) + sqr(FTy));
|
|
FPx := FPx + (FTx - FTy) * (FTx + FTy) * r;
|
|
FPy := FPy + (2*FTx*FTy) * r;
|
|
end;
|
|
|
|
//--5--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Polar;
|
|
{var
|
|
ny: double;
|
|
rPI: double;
|
|
begin
|
|
rPI := 0.31830989;
|
|
ny := sqrt(FTx * FTx + FTy * FTy) - 1.0;
|
|
FPx := FPx + vars[5] * (FAngle*rPI);
|
|
FPy := FPy + vars[5] * ny;
|
|
}
|
|
//begin
|
|
// FPx := FPx + vars[5] * FAngle / PI;
|
|
// FPy := FPy + vars[5] * (sqrt(sqr(FTx) + sqr(FTy)) - 1.0);
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 5*8]
|
|
fld qword ptr [eax + FAngle]
|
|
fldpi
|
|
fdivp st(1), st
|
|
fmul st, st(1)
|
|
fadd qword ptr [eax + FPx]
|
|
fstp qword ptr [eax + FPx]
|
|
fld qword ptr [eax + FTx]
|
|
fmul st, st
|
|
fld qword ptr [eax + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fld1
|
|
fsubp st(1), st
|
|
fmulp
|
|
fadd qword ptr [eax + FPy]
|
|
fstp qword ptr [eax + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--6--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.FoldedHandkerchief;
|
|
{
|
|
var
|
|
r: double;
|
|
begin
|
|
r := sqrt(sqr(FTx) + sqr(FTy));
|
|
FPx := FPx + vars[6] * sin(FAngle + r) * r;
|
|
FPy := FPy + vars[6] * cos(FAngle - r) * r;
|
|
}
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 6*8]
|
|
fld qword ptr [eax + FTx]
|
|
fmul st, st
|
|
fld qword ptr [eax + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fld qword ptr [eax + FAngle]
|
|
fld st
|
|
fadd st, st(2)
|
|
fsin
|
|
fmul st, st(2)
|
|
fmul st, st(3)
|
|
fadd qword ptr [eax + FPx]
|
|
fstp qword ptr [eax + FPx]
|
|
fsub st, st(1)
|
|
fcos
|
|
fmulp
|
|
fmulp
|
|
fadd qword ptr [eax + FPy]
|
|
fstp qword ptr [eax + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--7--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Heart;
|
|
var
|
|
r, sinr, cosr: double;
|
|
begin
|
|
// r := sqrt(sqr(FTx) + sqr(FTy));
|
|
// Sincos(r*FAngle, sinr, cosr);
|
|
asm
|
|
fld qword ptr [eax + FTx]
|
|
fmul st, st
|
|
fld qword ptr [eax + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fst qword ptr [r]
|
|
fmul qword ptr [eax + FAngle]
|
|
fsincos
|
|
fstp qword ptr [cosr]
|
|
fstp qword ptr [sinr]
|
|
fwait
|
|
end;
|
|
r := r * vars[7];
|
|
FPx := FPx + r * sinr;
|
|
FPy := FPy - r * cosr;
|
|
end;
|
|
|
|
//--8--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Disc;
|
|
{
|
|
var
|
|
// nx, ny: double;
|
|
r, sinr, cosr: double;
|
|
begin
|
|
// --Z-- ????? - calculating PI^2 to get square root from it, hmm?
|
|
// nx := FTx * PI;
|
|
// ny := FTy * PI;
|
|
// r := sqrt(nx * nx + ny * ny);
|
|
|
|
SinCos(PI * sqrt(sqr(FTx) + sqr(FTy)), sinr, cosr);
|
|
r := vars[8] * FAngle / PI;
|
|
FPx := FPx + sinr * r;
|
|
FPy := FPy + cosr * r;
|
|
}
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 8*8]
|
|
fmul qword ptr [eax + FAngle]
|
|
fldpi
|
|
fdivp st(1), st
|
|
fld qword ptr [eax + FTx]
|
|
fmul st, st
|
|
fld qword ptr [eax + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fldpi
|
|
fmulp
|
|
fsincos
|
|
fmul st, st(2)
|
|
fadd qword ptr [eax + FPy]
|
|
fstp qword ptr [eax + FPy]
|
|
fmulp
|
|
fadd qword ptr [eax + FPx]
|
|
fstp qword ptr [eax + FPx]
|
|
fwait
|
|
end;
|
|
|
|
//--9--////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Spiral;
|
|
var
|
|
r, sinr, cosr: double;
|
|
begin
|
|
r := Flength + 1E-6;
|
|
// SinCos(r, sinr, cosr);
|
|
asm
|
|
fld qword ptr [r]
|
|
fsincos
|
|
fstp qword ptr [cosr]
|
|
fstp qword ptr [sinr]
|
|
fwait
|
|
end;
|
|
r := vars[9] / r;
|
|
FPx := FPx + (FCosA + sinr) * r;
|
|
FPy := FPy + (FsinA - cosr) * r;
|
|
end;
|
|
|
|
//--10--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Hyperbolic;
|
|
{
|
|
var
|
|
r: double;
|
|
begin
|
|
r := Flength + 1E-6;
|
|
FPx := FPx + vars[10] * FSinA / r;
|
|
FPy := FPy + vars[10] * FCosA * r;
|
|
}
|
|
|
|
// --Z-- Yikes!!! SOMEONE SHOULD GO BACK TO SCHOOL!!!!!!!
|
|
// Scott Draves, you aren't so cool after all! :-))
|
|
// And did no one niticed it?!!
|
|
// After ALL THESE YEARS!!!
|
|
|
|
// Now watch and learn how to do this WITHOUT calculating sin and cos:
|
|
begin
|
|
FPx := FPx + vars[10] * FTx / (sqr(FTx) + sqr(FTy) + 1E-6);
|
|
FPy := FPy + vars[10] * FTy;
|
|
end;
|
|
|
|
//--11--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Square;
|
|
{
|
|
var
|
|
sinr, cosr: double;
|
|
begin
|
|
SinCos(FLength, sinr, cosr);
|
|
FPx := FPx + vars[11] * FSinA * cosr;
|
|
FPy := FPy + vars[11] * FCosA * sinr;
|
|
}
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 11*8]
|
|
fld qword ptr [eax + FLength]
|
|
fsincos
|
|
fmul qword ptr [eax + FSinA]
|
|
fmul st, st(2)
|
|
fadd qword ptr [eax + FPx]
|
|
fstp qword ptr [eax + FPx]
|
|
fmul qword ptr [eax + FCosA]
|
|
fmulp
|
|
fadd qword ptr [eax + FPy]
|
|
fstp qword ptr [eax + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--12--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Ex;
|
|
{var
|
|
r: double;
|
|
n0, n1, m0, m1: double;
|
|
begin
|
|
r := sqrt(sqr(FTx) + sqr(FTy));
|
|
n0 := sin(FAngle + r);
|
|
n1 := cos(FAngle - r);
|
|
m0 := sqr(n0) * n0;
|
|
m1 := sqr(n1) * n1;
|
|
r := r * vars[12];
|
|
FPx := FPx + r * (m0 + m1);
|
|
FPy := FPy + r * (m0 - m1);
|
|
}
|
|
asm
|
|
fld qword ptr [eax + FTx]
|
|
fmul st, st
|
|
fld qword ptr [eax + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fld qword ptr [eax + FAngle]
|
|
fld st
|
|
fadd st, st(2)
|
|
fsin
|
|
fld st
|
|
fld st
|
|
fmulp
|
|
fmulp
|
|
fxch st(1)
|
|
fsub st, st(2)
|
|
fcos
|
|
fld st
|
|
fld st
|
|
fmulp
|
|
fmulp
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 12*8]
|
|
fmulp st(3), st
|
|
fld st
|
|
fadd st, st(2)
|
|
fmul st, st(3)
|
|
|
|
fadd qword ptr [eax + FPx]
|
|
fstp qword ptr [eax + FPx]
|
|
fsubp st(1), st
|
|
fmulp
|
|
fadd qword ptr [eax + FPy]
|
|
fstp qword ptr [eax + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--13--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Julia;
|
|
{
|
|
var
|
|
a, r: double;
|
|
sinr, cosr: double;
|
|
begin
|
|
if random > 0.5 then
|
|
a := FAngle/2 + PI
|
|
else
|
|
a := FAngle/2;
|
|
SinCos(a, sinr, cosr);
|
|
r := vars[13] * sqrt(sqrt(sqr(FTx) + sqr(FTy)));
|
|
FPx := FPx + r * cosr;
|
|
FPy := FPy + r * sinr;
|
|
}
|
|
asm
|
|
fld qword ptr [ebx + FAngle] // assert: self is in ebx
|
|
fld1
|
|
fld1
|
|
faddp
|
|
fdivp st(1), st
|
|
xor eax, eax // hmm...
|
|
add eax, $02 // hmmm....
|
|
call System.@RandInt // hmmmm.....
|
|
test al, al
|
|
jnz @skip
|
|
fldpi
|
|
faddp
|
|
@skip:
|
|
fsincos
|
|
fld qword ptr [ebx + FTx]
|
|
fmul st, st
|
|
fld qword ptr [ebx + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fsqrt
|
|
mov edx, [ebx + vars]
|
|
fmul qword ptr [edx + 13*8]
|
|
fmul st(2), st
|
|
fmulp st(1), st
|
|
fadd qword ptr [ebx + FPx]
|
|
fstp qword ptr [ebx + FPx]
|
|
fadd qword ptr [ebx + FPy]
|
|
fstp qword ptr [ebx + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--14--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Bent;
|
|
{
|
|
var
|
|
nx, ny: double;
|
|
begin
|
|
nx := FTx;
|
|
ny := FTy;
|
|
if (nx < 0) and (nx > -1E100) then
|
|
nx := nx * 2;
|
|
if ny < 0 then
|
|
ny := ny / 2;
|
|
FPx := FPx + vars[14] * nx;
|
|
FPy := FPy + vars[14] * ny;
|
|
}
|
|
// --Z-- This variation is kinda weird...
|
|
begin
|
|
if FTx < 0 then
|
|
FPx := FPx + vars[14] * (FTx*2)
|
|
else
|
|
FPx := FPx + vars[14] * FTx;
|
|
if FTy < 0 then
|
|
FPy := FPy + vars[14] * (FTy/2)
|
|
else
|
|
FPy := FPy + vars[14] * FTy;
|
|
end;
|
|
|
|
//--15--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Waves;
|
|
{
|
|
var
|
|
dx,dy,nx,ny: double;
|
|
begin
|
|
dx := c20;
|
|
dy := c21;
|
|
nx := FTx + c10 * sin(FTy / ((dx * dx) + EPS));
|
|
ny := FTy + c11 * sin(FTx / ((dy * dy) + EPS));
|
|
FPx := FPx + vars[15] * nx;
|
|
FPy := FPy + vars[15] * ny;
|
|
}
|
|
begin
|
|
FPx := FPx + vars[15] * (FTx + c10 * sin(FTy / (sqr(c20) + EPS)));
|
|
FPy := FPy + vars[15] * (FTy + c11 * sin(FTx / (sqr(c21) + EPS)));
|
|
end;
|
|
|
|
//--16--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Fisheye;
|
|
(*
|
|
var
|
|
r: double;
|
|
begin
|
|
{
|
|
// r := sqrt(FTx * FTx + FTy * FTy);
|
|
// a := arctan2(FTx, FTy);
|
|
// r := 2 * r / (r + 1);
|
|
r := 2 * Flength / (Flength + 1);
|
|
FPx := FPx + vars[16] * r * FCosA;
|
|
FPy := FPy + vars[16] * r * FSinA;
|
|
}
|
|
// --Z-- and again, sin & cos are NOT necessary here:
|
|
r := 2 * vars[16] / (sqrt(sqr(FTx) + sqr(FTy)) + 1);
|
|
// by the way, now we can clearly see that the original author messed X and Y:
|
|
FPx := FPx + r * FTy;
|
|
FPy := FPy + r * FTx;
|
|
*)
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 16*8]
|
|
fadd st, st
|
|
fld qword ptr [eax + FTx]
|
|
fld qword ptr [eax + FTy]
|
|
fld st(1)
|
|
fmul st, st
|
|
fld st(1)
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
fld1
|
|
faddp
|
|
fdivp st(3), st
|
|
fmul st, st(2)
|
|
fadd qword ptr [ebx + FPx]
|
|
fstp qword ptr [ebx + FPx]
|
|
fmulp
|
|
fadd qword ptr [ebx + FPy]
|
|
fstp qword ptr [ebx + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--17--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Popcorn;
|
|
(*
|
|
var
|
|
dx, dy: double;
|
|
// nx, ny: double;
|
|
begin
|
|
dx := tan(3 * FTy);
|
|
if (dx <> dx) then
|
|
dx := 0.0; // < probably won't work in Delphi
|
|
dy := tan(3 * FTx); // NAN will raise an exception...
|
|
if (dy <> dy) then
|
|
dy := 0.0; // remove for speed?
|
|
// nx := FTx + c20 * sin(dx);
|
|
// ny := FTy + c21 * sin(dy);
|
|
// FPx := FPx + vars[17] * nx;
|
|
// FPy := FPy + vars[17] * ny;
|
|
FPx := FPx + vars[17] * (FTx + c20 * sin(dx));
|
|
FPy := FPy + vars[17] * (FTy + c21 * sin(dy));
|
|
*)
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 17*8]
|
|
fld qword ptr [eax + FTy]
|
|
fld qword ptr [eax + FTx]
|
|
fld st(1)
|
|
fld st
|
|
fld st
|
|
faddp
|
|
faddp
|
|
fptan
|
|
fstp st
|
|
fsin
|
|
fmul qword ptr [eax + c20]
|
|
fadd st, st(1)
|
|
fmul st, st(3)
|
|
fadd qword ptr [ebx + FPx]
|
|
fstp qword ptr [ebx + FPx]
|
|
fld st
|
|
fld st
|
|
faddp
|
|
faddp
|
|
fptan
|
|
fstp st
|
|
fsin
|
|
fmul qword ptr [eax + c21]
|
|
faddp
|
|
fmulp
|
|
fadd qword ptr [ebx + FPy]
|
|
fstp qword ptr [ebx + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--18--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Exponential;
|
|
{
|
|
var
|
|
d: double;
|
|
sinr, cosr: double;
|
|
begin
|
|
SinCos(PI * FTy, sinr, cosr);
|
|
d := vars[18] * exp(FTx - 1); // --Z-- (e^x)/e = e^(x-1)
|
|
FPx := FPx + cosr * d;
|
|
FPy := FPy + sinr * d;
|
|
}
|
|
asm
|
|
fld qword ptr [eax + FTx]
|
|
fld1
|
|
fsubp st(1), st
|
|
// --Z-- here goes exp(x) code from System.pas
|
|
FLDL2E
|
|
FMUL
|
|
FLD ST(0)
|
|
FRNDINT
|
|
FSUB ST(1), ST
|
|
FXCH ST(1)
|
|
F2XM1
|
|
FLD1
|
|
FADD
|
|
FSCALE
|
|
FSTP ST(1)
|
|
// -----
|
|
mov edx, [eax + vars]
|
|
fmul qword ptr [edx + 18*8]
|
|
fld qword ptr [eax + FTy]
|
|
fldpi
|
|
fmulp
|
|
fsincos
|
|
fmul st, st(2)
|
|
fadd qword ptr [ebx + FPx]
|
|
fstp qword ptr [ebx + FPx]
|
|
fmulp
|
|
fadd qword ptr [ebx + FPy]
|
|
fstp qword ptr [ebx + FPy]
|
|
fwait
|
|
end;
|
|
|
|
//--19--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Power;
|
|
var
|
|
r: double;
|
|
// nx, ny: double;
|
|
begin
|
|
// r := sqrt(FTx * FTx + FTy * FTy);
|
|
// sa := sin(FAngle);
|
|
r := vars[19] * Math.Power(FLength, FSinA);
|
|
// nx := r * FCosA;
|
|
// ny := r * FSinA;
|
|
FPx := FPx + r * FCosA;
|
|
FPy := FPy + r * FSinA;
|
|
end;
|
|
|
|
//--20--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Cosine;
|
|
var
|
|
vsin2, vcos2: double;
|
|
e1, e2: double;
|
|
begin
|
|
// SinCos(FTx * PI, sinr, cosr);
|
|
// FPx := FPx + vars[20] * cosr * cosh(FTy);
|
|
// FPy := FPy - vars[20] * sinr * sinh(FTy);
|
|
{
|
|
SinCos(FTx * PI, sinr, cosr);
|
|
if FTy = 0 then
|
|
begin
|
|
// sinh(0) = 0, cosh(0) = 1
|
|
FPx := FPx + vars[20] * cosr;
|
|
end
|
|
else begin
|
|
// --Z-- sinh() and cosh() both calculate exp(y) and exp(-y)
|
|
e1 := exp(FTy);
|
|
e2 := exp(-FTy);
|
|
FPx := FPx + vars[20] * cosr * (e1 + e2)/2;
|
|
FPy := FPy - vars[20] * sinr * (e1 - e2)/2;
|
|
end;
|
|
}
|
|
asm
|
|
mov edx, [eax + vars]
|
|
fld qword ptr [edx + 20*8]
|
|
fld1
|
|
fld1
|
|
faddp
|
|
fdivp st(1), st
|
|
fld qword ptr [eax + FTx]
|
|
fldpi
|
|
fmulp
|
|
fsincos
|
|
fmul st, st(2)
|
|
fstp qword ptr [vcos2]
|
|
fmulp
|
|
fstp qword ptr [vsin2]
|
|
fwait
|
|
end;
|
|
if FTy = 0 then
|
|
begin
|
|
// sinh(0) = 0, cosh(0) = 1
|
|
FPx := FPx + 2 * vcos2;
|
|
end
|
|
else begin
|
|
// --Z-- sinh() and cosh() both calculate exp(y) and exp(-y)
|
|
e1 := exp(FTy);
|
|
e2 := exp(-FTy);
|
|
FPx := FPx + vcos2 * (e1 + e2);
|
|
FPy := FPy - vsin2 * (e1 - e2);
|
|
end;
|
|
end;
|
|
|
|
//--21--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Rings;
|
|
var
|
|
r: double;
|
|
dx: double;
|
|
begin
|
|
dx := sqr(c20) + EPS;
|
|
// r := FLength;
|
|
// r := r + dx - System.Int((r + dx)/(2 * dx)) * 2 * dx - dx + r * (1-dx);
|
|
// --Z-- ^^^^ heheeeee :-) ^^^^
|
|
|
|
// FPx := FPx + vars[21] * r * FCosA;
|
|
// FPy := FPy + vars[21] * r * FSinA;
|
|
r := vars[21] * (
|
|
2 * FLength - dx * (System.Int((FLength/dx + 1)/2) * 2 + FLength)
|
|
);
|
|
FPx := FPx + r * FCosA;
|
|
FPy := FPy + r * FSinA;
|
|
end;
|
|
|
|
//--22--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Fan;
|
|
var
|
|
// r, a : double;
|
|
// sinr, cosr: double;
|
|
dx, dy, dx2: double;
|
|
begin
|
|
dy := c21;
|
|
dx := PI * (sqr(c20) + EPS);
|
|
dx2 := dx/2;
|
|
|
|
if (FAngle+dy - System.Int((FAngle + dy)/dx) * dx) > dx2 then
|
|
//a := FAngle - dx2
|
|
asm
|
|
fld qword ptr [ebx + FAngle]
|
|
fsub qword ptr [dx2]
|
|
end
|
|
else
|
|
//a := FAngle + dx2;
|
|
asm
|
|
fld qword ptr [ebx + FAngle]
|
|
fadd qword ptr [dx2]
|
|
end;
|
|
// SinCos(a, sinr, cosr);
|
|
// r := vars[22] * sqrt(sqr(FTx) + sqr(FTy));
|
|
// FPx := FPx + r * cosr;
|
|
// FPy := FPy + r * sinr;
|
|
asm
|
|
fsincos
|
|
fld qword ptr [ebx + FTx]
|
|
fmul st, st
|
|
fld qword ptr [ebx + FTy]
|
|
fmul st, st
|
|
faddp
|
|
fsqrt
|
|
mov edx, [ebx + vars]
|
|
fmul qword ptr [edx + 22*8]
|
|
fmul st(2), st
|
|
fmulp
|
|
fadd qword ptr [ebx + FPx]
|
|
fstp qword ptr [ebx + FPx]
|
|
fadd qword ptr [ebx + FPy]
|
|
fstp qword ptr [ebx + FPy]
|
|
fwait
|
|
end;
|
|
end;
|
|
|
|
(*
|
|
|
|
//--23--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Triblob;
|
|
var
|
|
r : double;
|
|
Angle: double;
|
|
sinr, cosr: double;
|
|
begin
|
|
r := sqrt(sqr(FTx) + sqr(FTy));
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
Angle := arctan2(FTx, FTy)
|
|
else
|
|
Angle := 0.0;
|
|
|
|
r := r * (0.6 + 0.4 * sin(3 * Angle));
|
|
SinCos(Angle, sinr, cosr);
|
|
|
|
FPx := FPx + vars[23] * r * cosr;
|
|
FPy := FPy + vars[23] * r * sinr;
|
|
end;
|
|
|
|
//--24--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Daisy;
|
|
var
|
|
r : double;
|
|
Angle: double;
|
|
sinr, cosr: double;
|
|
begin
|
|
r := sqrt(sqr(FTx) + sqr(FTy));
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
Angle := arctan2(FTx, FTy)
|
|
else
|
|
Angle := 0.0;
|
|
|
|
// r := r * (0.6 + 0.4 * sin(3 * Angle));
|
|
r := r * ( 1 - Sqr(sin(5 * Angle)));
|
|
SinCos(Angle, sinr, cosr);
|
|
|
|
FPx := FPx + vars[24] * r * cosr;
|
|
FPy := FPy + vars[24] * r * sinr;
|
|
end;
|
|
|
|
//--25--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Checkers;
|
|
var
|
|
dx: double;
|
|
begin
|
|
if odd(Round(FTX * 5) + Round(FTY * 5)) then
|
|
dx := 0.2
|
|
else
|
|
dx := 0;
|
|
|
|
FPx := FPx + vars[25] * FTx + dx;
|
|
FPy := FPy + vars[25] * FTy;
|
|
end;
|
|
|
|
//--26--///////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.CRot;
|
|
var
|
|
r : double;
|
|
Angle: double;
|
|
sinr, cosr: double;
|
|
begin
|
|
r := sqrt(sqr(FTx) + sqr(FTy));
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
Angle := arctan2(FTx, FTy)
|
|
else
|
|
Angle := 0.0;
|
|
|
|
if r < 3 then
|
|
Angle := Angle + (3 - r) * sin(3 * r);
|
|
SinCos(Angle, sinr, cosr);
|
|
|
|
// r:= R - 0.04 * sin(6.2 * R - 1) - 0.008 * R;
|
|
|
|
FPx := FPx + vars[26] * r * cosr;
|
|
FPy := FPy + vars[26] * r * sinr;
|
|
end;
|
|
|
|
*)
|
|
|
|
//***************************************************************************//
|
|
|
|
procedure TXForm.PreviewPoint(var px, py: double);
|
|
var
|
|
i: Integer;
|
|
begin
|
|
FTx := c00 * px + c10 * py + c20;
|
|
FTy := c01 * px + c11 * py + c21;
|
|
|
|
Fpx := 0;
|
|
Fpy := 0;
|
|
|
|
for i := 0 to FNrFunctions - 1 do
|
|
FCalcFunctionList[i];
|
|
|
|
px := FPx;
|
|
py := FPy;
|
|
end;
|
|
|
|
procedure TXForm.NextPoint(var px, py, pc: double);
|
|
var
|
|
i: Integer;
|
|
begin
|
|
// first compute the color coord
|
|
if symmetry = 0 then
|
|
pc := (pc + color) / 2
|
|
else
|
|
pc := (pc + color) * 0.5 * (1 - symmetry) + symmetry * pc;
|
|
|
|
FTx := c00 * px + c10 * py + c20;
|
|
FTy := c01 * px + c11 * py + c21;
|
|
(*
|
|
if CalculateAngle then begin
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
FAngle := arctan2(FTx, FTy)
|
|
else
|
|
FAngle := 0.0;
|
|
end;
|
|
|
|
if CalculateSinCos then begin
|
|
Flength := sqrt(sqr(FTx) + sqr(FTy));
|
|
if FLength = 0 then begin
|
|
FSinA := 0;
|
|
FCosA := 0;
|
|
end else begin
|
|
FSinA := FTx/FLength;
|
|
FCosA := FTy/FLength;
|
|
end;
|
|
end;
|
|
|
|
// if CalculateLength then begin
|
|
// FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
// end;
|
|
*)
|
|
Fpx := 0;
|
|
Fpy := 0;
|
|
|
|
for i := 0 to FNrFunctions - 1 do
|
|
FCalcFunctionList[i];
|
|
|
|
px := FPx;
|
|
py := FPy;
|
|
// px := p[0,0] * FPx + p[1,0] * FPy + p[2,0];
|
|
// py := p[0,1] * FPx + p[1,1] * FPy + p[2,1];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.NextPoint(var CPpoint: TCPpoint);
|
|
var
|
|
i: Integer;
|
|
begin
|
|
// first compute the color coord
|
|
if symmetry = 0 then
|
|
CPpoint.c := (CPpoint.c + color) / 2
|
|
else
|
|
CPpoint.c := (CPpoint.c + color) * 0.5 * (1 - symmetry) + symmetry * CPpoint.c;
|
|
|
|
FTx := c00 * CPpoint.x + c10 * CPpoint.y + c20;
|
|
FTy := c01 * CPpoint.x + c11 * CPpoint.y + c21;
|
|
|
|
(*
|
|
if CalculateAngle then begin
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
FAngle := arctan2(FTx, FTy)
|
|
else
|
|
FAngle := 0.0;
|
|
end;
|
|
|
|
if CalculateSinCos then begin
|
|
Flength := sqrt(sqr(FTx) + sqr(FTy));
|
|
if FLength = 0 then begin
|
|
FSinA := 0;
|
|
FCosA := 1;
|
|
end else begin
|
|
FSinA := FTx/FLength;
|
|
FCosA := FTy/FLength;
|
|
end;
|
|
end;
|
|
|
|
// if CalculateLength then begin
|
|
// FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
// end;
|
|
*)
|
|
|
|
Fpx := 0;
|
|
Fpy := 0;
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
FFunctionList[i];
|
|
|
|
CPpoint.x := FPx;
|
|
CPpoint.y := FPy;
|
|
// CPpoint.x := p[0,0] * FPx + p[1,0] * FPy + p[2,0];
|
|
// CPpoint.y := p[0,1] * FPx + p[1,1] * FPy + p[2,1];
|
|
end;
|
|
|
|
|
|
{
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.NextPoint(var px, py, pz, pc: double);
|
|
var
|
|
i: Integer;
|
|
tpx, tpy: double;
|
|
begin
|
|
// first compute the color coord
|
|
pc := (pc + color) * 0.5 * (1 - symmetry) + symmetry * pc;
|
|
|
|
case Orientationtype of
|
|
1:
|
|
begin
|
|
tpx := px;
|
|
tpy := pz;
|
|
end;
|
|
2:
|
|
begin
|
|
tpx := py;
|
|
tpy := pz;
|
|
end;
|
|
else
|
|
tpx := px;
|
|
tpy := py;
|
|
end;
|
|
|
|
FTx := c00 * tpx + c10 * tpy + c20;
|
|
FTy := c01 * tpx + c11 * tpy + c21;
|
|
|
|
(*
|
|
if CalculateAngle then begin
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
FAngle := arctan2(FTx, FTy)
|
|
else
|
|
FAngle := 0.0;
|
|
end;
|
|
|
|
if CalculateSinCos then begin
|
|
Flength := sqrt(sqr(FTx) + sqr(FTy));
|
|
if FLength = 0 then begin
|
|
FSinA := 0;
|
|
FCosA := 1;
|
|
end else begin
|
|
FSinA := FTx/FLength;
|
|
FCosA := FTy/FLength;
|
|
end;
|
|
end;
|
|
|
|
// if CalculateLength then begin
|
|
// FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
// end;
|
|
*)
|
|
|
|
Fpx := 0;
|
|
Fpy := 0;
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
FFunctionList[i];
|
|
|
|
case Orientationtype of
|
|
1:
|
|
begin
|
|
px := FPx;
|
|
pz := FPy;
|
|
end;
|
|
2:
|
|
begin
|
|
py := FPx;
|
|
pz := FPy;
|
|
end;
|
|
else
|
|
px := FPx;
|
|
py := FPy;
|
|
end;
|
|
end;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.NextPoint2C(var px, py, pc1, pc2: double);
|
|
var
|
|
i: Integer;
|
|
begin
|
|
// first compute the color coord
|
|
pc1 := (pc1 + color) * 0.5 * (1 - symmetry) + symmetry * pc1;
|
|
pc2 := (pc2 + color) * 0.5 * (1 - symmetry) + symmetry * pc2;
|
|
|
|
FTx := c00 * px + c10 * py + c20;
|
|
FTy := c01 * px + c11 * py + c21;
|
|
|
|
(*
|
|
if CalculateAngle then begin
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
FAngle := arctan2(FTx, FTy)
|
|
else
|
|
FAngle := 0.0;
|
|
end;
|
|
|
|
if CalculateSinCos then begin
|
|
Flength := sqrt(sqr(FTx) + sqr(FTy));
|
|
if FLength = 0 then begin
|
|
FSinA := 0;
|
|
FCosA := 1;
|
|
end else begin
|
|
FSinA := FTx/FLength;
|
|
FCosA := FTy/FLength;
|
|
end;
|
|
end;
|
|
|
|
// if CalculateLength then begin
|
|
// FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
// end;
|
|
*)
|
|
|
|
Fpx := 0;
|
|
Fpy := 0;
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
FFunctionList[i];
|
|
|
|
px := FPx;
|
|
py := FPy;
|
|
// px := p[0,0] * FPx + p[1,0] * FPy + p[2,0];
|
|
// py := p[0,1] * FPx + p[1,1] * FPy + p[2,1];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.NextPointXY(var px, py: double);
|
|
var
|
|
i: integer;
|
|
begin
|
|
FTx := c00 * px + c10 * py + c20;
|
|
FTy := c01 * px + c11 * py + c21;
|
|
|
|
(*
|
|
if CalculateAngle then begin
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
FAngle := arctan2(FTx, FTy)
|
|
else
|
|
FAngle := 0.0;
|
|
end;
|
|
|
|
if CalculateSinCos then begin
|
|
Flength := sqrt(sqr(FTx) + sqr(FTy));
|
|
if FLength = 0 then begin
|
|
FSinA := 0;
|
|
FCosA := 0;
|
|
end else begin
|
|
FSinA := FTx/FLength;
|
|
FCosA := FTy/FLength;
|
|
end;
|
|
end;
|
|
*)
|
|
|
|
Fpx := 0;
|
|
Fpy := 0;
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
FFunctionList[i];
|
|
|
|
px := FPx;
|
|
py := FPy;
|
|
// px := p[0,0] * FPx + p[1,0] * FPy + p[2,0];
|
|
// py := p[0,1] * FPx + p[1,1] * FPy + p[2,1];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
function TXForm.Mul33(const M1, M2: TMatrix): TMatrix;
|
|
begin
|
|
result[0, 0] := M1[0][0] * M2[0][0] + M1[0][1] * M2[1][0] + M1[0][2] * M2[2][0];
|
|
result[0, 1] := M1[0][0] * M2[0][1] + M1[0][1] * M2[1][1] + M1[0][2] * M2[2][1];
|
|
result[0, 2] := M1[0][0] * M2[0][2] + M1[0][1] * M2[1][2] + M1[0][2] * M2[2][2];
|
|
result[1, 0] := M1[1][0] * M2[0][0] + M1[1][1] * M2[1][0] + M1[1][2] * M2[2][0];
|
|
result[1, 1] := M1[1][0] * M2[0][1] + M1[1][1] * M2[1][1] + M1[1][2] * M2[2][1];
|
|
result[1, 2] := M1[1][0] * M2[0][2] + M1[1][1] * M2[1][2] + M1[1][2] * M2[2][2];
|
|
result[2, 0] := M1[2][0] * M2[0][0] + M1[2][1] * M2[1][0] + M1[2][2] * M2[2][0];
|
|
result[2, 0] := M1[2][0] * M2[0][1] + M1[2][1] * M2[1][1] + M1[2][2] * M2[2][1];
|
|
result[2, 0] := M1[2][0] * M2[0][2] + M1[2][1] * M2[1][2] + M1[2][2] * M2[2][2];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
function TXForm.Identity: TMatrix;
|
|
var
|
|
i, j: integer;
|
|
begin
|
|
for i := 0 to 2 do
|
|
for j := 0 to 2 do
|
|
Result[i, j] := 0;
|
|
Result[0][0] := 1;
|
|
Result[1][1] := 1;
|
|
Result[2][2] := 1;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Rotate(const degrees: double);
|
|
var
|
|
r: double;
|
|
Matrix, M1: TMatrix;
|
|
begin
|
|
r := degrees * pi / 180;
|
|
M1 := Identity;
|
|
M1[0, 0] := cos(r);
|
|
M1[0, 1] := -sin(r);
|
|
M1[1, 0] := sin(r);
|
|
M1[1, 1] := cos(r);
|
|
Matrix := Identity;
|
|
|
|
Matrix[0][0] := c[0, 0];
|
|
Matrix[0][1] := c[0, 1];
|
|
Matrix[1][0] := c[1, 0];
|
|
Matrix[1][1] := c[1, 1];
|
|
Matrix[0][2] := c[2, 0];
|
|
Matrix[1][2] := c[2, 1];
|
|
Matrix := Mul33(Matrix, M1);
|
|
c[0, 0] := Matrix[0][0];
|
|
c[0, 1] := Matrix[0][1];
|
|
c[1, 0] := Matrix[1][0];
|
|
c[1, 1] := Matrix[1][1];
|
|
c[2, 0] := Matrix[0][2];
|
|
c[2, 1] := Matrix[1][2];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Translate(const x, y: double);
|
|
var
|
|
Matrix, M1: TMatrix;
|
|
begin
|
|
M1 := Identity;
|
|
M1[0, 2] := x;
|
|
M1[1, 2] := y;
|
|
Matrix := Identity;
|
|
|
|
Matrix[0][0] := c[0, 0];
|
|
Matrix[0][1] := c[0, 1];
|
|
Matrix[1][0] := c[1, 0];
|
|
Matrix[1][1] := c[1, 1];
|
|
Matrix[0][2] := c[2, 0];
|
|
Matrix[1][2] := c[2, 1];
|
|
Matrix := Mul33(Matrix, M1);
|
|
c[0, 0] := Matrix[0][0];
|
|
c[0, 1] := Matrix[0][1];
|
|
c[1, 0] := Matrix[1][0];
|
|
c[1, 1] := Matrix[1][1];
|
|
c[2, 0] := Matrix[0][2];
|
|
c[2, 1] := Matrix[1][2];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Multiply(const a, b, c, d: double);
|
|
var
|
|
Matrix, M1: TMatrix;
|
|
begin
|
|
M1 := Identity;
|
|
M1[0, 0] := a;
|
|
M1[0, 1] := b;
|
|
M1[1, 0] := c;
|
|
M1[1, 1] := d;
|
|
Matrix := Identity;
|
|
Matrix[0][0] := Self.c[0, 0];
|
|
Matrix[0][1] := Self.c[0, 1];
|
|
Matrix[1][0] := Self.c[1, 0];
|
|
Matrix[1][1] := Self.c[1, 1];
|
|
Matrix[0][2] := Self.c[2, 0];
|
|
Matrix[1][2] := Self.c[2, 1];
|
|
Matrix := Mul33(Matrix, M1);
|
|
Self.c[0, 0] := Matrix[0][0];
|
|
Self.c[0, 1] := Matrix[0][1];
|
|
Self.c[1, 0] := Matrix[1][0];
|
|
Self.c[1, 1] := Matrix[1][1];
|
|
Self.c[2, 0] := Matrix[0][2];
|
|
Self.c[2, 1] := Matrix[1][2];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Scale(const s: double);
|
|
var
|
|
Matrix, M1: TMatrix;
|
|
begin
|
|
M1 := Identity;
|
|
M1[0, 0] := s;
|
|
M1[1, 1] := s;
|
|
Matrix := Identity;
|
|
Matrix[0][0] := c[0, 0];
|
|
Matrix[0][1] := c[0, 1];
|
|
Matrix[1][0] := c[1, 0];
|
|
Matrix[1][1] := c[1, 1];
|
|
Matrix[0][2] := c[2, 0];
|
|
Matrix[1][2] := c[2, 1];
|
|
Matrix := Mul33(Matrix, M1);
|
|
c[0, 0] := Matrix[0][0];
|
|
c[0, 1] := Matrix[0][1];
|
|
c[1, 0] := Matrix[1][0];
|
|
c[1, 1] := Matrix[1][1];
|
|
c[2, 0] := Matrix[0][2];
|
|
c[2, 1] := Matrix[1][2];
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
destructor TXForm.Destroy;
|
|
var
|
|
i: integer;
|
|
begin
|
|
// if assigned(Script) then
|
|
// Script.Free;
|
|
|
|
for i := 0 to High(FRegVariations) do
|
|
FRegVariations[i].Free;
|
|
|
|
inherited;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.BuildFunctionlist;
|
|
var
|
|
i: integer;
|
|
begin
|
|
SetLength(FFunctionList, NrVar + Length(FRegVariations));
|
|
|
|
//fixed
|
|
FFunctionList[0] := Linear;
|
|
FFunctionList[1] := Sinusoidal;
|
|
FFunctionList[2] := Spherical;
|
|
FFunctionList[3] := Swirl;
|
|
FFunctionList[4] := Horseshoe;
|
|
FFunctionList[5] := Polar;
|
|
FFunctionList[6] := FoldedHandkerchief;
|
|
FFunctionList[7] := Heart;
|
|
FFunctionList[8] := Disc;
|
|
FFunctionList[9] := Spiral;
|
|
FFunctionList[10] := Hyperbolic;
|
|
FFunctionList[11] := Square;
|
|
FFunctionList[12] := Ex;
|
|
FFunctionList[13] := Julia;
|
|
FFunctionList[14] := Bent;
|
|
FFunctionList[15] := Waves;
|
|
FFunctionList[16] := Fisheye;
|
|
FFunctionList[17] := Popcorn;
|
|
FFunctionList[18] := Exponential;
|
|
FFunctionList[19] := Power;
|
|
FFunctionList[20] := Cosine;
|
|
FFunctionList[21] := Rings;
|
|
FFunctionList[22] := Fan;
|
|
|
|
// FFunctionList[23] := Triblob;
|
|
// FFunctionList[24] := Daisy;
|
|
// FFunctionList[25] := Checkers;
|
|
// FFunctionList[26] := CRot;
|
|
|
|
//registered
|
|
for i := 0 to High(FRegVariations) do
|
|
FFunctionList[23 + i] := FRegVariations[i].CalcFunction;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.AddRegVariations;
|
|
var
|
|
i: integer;
|
|
begin
|
|
SetLength(FRegVariations, GetNrRegisteredVariations);
|
|
for i := 0 to GetNrRegisteredVariations - 1 do begin
|
|
FRegVariations[i] := GetRegisteredVariation(i).GetInstance;
|
|
end;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.Assign(XForm: TXForm);
|
|
var
|
|
i,j: integer;
|
|
Name: string;
|
|
Value: double;
|
|
begin
|
|
if Not assigned(XForm) then
|
|
Exit;
|
|
|
|
for i := 0 to High(vars) do
|
|
vars[i] := XForm.vars[i];
|
|
|
|
c := Xform.c;
|
|
p := Xform.p;
|
|
density := XForm.density;
|
|
color := XForm.color;
|
|
color2 := XForm.color2;
|
|
symmetry := XForm.symmetry;
|
|
Orientationtype := XForm.Orientationtype;
|
|
|
|
for i := 0 to High(FRegVariations) do begin
|
|
for j:= 0 to FRegVariations[i].GetNrVariables -1 do begin
|
|
Name := FRegVariations[i].GetVariableNameAt(j);
|
|
XForm.FRegVariations[i].GetVariable(Name,Value);
|
|
FRegVariations[i].SetVariable(Name,Value);
|
|
end;
|
|
end;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
function TXForm.ToXMLString: string;
|
|
var
|
|
i, j: integer;
|
|
Name: string;
|
|
Value: double;
|
|
begin
|
|
result := Format(' <xform weight="%g" color="%g" symmetry="%g" ', [density, color, symmetry]);
|
|
for i := 0 to nrvar - 1 do begin
|
|
if vars[i] <> 0 then
|
|
Result := Result + varnames(i) + format('="%g" ', [vars[i]]);
|
|
end;
|
|
Result := Result + Format('coefs="%g %g %g %g %g %g" ', [c[0,0], c[0,1], c[1,0], c[1,1], c[2,0], c[2,1]]);
|
|
if (p[0,0]<>1) or (p[0,1]<>0) or(p[1,0]<>0) or (p[1,1]<>1) or (p[2,0]<>0) or (p[2,1]<>0) then
|
|
Result := Result + Format('post="%g %g %g %g %g %g" ', [p[0,0], p[0,1], p[1,0], p[1,1], p[2,0], p[2,1]]);
|
|
|
|
for i := 0 to High(FRegVariations) do begin
|
|
if vars[i+NRLOCVAR] <> 0 then
|
|
for j:= 0 to FRegVariations[i].GetNrVariables -1 do begin
|
|
Name := FRegVariations[i].GetVariableNameAt(j);
|
|
FRegVariations[i].GetVariable(Name,Value);
|
|
Result := Result + Format('%s="%g" ', [name, value]);
|
|
end;
|
|
end;
|
|
|
|
Result := Result + '/>';
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.SetVariable(const name: string; var Value: double);
|
|
var
|
|
i: integer;
|
|
begin
|
|
for i := 0 to High(FRegVariations) do
|
|
if FRegVariations[i].SetVariable(name, value) then
|
|
break;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
procedure TXForm.GetVariable(const name: string; var Value: double);
|
|
var
|
|
i: integer;
|
|
begin
|
|
for i := 0 to High(FRegVariations) do
|
|
if FRegVariations[i].GetVariable(name, value) then
|
|
break;
|
|
end;
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
end.
|