2005-03-25 03:35:39 -05:00
|
|
|
unit XForm;
|
|
|
|
|
|
|
|
interface
|
|
|
|
|
|
|
|
const
|
2005-04-02 05:53:22 -05:00
|
|
|
{$IFDEF TESTVARIANT}
|
|
|
|
NVARS = 26;
|
|
|
|
{$ELSE}
|
|
|
|
NVARS = 25;
|
|
|
|
{$ENDIF}
|
|
|
|
|
|
|
|
varnames: array[0..NVARS -1] of PChar = (
|
|
|
|
'linear',
|
|
|
|
'sinusoidal',
|
|
|
|
'spherical',
|
|
|
|
'swirl',
|
|
|
|
'horseshoe',
|
|
|
|
'polar',
|
|
|
|
'handkerchief',
|
|
|
|
'heart',
|
|
|
|
'disc',
|
|
|
|
'spiral',
|
|
|
|
'hyperbolic',
|
|
|
|
'diamond',
|
|
|
|
'ex',
|
|
|
|
'julia',
|
|
|
|
'bent',
|
|
|
|
'waves',
|
|
|
|
'fisheye',
|
|
|
|
'popcorn',
|
|
|
|
'exponential',
|
|
|
|
'power',
|
|
|
|
'cosine',
|
|
|
|
'rings',
|
|
|
|
'fan',
|
|
|
|
'triblob',
|
|
|
|
'daisy'
|
|
|
|
{$IFDEF TESTVARIANT}
|
|
|
|
,'test'
|
|
|
|
{$ENDIF}
|
|
|
|
);
|
2005-03-25 03:35:39 -05:00
|
|
|
|
|
|
|
type
|
|
|
|
TCalcMethod = procedure of object;
|
|
|
|
|
|
|
|
type
|
|
|
|
TCPpoint = record
|
|
|
|
x, y, c: double;
|
|
|
|
end;
|
|
|
|
PCPpoint = ^TCPpoint;
|
|
|
|
|
|
|
|
TXYpoint = record
|
|
|
|
x, y: double;
|
|
|
|
end;
|
|
|
|
PXYpoint = ^TXYpoint;
|
|
|
|
|
2005-03-27 08:28:52 -05:00
|
|
|
TMatrix = array[0..2, 0..2] of double;
|
|
|
|
|
2005-03-25 03:35:39 -05:00
|
|
|
type
|
|
|
|
TXForm = class
|
|
|
|
private
|
|
|
|
FNrFunctions: Integer;
|
|
|
|
FFunctionList: array[0..NVARS] of TCalcMethod;
|
|
|
|
|
|
|
|
FTx, FTy: double;
|
|
|
|
FPx, FPy: double;
|
|
|
|
FAngle: double;
|
|
|
|
FSinA: double;
|
|
|
|
FCosA: double;
|
|
|
|
FLength: double;
|
|
|
|
CalculateAngle: boolean;
|
|
|
|
CalculateLength: boolean;
|
|
|
|
CalculateSinCos: boolean;
|
|
|
|
|
|
|
|
procedure Linear; // var[0]
|
|
|
|
procedure Sinusoidal; // var[1]
|
|
|
|
procedure Spherical; // var[2]
|
|
|
|
procedure Swirl; // var[3]
|
|
|
|
procedure Horseshoe; // var[4]
|
|
|
|
procedure Polar; // var[5]
|
|
|
|
procedure FoldedHandkerchief; // var[6]
|
|
|
|
procedure Heart; // var[7]
|
|
|
|
procedure Disc; // var[8]
|
|
|
|
procedure Spiral; // var[9]
|
|
|
|
procedure hyperbolic; // var[10]
|
|
|
|
procedure Square; // var[11]
|
|
|
|
procedure Ex; // var[12]
|
|
|
|
procedure Julia; // var[13]
|
|
|
|
procedure Bent; // var[14]
|
|
|
|
procedure Waves; // var[15]
|
|
|
|
procedure Fisheye; // var[16]
|
|
|
|
procedure Popcorn; // var[17]
|
|
|
|
procedure Exponential; // var[18]
|
|
|
|
procedure Power; // var[19]
|
|
|
|
procedure Cosine; // var[20]
|
|
|
|
procedure Rings; // var[21]
|
|
|
|
procedure Fan; // var[22]
|
2005-04-02 05:53:22 -05:00
|
|
|
procedure Triblob; // var[23]
|
|
|
|
procedure Daisy; // var[24]
|
|
|
|
procedure TestVar; // var[NVARS - 1]
|
2005-03-25 03:35:39 -05:00
|
|
|
|
2005-03-27 08:28:52 -05:00
|
|
|
function Mul33(const M1, M2: TMatrix): TMatrix;
|
|
|
|
function Identity: TMatrix;
|
|
|
|
|
2005-03-25 03:35:39 -05:00
|
|
|
public
|
|
|
|
vars: array[0..NVARS - 1] of double; // normalized interp coefs between variations
|
|
|
|
c: array[0..2, 0..1] of double; // the coefs to the affine part of the function
|
|
|
|
density: double; // prob is this function is chosen. 0 - 1
|
|
|
|
color: double; // color coord for this function. 0 - 1
|
|
|
|
color2: double; // Second color coord for this function. 0 - 1
|
|
|
|
symmetry: double;
|
|
|
|
c00, c01, c10, c11, c20, c21: double;
|
|
|
|
|
|
|
|
varType: integer;
|
|
|
|
|
|
|
|
Orientationtype: integer;
|
|
|
|
|
|
|
|
constructor Create;
|
|
|
|
procedure Prepare;
|
|
|
|
|
|
|
|
procedure NextPoint(var px, py, pc: double); overload;
|
|
|
|
procedure NextPoint(var CPpoint: TCPpoint); overload;
|
|
|
|
procedure NextPoint(var px, py, pz, pc: double); overload;
|
|
|
|
procedure NextPointXY(var px, py: double);
|
|
|
|
procedure NextPoint2C(var px, py, pc1, pc2: double);
|
|
|
|
|
2005-03-27 08:28:52 -05:00
|
|
|
procedure Rotate(const degrees: double);
|
|
|
|
procedure Translate(const x, y: double);
|
|
|
|
procedure Multiply(const a, b, c, d: double);
|
|
|
|
procedure Scale(const s: double);
|
2005-03-25 03:35:39 -05:00
|
|
|
end;
|
|
|
|
|
|
|
|
implementation
|
|
|
|
|
|
|
|
uses
|
|
|
|
SysUtils, Math;
|
|
|
|
|
2005-04-02 05:53:22 -05:00
|
|
|
const
|
|
|
|
EPS = 1E-10;
|
|
|
|
|
2005-03-25 03:35:39 -05:00
|
|
|
{ TXForm }
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
constructor TXForm.Create;
|
|
|
|
var
|
|
|
|
i: Integer;
|
|
|
|
begin
|
|
|
|
density := 0;
|
|
|
|
Color := 0;
|
|
|
|
Vars[0] := 1;
|
|
|
|
for i := 1 to NVARS - 1 do begin
|
|
|
|
Vars[i] := 0;
|
|
|
|
end;
|
|
|
|
c[0, 0] := 1;
|
|
|
|
c[0, 1] := 0;
|
|
|
|
c[1, 0] := 0;
|
|
|
|
c[1, 1] := 1;
|
|
|
|
c[2, 0] := 0;
|
|
|
|
c[2, 1] := 0;
|
|
|
|
Symmetry := 0;
|
|
|
|
end;
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Prepare;
|
|
|
|
begin
|
|
|
|
c00 := c[0][0];
|
|
|
|
c01 := c[0][1];
|
|
|
|
c10 := c[1][0];
|
|
|
|
c11 := c[1][1];
|
|
|
|
c20 := c[2][0];
|
|
|
|
c21 := c[2][1];
|
|
|
|
|
|
|
|
FNrFunctions := 0;
|
|
|
|
|
|
|
|
if (vars[0] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Linear;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[1] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Sinusoidal;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[2] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Spherical;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[3] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Swirl;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[4] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Horseshoe;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[5] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Polar;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[6] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := FoldedHandkerchief;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[7] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Heart;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[8] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Disc;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[9] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Spiral;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[10] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Hyperbolic;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[11] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Square;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[12] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Ex;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[13] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Julia;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[14] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Bent;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[15] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Waves;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[16] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Fisheye;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[17] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Popcorn;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[18] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Exponential;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[19] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Power;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[20] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Cosine;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[21] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Rings;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[22] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Fan;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
2005-04-02 05:53:22 -05:00
|
|
|
if (vars[23] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Triblob;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
if (vars[24] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := Daisy;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
|
|
|
|
{$IFDEF TESTVARIANT}
|
|
|
|
if (vars[NVARS -1] <> 0.0) then begin
|
|
|
|
FFunctionList[FNrFunctions] := TestVar;
|
|
|
|
Inc(FNrFunctions);
|
|
|
|
end;
|
|
|
|
{$ENDIF}
|
|
|
|
|
2005-03-25 03:35:39 -05:00
|
|
|
CalculateAngle := (vars[5] <> 0.0) or (vars[6] <> 0.0) or (vars[7] <> 0.0) or (vars[8] <> 0.0) or
|
|
|
|
(vars[12] <> 0.0) or (vars[13] <> 0.0) or (vars[21] <> 0.0) or (vars[22] <> 0.0);
|
|
|
|
CalculateLength := False;
|
|
|
|
CalculateSinCos := (vars[4] <> 0.0) or (vars[9] <> 0.0) or (vars[10] <> 0.0) or
|
|
|
|
(vars[11] <> 0.0) or (vars[16] <> 0.0) or (vars[19] <> 0.0) or
|
|
|
|
(vars[21] <> 0.0);
|
|
|
|
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Linear;
|
|
|
|
begin
|
|
|
|
FPx := FPx + vars[0] * FTx;
|
|
|
|
FPy := FPy + vars[0] * FTy;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Sinusoidal;
|
|
|
|
begin
|
|
|
|
FPx := FPx + vars[1] * sin(FTx);
|
|
|
|
FPy := FPy + vars[1] * sin(FTy);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Spherical;
|
|
|
|
var
|
|
|
|
r2: double;
|
|
|
|
begin
|
|
|
|
r2 := FTx * FTx + FTy * FTy + 1E-6;
|
|
|
|
FPx := FPx + vars[2] * (FTx / r2);
|
|
|
|
FPy := FPy + vars[2] * (FTy / r2);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Swirl;
|
|
|
|
var
|
|
|
|
c1, c2, r2: double;
|
|
|
|
begin
|
|
|
|
r2 := FTx * FTx + FTy * FTy;
|
|
|
|
c1 := sin(r2);
|
|
|
|
c2 := cos(r2);
|
|
|
|
FPx := FPx + vars[3] * (c1 * FTx - c2 * FTy);
|
|
|
|
FPy := FPy + vars[3] * (c2 * FTx + c1 * FTy);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Horseshoe;
|
|
|
|
//var
|
|
|
|
// a, c1, c2: double;
|
|
|
|
begin
|
|
|
|
// if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
// a := arctan2(FTx, FTy)
|
|
|
|
// else
|
|
|
|
// a := 0.0;
|
|
|
|
// c1 := sin(FAngle);
|
|
|
|
// c2 := cos(FAngle);
|
|
|
|
FPx := FPx + vars[4] * (FSinA * FTx - FCosA * FTy);
|
|
|
|
FPy := FPy + vars[4] * (FCosA* FTx + FSinA * FTy);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Polar;
|
|
|
|
var
|
|
|
|
ny: double;
|
|
|
|
begin
|
|
|
|
ny := sqrt(FTx * FTx + FTy * FTy) - 1.0;
|
|
|
|
FPx := FPx + vars[5] * (FAngle/PI);
|
|
|
|
FPy := FPy + vars[5] * ny;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.FoldedHandkerchief;
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
begin
|
|
|
|
r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
FPx := FPx + vars[6] * sin(FAngle + r) * r;
|
|
|
|
FPy := FPy + vars[6] * cos(FAngle - r) * r;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Heart;
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
begin
|
|
|
|
r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
|
|
|
|
FPx := FPx + vars[7] * sin(FAngle * r) * r;
|
|
|
|
FPy := FPy + vars[7] * cos(FAngle * r) * -r;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Disc;
|
|
|
|
var
|
|
|
|
nx, ny, r: double;
|
|
|
|
begin
|
|
|
|
nx := FTx * PI;
|
|
|
|
ny := FTy * PI;
|
|
|
|
|
|
|
|
r := sqrt(nx * nx + ny * ny);
|
|
|
|
FPx := FPx + vars[8] * sin(r) * FAngle / PI;
|
|
|
|
FPy := FPy + vars[8] * cos(r) * FAngle / PI;
|
|
|
|
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Spiral;
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
begin
|
|
|
|
// r := sqrt(FTx * FTx + FTy * FTy) + 1E-6;
|
|
|
|
r := Flength + 1E-6;
|
|
|
|
FPx := FPx + vars[9] * (FCosA + sin(r)) / r;
|
|
|
|
FPy := FPy + vars[9] * (FsinA - cos(r)) / r;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.hyperbolic;
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
begin
|
|
|
|
// r := sqrt(FTx * FTx + FTy * FTy) + 1E-6;
|
|
|
|
r := Flength + 1E-6;
|
|
|
|
FPx := FPx + vars[10] * FSinA / r;
|
|
|
|
FPy := FPy + vars[10] * FCosA * r;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Square;
|
|
|
|
//var
|
|
|
|
// r: double;
|
|
|
|
begin
|
|
|
|
// r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
FPx := FPx + vars[11] * FSinA * cos(Flength);
|
|
|
|
FPy := FPy + vars[11] * FCosA * sin(Flength);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Ex;
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
n0,n1, m0, m1: double;
|
|
|
|
begin
|
|
|
|
r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
n0 := sin(FAngle + r);
|
|
|
|
n1 := cos(FAngle - r);
|
|
|
|
m0 := n0 * n0 * n0 * r;
|
|
|
|
m1 := n1 * n1 * n1 * r;
|
|
|
|
FPx := FPx + vars[12] * (m0 + m1);
|
|
|
|
FPy := FPy + vars[12] * (m0 - m1);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Julia;
|
|
|
|
var
|
|
|
|
a,r: double;
|
|
|
|
begin
|
|
|
|
r := Math.power(FTx * FTx + FTy * FTy, 0.25);
|
|
|
|
a := FAngle/2 + Trunc(random * 2) * PI;
|
|
|
|
FPx := FPx + vars[13] * r * cos(a);
|
|
|
|
FPy := FPy + vars[13] * r * sin(a);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Bent;
|
|
|
|
var
|
|
|
|
nx, ny: double;
|
|
|
|
begin
|
|
|
|
nx := FTx;
|
|
|
|
ny := FTy;
|
|
|
|
if (nx < 0) and (nx > -1E100) then
|
|
|
|
nx := nx * 2;
|
|
|
|
if ny < 0 then
|
|
|
|
ny := ny / 2;
|
|
|
|
FPx := FPx + vars[14] * nx;
|
|
|
|
FPy := FPy + vars[14] * ny;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Waves;
|
|
|
|
var
|
|
|
|
dx,dy,nx,ny: double;
|
|
|
|
begin
|
|
|
|
dx := c20;
|
|
|
|
dy := c21;
|
|
|
|
nx := FTx + c10 * sin(FTy / ((dx * dx) + EPS));
|
|
|
|
ny := FTy + c11 * sin(FTx / ((dy * dy) + EPS));
|
|
|
|
FPx := FPx + vars[15] * nx;
|
|
|
|
FPy := FPy + vars[15] * ny;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Fisheye;
|
|
|
|
var
|
|
|
|
{ a,} r: double;
|
|
|
|
begin
|
|
|
|
// r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
// a := arctan2(FTx, FTy);
|
|
|
|
// r := 2 * r / (r + 1);
|
|
|
|
r := 2 * Flength / (Flength + 1);
|
|
|
|
FPx := FPx + vars[16] * r * FCosA;
|
|
|
|
FPy := FPy + vars[16] * r * FSinA;
|
|
|
|
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Popcorn;
|
|
|
|
var
|
|
|
|
dx, dy: double;
|
|
|
|
nx, ny: double;
|
|
|
|
begin
|
|
|
|
dx := tan(3 * FTy);
|
|
|
|
if (dx <> dx) then
|
|
|
|
dx := 0.0; // < probably won't work in Delphi
|
|
|
|
dy := tan(3 * FTx); // NAN will raise an exception...
|
|
|
|
if (dy <> dy) then
|
|
|
|
dy := 0.0; // remove for speed?
|
|
|
|
nx := FTx + c20 * sin(dx);
|
|
|
|
ny := FTy + c21 * sin(dy);
|
|
|
|
FPx := FPx + vars[17] * nx;
|
|
|
|
FPy := FPy + vars[17] * ny;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Exponential;
|
|
|
|
var
|
|
|
|
dx, dy: double;
|
|
|
|
begin
|
|
|
|
dx := exp(FTx)/ 2.718281828459045;
|
|
|
|
dy := PI * FTy;
|
|
|
|
FPx := FPx + vars[18] * cos(dy) * dx;
|
|
|
|
FPy := FPy + vars[18] * sin(dy) * dx;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Power;
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
// nx, ny: double;
|
|
|
|
begin
|
|
|
|
// r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
// sa := sin(FAngle);
|
|
|
|
r := Math.Power(FLength, FSinA);
|
|
|
|
// nx := r * FCosA;
|
|
|
|
// ny := r * FSinA;
|
|
|
|
FPx := FPx + vars[19] * r * FCosA;
|
|
|
|
FPy := FPy + vars[19] * r * FSinA;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Cosine;
|
|
|
|
var
|
|
|
|
nx, ny: double;
|
|
|
|
begin
|
|
|
|
nx := cos(FTx * PI) * cosh(FTy);
|
|
|
|
ny := -sin(FTx * PI) * sinh(FTy);
|
|
|
|
FPx := FPx + vars[20] * nx;
|
|
|
|
FPy := FPy + vars[20] * ny;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Rings;
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
dx: double;
|
|
|
|
begin
|
|
|
|
dx := sqr(c20) + EPS;
|
|
|
|
r := FLength;
|
|
|
|
r := r + dx - System.Int((r + dx)/(2 * dx)) * 2 * dx - dx + r * (1-dx);
|
|
|
|
|
|
|
|
FPx := FPx + vars[21] * r * cos(FAngle);
|
|
|
|
FPy := FPy + vars[21] * r * sin(FAngle);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Fan;
|
|
|
|
var
|
|
|
|
r,t,a : double;
|
|
|
|
dx, dy, dx2: double;
|
|
|
|
begin
|
|
|
|
dy := c21;
|
|
|
|
dx := PI * (sqr(c20) + EPS);
|
|
|
|
dx2 := dx/2;
|
|
|
|
|
|
|
|
r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
|
|
|
|
t := FAngle+dy - System.Int((FAngle + dy)/dx) * dx;
|
|
|
|
if (t > dx2) then
|
|
|
|
a := FAngle - dx2
|
|
|
|
else
|
|
|
|
a := FAngle + dx2;
|
|
|
|
|
|
|
|
FPx := FPx + vars[22] * r * cos(a);
|
|
|
|
FPy := FPy + vars[22] * r * sin(a);
|
|
|
|
end;
|
|
|
|
|
2005-04-02 05:53:22 -05:00
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Triblob;
|
|
|
|
var
|
|
|
|
r : double;
|
|
|
|
Angle: double;
|
|
|
|
begin
|
|
|
|
r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
Angle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
Angle := 0.0;
|
|
|
|
|
|
|
|
r := r * (0.6 + 0.4 * sin(3 * Angle));
|
|
|
|
|
|
|
|
FPx := FPx + vars[23] * r * cos(Angle);
|
|
|
|
FPy := FPy + vars[23] * r * sin(Angle);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Daisy;
|
|
|
|
var
|
|
|
|
r : double;
|
|
|
|
Angle: double;
|
|
|
|
begin
|
|
|
|
r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
Angle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
Angle := 0.0;
|
|
|
|
|
|
|
|
// r := r * (0.6 + 0.4 * sin(3 * Angle));
|
|
|
|
r := r * sin(5 * Angle);
|
|
|
|
|
|
|
|
FPx := FPx + vars[24] * r * cos(Angle);
|
|
|
|
FPy := FPy + vars[24] * r * sin(Angle);
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.TestVar;
|
|
|
|
var
|
|
|
|
r : double;
|
|
|
|
// dx, dy, dx2: double;
|
|
|
|
Angle: double;
|
|
|
|
begin
|
|
|
|
r := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
Angle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
Angle := 0.0;
|
|
|
|
|
|
|
|
// r := r * (0.6 + 0.4 * sin(3 * Angle));
|
|
|
|
r := r * sin(5 * Angle);
|
|
|
|
|
|
|
|
FPx := FPx + vars[NVARS-1] * r * cos(Angle);
|
|
|
|
FPy := FPy + vars[NVARS-1] * r * sin(Angle);
|
|
|
|
end;
|
|
|
|
|
2005-03-25 03:35:39 -05:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.NextPoint(var px,py,pc: double);
|
|
|
|
var
|
|
|
|
i: Integer;
|
|
|
|
begin
|
|
|
|
// first compute the color coord
|
|
|
|
pc := (pc + color) * 0.5 * (1 - symmetry) + symmetry * pc;
|
|
|
|
|
|
|
|
FTx := c00 * px + c10 * py + c20;
|
|
|
|
FTy := c01 * px + c11 * py + c21;
|
|
|
|
|
|
|
|
if CalculateAngle then begin
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
FAngle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
FAngle := 0.0;
|
|
|
|
end;
|
|
|
|
|
|
|
|
if CalculateSinCos then begin
|
|
|
|
Flength := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
if FLength = 0 then begin
|
|
|
|
FSinA := 0;
|
|
|
|
FCosA := 0;
|
|
|
|
end else begin
|
|
|
|
FSinA := FTx/FLength;
|
|
|
|
FCosA := FTy/FLength;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
// if CalculateLength then begin
|
|
|
|
// FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
// end;
|
|
|
|
|
|
|
|
Fpx := 0;
|
|
|
|
Fpy := 0;
|
|
|
|
|
|
|
|
for i := 0 to FNrFunctions - 1 do
|
|
|
|
FFunctionList[i];
|
|
|
|
|
|
|
|
px := FPx;
|
|
|
|
py := FPy;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.NextPoint(var CPpoint: TCPpoint);
|
|
|
|
var
|
|
|
|
i: Integer;
|
|
|
|
begin
|
|
|
|
// first compute the color coord
|
|
|
|
CPpoint.c := (CPpoint.c + color) * 0.5 * (1 - symmetry) + symmetry * CPpoint.c;
|
|
|
|
|
|
|
|
FTx := c00 * CPpoint.x + c10 * CPpoint.y + c20;
|
|
|
|
FTy := c01 * CPpoint.x + c11 * CPpoint.y + c21;
|
|
|
|
|
|
|
|
if CalculateAngle then begin
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
FAngle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
FAngle := 0.0;
|
|
|
|
end;
|
|
|
|
|
|
|
|
if CalculateSinCos then begin
|
|
|
|
Flength := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
if FLength = 0 then begin
|
|
|
|
FSinA := 0;
|
|
|
|
FCosA := 1;
|
|
|
|
end else begin
|
|
|
|
FSinA := FTx/FLength;
|
|
|
|
FCosA := FTy/FLength;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
// if CalculateLength then begin
|
|
|
|
// FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
// end;
|
|
|
|
|
|
|
|
Fpx := 0;
|
|
|
|
Fpy := 0;
|
|
|
|
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
|
|
FFunctionList[i];
|
|
|
|
|
|
|
|
CPpoint.x := FPx;
|
|
|
|
CPpoint.y := FPy;
|
|
|
|
end;
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.NextPoint(var px, py, pz, pc: double);
|
|
|
|
var
|
|
|
|
i: Integer;
|
|
|
|
tpx, tpy: double;
|
|
|
|
begin
|
|
|
|
// first compute the color coord
|
|
|
|
pc := (pc + color) * 0.5 * (1 - symmetry) + symmetry * pc;
|
|
|
|
|
|
|
|
case Orientationtype of
|
|
|
|
1:
|
|
|
|
begin
|
|
|
|
tpx := px;
|
|
|
|
tpy := pz;
|
|
|
|
end;
|
|
|
|
2:
|
|
|
|
begin
|
|
|
|
tpx := py;
|
|
|
|
tpy := pz;
|
|
|
|
end;
|
|
|
|
else
|
|
|
|
tpx := px;
|
|
|
|
tpy := py;
|
|
|
|
end;
|
|
|
|
|
|
|
|
FTx := c00 * tpx + c10 * tpy + c20;
|
|
|
|
FTy := c01 * tpx + c11 * tpy + c21;
|
|
|
|
|
|
|
|
if CalculateAngle then begin
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
FAngle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
FAngle := 0.0;
|
|
|
|
end;
|
|
|
|
if CalculateLength then begin
|
|
|
|
FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
end;
|
|
|
|
|
|
|
|
Fpx := 0;
|
|
|
|
Fpy := 0;
|
|
|
|
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
|
|
FFunctionList[i];
|
|
|
|
|
|
|
|
case Orientationtype of
|
|
|
|
1:
|
|
|
|
begin
|
|
|
|
px := FPx;
|
|
|
|
pz := FPy;
|
|
|
|
end;
|
|
|
|
2:
|
|
|
|
begin
|
|
|
|
py := FPx;
|
|
|
|
pz := FPy;
|
|
|
|
end;
|
|
|
|
else
|
|
|
|
px := FPx;
|
|
|
|
py := FPy;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.NextPoint2C(var px, py, pc1, pc2: double);
|
|
|
|
var
|
|
|
|
i: Integer;
|
|
|
|
begin
|
|
|
|
// first compute the color coord
|
|
|
|
pc1 := (pc1 + color) * 0.5 * (1 - symmetry) + symmetry * pc1;
|
|
|
|
pc2 := (pc2 + color) * 0.5 * (1 - symmetry) + symmetry * pc2;
|
|
|
|
|
|
|
|
FTx := c00 * px + c10 * py + c20;
|
|
|
|
FTy := c01 * px + c11 * py + c21;
|
|
|
|
|
|
|
|
if CalculateAngle then begin
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
FAngle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
FAngle := 0.0;
|
|
|
|
end;
|
|
|
|
// if CalculateLength then begin
|
|
|
|
// FLength := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
// end;
|
|
|
|
|
|
|
|
Fpx := 0;
|
|
|
|
Fpy := 0;
|
|
|
|
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
|
|
FFunctionList[i];
|
|
|
|
|
|
|
|
px := FPx;
|
|
|
|
py := FPy;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.NextPointXY(var px, py: double);
|
|
|
|
var
|
|
|
|
i: integer;
|
|
|
|
begin
|
|
|
|
FTx := c00 * px + c10 * py + c20;
|
|
|
|
FTy := c01 * px + c11 * py + c21;
|
|
|
|
|
|
|
|
if CalculateAngle then begin
|
|
|
|
if (FTx < -EPS) or (FTx > EPS) or (FTy < -EPS) or (FTy > EPS) then
|
|
|
|
FAngle := arctan2(FTx, FTy)
|
|
|
|
else
|
|
|
|
FAngle := 0.0;
|
|
|
|
end;
|
|
|
|
|
|
|
|
if CalculateSinCos then begin
|
|
|
|
Flength := sqrt(FTx * FTx + FTy * FTy);
|
|
|
|
if FLength = 0 then begin
|
|
|
|
FSinA := 0;
|
|
|
|
FCosA := 0;
|
|
|
|
end else begin
|
|
|
|
FSinA := FTx/FLength;
|
|
|
|
FCosA := FTy/FLength;
|
|
|
|
end;
|
|
|
|
end;
|
|
|
|
|
|
|
|
Fpx := 0;
|
|
|
|
Fpy := 0;
|
|
|
|
|
|
|
|
for i:= 0 to FNrFunctions-1 do
|
|
|
|
FFunctionList[i];
|
|
|
|
|
|
|
|
px := FPx;
|
|
|
|
py := FPy;
|
|
|
|
end;
|
|
|
|
|
2005-03-27 08:28:52 -05:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
function TXForm.Mul33(const M1, M2: TMatrix): TMatrix;
|
|
|
|
begin
|
|
|
|
result[0, 0] := M1[0][0] * M2[0][0] + M1[0][1] * M2[1][0] + M1[0][2] * M2[2][0];
|
|
|
|
result[0, 1] := M1[0][0] * M2[0][1] + M1[0][1] * M2[1][1] + M1[0][2] * M2[2][1];
|
|
|
|
result[0, 2] := M1[0][0] * M2[0][2] + M1[0][1] * M2[1][2] + M1[0][2] * M2[2][2];
|
|
|
|
result[1, 0] := M1[1][0] * M2[0][0] + M1[1][1] * M2[1][0] + M1[1][2] * M2[2][0];
|
|
|
|
result[1, 1] := M1[1][0] * M2[0][1] + M1[1][1] * M2[1][1] + M1[1][2] * M2[2][1];
|
|
|
|
result[1, 2] := M1[1][0] * M2[0][2] + M1[1][1] * M2[1][2] + M1[1][2] * M2[2][2];
|
|
|
|
result[2, 0] := M1[2][0] * M2[0][0] + M1[2][1] * M2[1][0] + M1[2][2] * M2[2][0];
|
|
|
|
result[2, 0] := M1[2][0] * M2[0][1] + M1[2][1] * M2[1][1] + M1[2][2] * M2[2][1];
|
|
|
|
result[2, 0] := M1[2][0] * M2[0][2] + M1[2][1] * M2[1][2] + M1[2][2] * M2[2][2];
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
function TXForm.Identity: TMatrix;
|
|
|
|
var
|
|
|
|
i, j: integer;
|
|
|
|
begin
|
|
|
|
for i := 0 to 2 do
|
|
|
|
for j := 0 to 2 do
|
|
|
|
Result[i, j] := 0;
|
|
|
|
Result[0][0] := 1;
|
|
|
|
Result[1][1] := 1;
|
|
|
|
Result[2][2] := 1;
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Rotate(const degrees: double);
|
|
|
|
var
|
|
|
|
r: double;
|
|
|
|
Matrix, M1: TMatrix;
|
|
|
|
begin
|
|
|
|
r := degrees * pi / 180;
|
|
|
|
M1 := Identity;
|
|
|
|
M1[0, 0] := cos(r);
|
|
|
|
M1[0, 1] := -sin(r);
|
|
|
|
M1[1, 0] := sin(r);
|
|
|
|
M1[1, 1] := cos(r);
|
|
|
|
Matrix := Identity;
|
|
|
|
|
|
|
|
Matrix[0][0] := c[0, 0];
|
|
|
|
Matrix[0][1] := c[0, 1];
|
|
|
|
Matrix[1][0] := c[1, 0];
|
|
|
|
Matrix[1][1] := c[1, 1];
|
|
|
|
Matrix[0][2] := c[2, 0];
|
|
|
|
Matrix[1][2] := c[2, 1];
|
|
|
|
Matrix := Mul33(Matrix, M1);
|
|
|
|
c[0, 0] := Matrix[0][0];
|
|
|
|
c[0, 1] := Matrix[0][1];
|
|
|
|
c[1, 0] := Matrix[1][0];
|
|
|
|
c[1, 1] := Matrix[1][1];
|
|
|
|
c[2, 0] := Matrix[0][2];
|
|
|
|
c[2, 1] := Matrix[1][2];
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Translate(const x, y: double);
|
|
|
|
var
|
|
|
|
Matrix, M1: TMatrix;
|
|
|
|
begin
|
|
|
|
M1 := Identity;
|
|
|
|
M1[0, 2] := x;
|
|
|
|
M1[1, 2] := y;
|
|
|
|
Matrix := Identity;
|
|
|
|
|
|
|
|
Matrix[0][0] := c[0, 0];
|
|
|
|
Matrix[0][1] := c[0, 1];
|
|
|
|
Matrix[1][0] := c[1, 0];
|
|
|
|
Matrix[1][1] := c[1, 1];
|
|
|
|
Matrix[0][2] := c[2, 0];
|
|
|
|
Matrix[1][2] := c[2, 1];
|
|
|
|
Matrix := Mul33(Matrix, M1);
|
|
|
|
c[0, 0] := Matrix[0][0];
|
|
|
|
c[0, 1] := Matrix[0][1];
|
|
|
|
c[1, 0] := Matrix[1][0];
|
|
|
|
c[1, 1] := Matrix[1][1];
|
|
|
|
c[2, 0] := Matrix[0][2];
|
|
|
|
c[2, 1] := Matrix[1][2];
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Multiply(const a, b, c, d: double);
|
|
|
|
var
|
|
|
|
Matrix, M1: TMatrix;
|
|
|
|
begin
|
|
|
|
M1 := Identity;
|
|
|
|
M1[0, 0] := a;
|
|
|
|
M1[0, 1] := b;
|
|
|
|
M1[1, 0] := c;
|
|
|
|
M1[1, 1] := d;
|
|
|
|
Matrix := Identity;
|
|
|
|
Matrix[0][0] := Self.c[0, 0];
|
|
|
|
Matrix[0][1] := Self.c[0, 1];
|
|
|
|
Matrix[1][0] := Self.c[1, 0];
|
|
|
|
Matrix[1][1] := Self.c[1, 1];
|
|
|
|
Matrix[0][2] := Self.c[2, 0];
|
|
|
|
Matrix[1][2] := Self.c[2, 1];
|
|
|
|
Matrix := Mul33(Matrix, M1);
|
|
|
|
Self.c[0, 0] := Matrix[0][0];
|
|
|
|
Self.c[0, 1] := Matrix[0][1];
|
|
|
|
Self.c[1, 0] := Matrix[1][0];
|
|
|
|
Self.c[1, 1] := Matrix[1][1];
|
|
|
|
Self.c[2, 0] := Matrix[0][2];
|
|
|
|
Self.c[2, 1] := Matrix[1][2];
|
|
|
|
end;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
procedure TXForm.Scale(const s: double);
|
|
|
|
var
|
|
|
|
Matrix, M1: TMatrix;
|
|
|
|
begin
|
|
|
|
M1 := Identity;
|
|
|
|
M1[0, 0] := s;
|
|
|
|
M1[1, 1] := s;
|
|
|
|
Matrix := Identity;
|
|
|
|
Matrix[0][0] := c[0, 0];
|
|
|
|
Matrix[0][1] := c[0, 1];
|
|
|
|
Matrix[1][0] := c[1, 0];
|
|
|
|
Matrix[1][1] := c[1, 1];
|
|
|
|
Matrix[0][2] := c[2, 0];
|
|
|
|
Matrix[1][2] := c[2, 1];
|
|
|
|
Matrix := Mul33(Matrix, M1);
|
|
|
|
c[0, 0] := Matrix[0][0];
|
|
|
|
c[0, 1] := Matrix[0][1];
|
|
|
|
c[1, 0] := Matrix[1][0];
|
|
|
|
c[1, 1] := Matrix[1][1];
|
|
|
|
c[2, 0] := Matrix[0][2];
|
|
|
|
c[2, 1] := Matrix[1][2];
|
|
|
|
end;
|
|
|
|
|
2005-04-02 05:53:22 -05:00
|
|
|
|
2005-03-27 08:28:52 -05:00
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2005-03-25 03:35:39 -05:00
|
|
|
end.
|