Add buffer write support

pull/6/head
Bradlee Speice 2019-10-05 20:28:35 -04:00
parent 8174f0cde1
commit 9373f04b48
4 changed files with 284 additions and 90 deletions

View File

@ -14,6 +14,7 @@ maintenance = { status = "actively-developed" }
[dependencies]
aeron_driver-sys = { path = "./aeron_driver-sys" }
memmap = "0.7"
num = "0.2"
[dev-dependencies]
clap = "2.33"

View File

@ -26,8 +26,8 @@ impl<'a> AtomicBuffer<'a> {
AtomicBuffer { buffer }
}
fn bounds_check<T>(&self, offset: IndexT) -> Result<()> {
if offset < 0 || self.buffer.len() - (offset as usize) < size_of::<T>() {
fn bounds_check(&self, offset: IndexT, size: IndexT) -> Result<()> {
if offset < 0 || size < 0 || self.buffer.len() as IndexT - offset < size {
Err(AeronError::OutOfBounds)
} else {
Ok(())
@ -39,52 +39,164 @@ impl<'a> AtomicBuffer<'a> {
where
T: Sized,
{
self.bounds_check::<T>(offset).map(|_| {
let offset_ptr = unsafe { self.buffer.as_ptr().offset(offset as isize) };
unsafe { &*(offset_ptr as *const T) }
})
self.bounds_check(offset, size_of::<T>() as IndexT)
.map(|_| {
let offset_ptr = unsafe { self.buffer.as_ptr().offset(offset as isize) };
unsafe { &*(offset_ptr as *const T) }
})
}
fn overlay_volatile<T>(&self, offset: IndexT) -> Result<T>
where
T: Copy,
{
self.bounds_check::<T>(offset).map(|_| {
let offset_ptr = unsafe { self.buffer.as_ptr().offset(offset as isize) };
unsafe { read_volatile(offset_ptr as *const T) }
})
self.bounds_check(offset, size_of::<T>() as IndexT)
.map(|_| {
let offset_ptr = unsafe { self.buffer.as_ptr().offset(offset as isize) };
unsafe { read_volatile(offset_ptr as *const T) }
})
}
fn write_volatile<T>(&mut self, offset: IndexT, val: T) -> Result<()>
where
T: Copy,
{
self.bounds_check::<T>(offset).map(|_| {
let offset_ptr = unsafe { self.buffer.as_mut_ptr().offset(offset as isize) };
unsafe { write_volatile(offset_ptr as *mut T, val) };
})
self.bounds_check(offset, size_of::<T>() as IndexT)
.map(|_| {
let offset_ptr = unsafe { self.buffer.as_mut_ptr().offset(offset as isize) };
unsafe { write_volatile(offset_ptr as *mut T, val) };
})
}
/// Atomically fetch the current value at an offset, and increment by delta
///
/// ```rust
/// # use aeron_rs::client::concurrent::atomic_buffer::AtomicBuffer;
/// # use aeron_rs::util::AeronError;
/// let mut bytes = [0u8; 9];
/// let mut buffer = AtomicBuffer::wrap(&mut bytes);
///
/// // Simple case modifies only the first byte
/// assert_eq!(buffer.get_and_add_i64(0, 1), Ok(0));
/// assert_eq!(buffer.get_and_add_i64(0, 0), Ok(1));
///
/// // Using an offset modifies the second byte
/// assert_eq!(buffer.get_and_add_i64(1, 1), Ok(0));
/// assert_eq!(buffer.get_and_add_i64(1, 0), Ok(1));
///
/// // An offset of 2 means buffer size must be 10 to contain an `i64`
/// assert_eq!(buffer.get_and_add_i64(2, 0), Err(AeronError::OutOfBounds));
/// ```
pub fn get_and_add_i64(&self, offset: IndexT, delta: i64) -> Result<i64> {
self.overlay::<AtomicI64>(offset)
.map(|a| a.fetch_add(delta, Ordering::SeqCst))
}
/// Perform a volatile read
///
/// ```rust
/// # use aeron_rs::client::concurrent::atomic_buffer::AtomicBuffer;
/// let mut bytes = [12, 0, 0, 0, 0, 0, 0, 0];
/// let buffer = AtomicBuffer::wrap(&mut bytes);
///
/// assert_eq!(buffer.get_i64_volatile(0), Ok(12));
/// ```
pub fn get_i64_volatile(&self, offset: IndexT) -> Result<i64> {
// QUESTION: Would it be better to express this in terms of an atomic read?
self.overlay_volatile::<i64>(offset)
}
/// Perform a volatile write into the buffer
/// Perform a volatile read
///
/// ```rust
/// # use aeron_rs::client::concurrent::atomic_buffer::AtomicBuffer;
/// let mut bytes = [12, 0, 0, 0];
/// let buffer = AtomicBuffer::wrap(&mut bytes);
///
/// assert_eq!(buffer.get_i32_volatile(0), Ok(12));
/// ```
pub fn get_i32_volatile(&self, offset: IndexT) -> Result<i32> {
self.overlay_volatile::<i32>(offset)
}
/// Perform a volatile write of an `i64` into the buffer
///
/// ```rust
/// # use aeron_rs::client::concurrent::atomic_buffer::AtomicBuffer;
/// let mut bytes = [0u8; 8];
/// let mut buffer = AtomicBuffer::wrap(&mut bytes);
///
/// buffer.put_i64_ordered(0, 12);
/// assert_eq!(buffer.get_i64_volatile(0), Ok(12));
/// ```
pub fn put_i64_ordered(&mut self, offset: IndexT, val: i64) -> Result<()> {
// QUESTION: Would it be better to have callers use `write_volatile` directly
self.write_volatile::<i64>(offset, val)
}
/// Perform a volatile write of an `i32` into the buffer
///
/// ```rust
/// # use aeron_rs::client::concurrent::atomic_buffer::AtomicBuffer;
/// let mut bytes = [0u8; 4];
/// let mut buffer = AtomicBuffer::wrap(&mut bytes);
///
/// buffer.put_i32_ordered(0, 12);
/// assert_eq!(buffer.get_i32_volatile(0), Ok(12));
/// ```
pub fn put_i32_ordered(&mut self, offset: IndexT, val: i32) -> Result<()> {
// QUESTION: Would it be better to have callers use `write_volatile` directly
self.write_volatile::<i32>(offset, val)
}
/// Write the contents of one buffer to another. Does not perform any synchronization.
///
/// ```rust
/// # use aeron_rs::client::concurrent::atomic_buffer::AtomicBuffer;
/// let mut source_bytes = [1u8, 2, 3, 4];
/// let source = AtomicBuffer::wrap(&mut source_bytes);
///
/// let mut dest_bytes = [0, 0, 0, 0];
/// let mut dest = AtomicBuffer::wrap(&mut dest_bytes);
///
/// dest.put_bytes(1, &source, 1, 3);
/// drop(dest);
/// assert_eq!(dest_bytes, [0u8, 2, 3, 4]);
/// ```
pub fn put_bytes(
&mut self,
index: IndexT,
source: &AtomicBuffer,
source_index: IndexT,
len: IndexT,
) -> Result<()> {
self.bounds_check(index, len)?;
source.bounds_check(source_index, len)?;
let index = index as usize;
let source_index = source_index as usize;
let len = len as usize;
self.buffer[index..index + len].copy_from_slice(&source[source_index..source_index + len]);
Ok(())
}
/// Compare an expected value with what is in memory, and if it matches,
/// update to a new value. Returns `Ok(true)` if the update was successful,
/// and `Ok(false)` if the update failed.
///
/// ```rust
/// # use aeron_rs::client::concurrent::atomic_buffer::AtomicBuffer;
/// let mut buf = [0u8; 8];
/// let atomic_buf = AtomicBuffer::wrap(&mut buf);
/// // Set value to 1
/// atomic_buf.get_and_add_i64(0, 1).unwrap();
///
/// // Set value to 1 if existing value is 0
/// assert_eq!(atomic_buf.compare_and_set_i64(0, 0, 1), Ok(false));
/// // Set value to 2 if existing value is 1
/// assert_eq!(atomic_buf.compare_and_set_i64(0, 1, 2), Ok(true));
/// assert_eq!(atomic_buf.get_i64_volatile(0), Ok(2));
/// ```
pub fn compare_and_set_i64(&self, offset: IndexT, expected: i64, update: i64) -> Result<bool> {
// QUESTION: Do I need a volatile and atomic read here?
// Aeron C++ uses a volatile read before the atomic operation, but I think that
@ -126,46 +238,6 @@ mod tests {
assert_eq!(value, (*a).load(Ordering::SeqCst));
}
#[test]
fn atomic_i64_increment() {
let mut buf = [16, 0, 0, 0, 0, 0, 0, 0];
let atomic_buf = AtomicBuffer::wrap(&mut buf[..]);
assert_eq!(atomic_buf.get_and_add_i64(0, 1), Ok(16));
assert_eq!(atomic_buf.get_and_add_i64(0, 0), Ok(17));
}
#[test]
fn atomic_i64_increment_offset() {
let mut buf = [0, 16, 0, 0, 0, 0, 0, 0, 0];
let atomic_buf = AtomicBuffer::wrap(&mut buf[..]);
assert_eq!(atomic_buf.get_and_add_i64(1, 1), Ok(16));
assert_eq!(atomic_buf.get_and_add_i64(1, 0), Ok(17));
}
#[test]
fn out_of_bounds() {
let mut buf = [16, 0, 0, 0, 0, 0, 0];
let atomic_buf = AtomicBuffer::wrap(&mut buf);
assert_eq!(
atomic_buf.get_and_add_i64(0, 0),
Err(AeronError::OutOfBounds)
);
}
#[test]
fn out_of_bounds_offset() {
let mut buf = [16, 0, 0, 0, 0, 0, 0, 0];
let atomic_buf = AtomicBuffer::wrap(&mut buf);
assert_eq!(
atomic_buf.get_and_add_i64(1, 0),
Err(AeronError::OutOfBounds)
);
}
#[test]
fn negative_offset() {
let mut buf = [16, 0, 0, 0, 0, 0, 0, 0];
@ -175,25 +247,4 @@ mod tests {
Err(AeronError::OutOfBounds)
)
}
#[test]
fn put_i64() {
let mut buf = [0u8; 8];
let mut atomic_buf = AtomicBuffer::wrap(&mut buf);
atomic_buf.put_i64_ordered(0, 12).unwrap();
assert_eq!(atomic_buf.get_i64_volatile(0), Ok(12))
}
#[test]
fn compare_set_i64() {
let mut buf = [0u8; 8];
let atomic_buf = AtomicBuffer::wrap(&mut buf);
atomic_buf.get_and_add_i64(0, 1).unwrap();
assert_eq!(atomic_buf.compare_and_set_i64(0, 0, 1), Ok(false));
assert_eq!(atomic_buf.compare_and_set_i64(0, 1, 2), Ok(true));
assert_eq!(atomic_buf.get_i64_volatile(0), Ok(2));
}
}

View File

@ -1,12 +1,13 @@
//! Ring buffer wrapper for communicating with the Media Driver
use crate::client::concurrent::atomic_buffer::AtomicBuffer;
use crate::util::{AeronError, IndexT, Result};
use crate::util::{bit, AeronError, IndexT, Result};
/// Description of the Ring Buffer schema.
pub mod buffer_descriptor {
use crate::client::concurrent::atomic_buffer::AtomicBuffer;
use crate::util::bit::is_power_of_two;
use crate::util::AeronError::IllegalArgument;
use crate::util::{is_power_of_two, IndexT, Result, CACHE_LINE_LENGTH};
use crate::util::{IndexT, Result, CACHE_LINE_LENGTH};
// QUESTION: Why are these offsets so large when we only ever use i64 types?
@ -57,12 +58,17 @@ pub mod buffer_descriptor {
/// +---------------------------------------------------------------+
/// ```
pub mod record_descriptor {
use crate::util::IndexT;
use std::mem::size_of;
use crate::util::Result;
use crate::util::{AeronError, IndexT};
/// Size of the ring buffer record header.
pub const HEADER_LENGTH: IndexT = size_of::<i32>() as IndexT * 2;
/// Alignment size of records written to the buffer
pub const ALIGNMENT: IndexT = HEADER_LENGTH;
/// Message type indicating to the media driver that space has been reserved,
/// and is not yet ready for processing.
pub const PADDING_MSG_TYPE_ID: i32 = -1;
@ -73,16 +79,36 @@ pub mod record_descriptor {
// Smells like Java.
((i64::from(msg_type_id) & 0xFFFF_FFFF) << 32) | (i64::from(length) & 0xFFFF_FFFF)
}
/// Verify a message type identifier is safe for use
pub fn check_msg_type_id(msg_type_id: i32) -> Result<()> {
if msg_type_id < 1 {
Err(AeronError::IllegalArgument)
} else {
Ok(())
}
}
/// Fetch the offset to begin writing a message payload
pub fn encoded_msg_offset(record_offset: IndexT) -> IndexT {
record_offset + HEADER_LENGTH
}
/// Fetch the offset to begin writing the message length
pub fn length_offset(record_offset: IndexT) -> IndexT {
record_offset
}
}
/// Multi-producer, single-consumer ring buffer implementation.
pub struct ManyToOneRingBuffer<'a> {
buffer: AtomicBuffer<'a>,
capacity: IndexT,
max_msg_length: IndexT,
tail_position_index: IndexT,
head_cache_position_index: IndexT,
head_position_index: IndexT,
_correlation_id_counter_index: IndexT,
correlation_id_counter_index: IndexT,
}
impl<'a> ManyToOneRingBuffer<'a> {
@ -91,17 +117,65 @@ impl<'a> ManyToOneRingBuffer<'a> {
buffer_descriptor::check_capacity(&buffer).map(|capacity| ManyToOneRingBuffer {
buffer,
capacity,
max_msg_length: capacity / 8,
tail_position_index: capacity + buffer_descriptor::TAIL_POSITION_OFFSET,
head_cache_position_index: capacity + buffer_descriptor::HEAD_CACHE_POSITION_OFFSET,
head_position_index: capacity + buffer_descriptor::HEAD_POSITION_OFFSET,
_correlation_id_counter_index: capacity + buffer_descriptor::CORRELATION_COUNTER_OFFSET,
correlation_id_counter_index: capacity + buffer_descriptor::CORRELATION_COUNTER_OFFSET,
})
}
/// Atomically retrieve the next correlation identifier. Used as a unique identifier for
/// interactions with the Media Driver
pub fn next_correlation_id(&self) -> i64 {
// UNWRAP: Known-valid offset calculated during initialization
self.buffer
.get_and_add_i64(self.correlation_id_counter_index, 1)
.unwrap()
}
/// Write a message into the ring buffer
pub fn write(
&mut self,
msg_type_id: i32,
source: &AtomicBuffer,
source_index: IndexT,
length: IndexT,
) -> Result<()> {
record_descriptor::check_msg_type_id(msg_type_id)?;
self.check_msg_length(length)?;
let record_len = length + record_descriptor::HEADER_LENGTH;
let required = bit::align(record_len, record_descriptor::ALIGNMENT);
let record_index = self.claim_capacity(required)?;
// UNWRAP: `claim_capacity` performed bounds checking
self.buffer
.put_i64_ordered(
record_index,
record_descriptor::make_header(-length, msg_type_id),
)
.unwrap();
// UNWRAP: `claim_capacity` performed bounds checking
self.buffer
.put_bytes(
record_descriptor::encoded_msg_offset(record_index),
source,
source_index,
length,
)
.unwrap();
// UNWRAP: `claim_capacity` performed bounds checking
self.buffer
.put_i32_ordered(record_descriptor::length_offset(record_index), record_len)
.unwrap();
Ok(())
}
/// Claim capacity for a specific message size in the ring buffer. Returns the offset/index
/// at which to start writing the next record.
// TODO: Shouldn't be `pub`, just trying to avoid warnings
pub fn claim_capacity(&mut self, required: IndexT) -> Result<IndexT> {
fn claim_capacity(&mut self, required: IndexT) -> Result<IndexT> {
// QUESTION: Is this mask how we handle the "ring" in ring buffer?
// Would explain why we assert buffer capacity is a power of two during initialization
let mask = self.capacity - 1;
@ -199,15 +273,27 @@ impl<'a> ManyToOneRingBuffer<'a> {
Ok(tail_index)
}
fn check_msg_length(&self, length: IndexT) -> Result<()> {
if length > self.max_msg_length {
Err(AeronError::IllegalArgument)
} else {
Ok(())
}
}
}
#[cfg(test)]
mod tests {
use crate::client::concurrent::atomic_buffer::AtomicBuffer;
use crate::client::concurrent::ring_buffer::ManyToOneRingBuffer;
use crate::client::concurrent::ring_buffer::{
buffer_descriptor, record_descriptor, ManyToOneRingBuffer,
};
use crate::util::IndexT;
use std::mem::size_of;
#[test]
fn basic_claim_space() {
fn claim_capacity_basic() {
let buf_size = super::buffer_descriptor::TRAILER_LENGTH as usize + 64;
let mut buf = vec![0u8; buf_size];
@ -225,4 +311,31 @@ mod tests {
let write_start = ring_buf.claim_capacity(16).unwrap();
assert_eq!(write_start, 16);
}
#[test]
fn write_basic() {
let mut bytes = vec![0u8; 512 + buffer_descriptor::TRAILER_LENGTH as usize];
let buffer = AtomicBuffer::wrap(&mut bytes);
let mut ring_buffer = ManyToOneRingBuffer::wrap(buffer).expect("Invalid buffer size");
let mut source_bytes = [12, 0, 0, 0, 0, 0, 0, 0];
let source_len = source_bytes.len() as IndexT;
let source_buffer = AtomicBuffer::wrap(&mut source_bytes);
let type_id = 1;
ring_buffer
.write(type_id, &source_buffer, 0, source_len)
.unwrap();
drop(ring_buffer);
let buffer = AtomicBuffer::wrap(&mut bytes);
let record_len = source_len + record_descriptor::HEADER_LENGTH;
assert_eq!(
buffer.get_i64_volatile(0).unwrap(),
record_descriptor::make_header(record_len, type_id)
);
assert_eq!(
buffer.get_i64_volatile(size_of::<i64>() as IndexT).unwrap(),
12
);
}
}

View File

@ -6,11 +6,6 @@
// QUESTION: Can this just be updated to be `usize` in Rust?
pub type IndexT = i32;
/// Helper method for quick verification that `IndexT` is a positive power of two
pub fn is_power_of_two(idx: IndexT) -> bool {
idx > 0 && (idx as u32).is_power_of_two()
}
/// Length of the data blocks used by the CPU cache sub-system in bytes
pub const CACHE_LINE_LENGTH: usize = 64;
@ -28,3 +23,37 @@ pub enum AeronError {
/// Result type for operations in the Aeron client
pub type Result<T> = ::std::result::Result<T, AeronError>;
/// Bit-level utility functions
pub mod bit {
use crate::util::IndexT;
use num::PrimInt;
/// Helper method for quick verification that `IndexT` is a positive power of two
///
/// ```rust
/// # use aeron_rs::util::bit::is_power_of_two;
/// assert!(is_power_of_two(16));
/// assert!(!is_power_of_two(17));
/// ```
pub fn is_power_of_two(idx: IndexT) -> bool {
idx > 0 && (idx as u32).is_power_of_two()
}
/// Align a specific value to the next largest alignment size.
///
/// ```rust
/// # use aeron_rs::util::bit::align;
/// assert_eq!(align(7, 8), 8);
///
/// // Not intended for alignments that aren't powers of two
/// assert_eq!(align(52, 12), 52);
/// assert_eq!(align(52, 16), 64);
/// ```
pub fn align<T>(val: T, alignment: T) -> T
where
T: PrimInt,
{
(val + (alignment - T::one())) & !(alignment - T::one())
}
}