Implement reading from a ring buffer

pull/14/head
Bradlee Speice 2019-10-26 16:31:16 -04:00
parent 83e95b18d9
commit 6c3b2a9c0a
2 changed files with 161 additions and 9 deletions

View File

@ -108,6 +108,11 @@ impl<'a> AtomicBuffer<'a> {
self.overlay_volatile::<i64>(offset)
}
/// Get the current value at an offset without using any synchronization operations
pub fn get_i64(&self, offset: IndexT) -> Result<i64> {
self.overlay::<i64>(offset).map(|i| *i)
}
/// Perform a volatile read
///
/// ```rust
@ -121,6 +126,11 @@ impl<'a> AtomicBuffer<'a> {
self.overlay_volatile::<i32>(offset)
}
/// Get the current value at an offset without using any synchronization operations
pub fn get_i32(&self, offset: IndexT) -> Result<i32> {
self.overlay::<i32>(offset).map(|i| *i)
}
/// Perform a volatile write of an `i64` into the buffer
///
/// ```rust
@ -200,7 +210,7 @@ impl<'a> AtomicBuffer<'a> {
/// assert_eq!(atomic_buf.get_i64_volatile(0), Ok(2));
/// ```
pub fn compare_and_set_i64(&self, offset: IndexT, expected: i64, update: i64) -> Result<bool> {
// QUESTION: Do I need a volatile and atomic read here?
// QUESTION: Should I use a volatile read here as well?
// Aeron C++ uses a volatile read before the atomic operation, but I think that
// may be redundant. In addition, Rust's `read_volatile` operation returns a
// *copied* value; running `compare_exchange` on that copy introduces a race condition
@ -210,6 +220,16 @@ impl<'a> AtomicBuffer<'a> {
.is_ok()
})
}
/// Repeatedly write a value into an atomic buffer. Guaranteed to use `memset`.
pub fn set_memory(&mut self, offset: IndexT, length: usize, value: u8) -> Result<()> {
self.bounds_check(offset, length as IndexT).map(|_| unsafe {
self.buffer
.as_mut_ptr()
.offset(offset as isize)
.write_bytes(value, length)
})
}
}
#[cfg(test)]

View File

@ -1,5 +1,6 @@
//! Ring buffer wrapper for communicating with the Media Driver
use crate::client::concurrent::atomic_buffer::AtomicBuffer;
use crate::util::bit::align;
use crate::util::{bit, AeronError, IndexT, Result};
/// Description of the Ring Buffer schema.
@ -74,15 +75,13 @@ pub mod record_descriptor {
/// and is not yet ready for processing.
pub const PADDING_MSG_TYPE_ID: i32 = -1;
/// Retrieve the header bits for a ring buffer record.
pub fn make_header(length: i32, msg_type_id: i32) -> i64 {
pub(super) fn make_header(length: i32, msg_type_id: i32) -> i64 {
// QUESTION: Instead of masking, can't we just cast and return u32/u64?
// Smells like Java.
((i64::from(msg_type_id) & 0xFFFF_FFFF) << 32) | (i64::from(length) & 0xFFFF_FFFF)
}
/// Verify a message type identifier is safe for use
pub fn check_msg_type_id(msg_type_id: i32) -> Result<()> {
pub(super) fn check_msg_type_id(msg_type_id: i32) -> Result<()> {
if msg_type_id < 1 {
Err(AeronError::IllegalArgument)
} else {
@ -90,15 +89,21 @@ pub mod record_descriptor {
}
}
/// Fetch the offset to begin writing a message payload
pub fn encoded_msg_offset(record_offset: IndexT) -> IndexT {
pub(super) fn encoded_msg_offset(record_offset: IndexT) -> IndexT {
record_offset + HEADER_LENGTH
}
/// Fetch the offset to begin writing the message length
pub fn length_offset(record_offset: IndexT) -> IndexT {
pub(super) fn length_offset(record_offset: IndexT) -> IndexT {
record_offset
}
pub(super) fn record_length(header: i64) -> i32 {
header as i32
}
pub(super) fn message_type_id(header: i64) -> i32 {
(header >> 32) as i32
}
}
/// Multi-producer, single-consumer ring buffer implementation.
@ -174,6 +179,71 @@ impl<'a> ManyToOneRingBuffer<'a> {
Ok(())
}
/// Read messages from the ring buffer and dispatch to `handler`, up to `message_count_limit`
pub fn read<F>(&mut self, mut handler: F, message_count_limit: usize) -> Result<usize>
where
F: FnMut(i32, &AtomicBuffer, IndexT, IndexT) -> (),
{
// UNWRAP: Bounds check performed during buffer creation
let head = self.buffer.get_i64(self.head_position_index).unwrap();
let head_index = (head & i64::from(self.capacity - 1)) as i32;
let contiguous_block_length = self.capacity - head_index;
let mut messages_read = 0;
let mut bytes_read: i32 = 0;
let result: Result<()> = (|| {
while bytes_read < contiguous_block_length && messages_read < message_count_limit {
let record_index = head_index + bytes_read;
let header = self.buffer.get_i64_volatile(record_index)?;
let record_length = record_descriptor::record_length(header);
if record_length <= 0 {
break;
}
bytes_read += align(
record_length as usize,
record_descriptor::ALIGNMENT as usize,
) as i32;
let msg_type_id = record_descriptor::message_type_id(header);
if msg_type_id == record_descriptor::PADDING_MSG_TYPE_ID {
// QUESTION: Is this a spinlock on a writer finishing?
continue;
}
messages_read += 1;
handler(
msg_type_id,
&self.buffer,
record_descriptor::encoded_msg_offset(record_index),
record_length - record_descriptor::HEADER_LENGTH,
);
}
Ok(())
})();
// C++ has much better semantics for handling cleanup like this; however, because
// it would require us to capture a mutable reference to self, it's not feasible
// in Rust (since the main operation also needs mutable access to self).
let mut cleanup = || {
if bytes_read != 0 {
self.buffer
.set_memory(head_index, bytes_read as usize, 0)
.unwrap();
self.buffer
.put_i64_ordered(self.head_position_index, head + i64::from(bytes_read))
.unwrap();
}
};
result.map(|_| cleanup()).map_err(|e| {
cleanup();
e
})?;
Ok(messages_read)
}
/// Claim capacity for a specific message size in the ring buffer. Returns the offset/index
/// at which to start writing the next record.
fn claim_capacity(&mut self, required: IndexT) -> Result<IndexT> {
@ -337,4 +407,66 @@ mod tests {
12
);
}
#[test]
fn read_basic() {
// Similar to write basic, put something into the buffer
let mut bytes = vec![0u8; 512 + buffer_descriptor::TRAILER_LENGTH as usize];
let buffer = AtomicBuffer::wrap(&mut bytes);
let mut ring_buffer = ManyToOneRingBuffer::wrap(buffer).expect("Invalid buffer size");
let mut source_bytes = [12, 0, 0, 0, 0, 0, 0, 0];
let source_len = source_bytes.len() as IndexT;
let source_buffer = AtomicBuffer::wrap(&mut source_bytes);
let type_id = 1;
ring_buffer
.write(type_id, &source_buffer, 0, source_len)
.unwrap();
// Now we can start the actual read process
let c = |_, buf: &AtomicBuffer, offset, _| {
assert_eq!(buf.get_i64_volatile(offset).unwrap(), 12)
};
ring_buffer.read(c, 1).unwrap();
// Make sure that the buffer was zeroed on finish
drop(ring_buffer);
let buffer = AtomicBuffer::wrap(&mut bytes);
for i in (0..record_descriptor::ALIGNMENT * 1).step_by(4) {
assert_eq!(buffer.get_i32(i).unwrap(), 0);
}
}
#[test]
fn read_multiple() {
let mut bytes = vec![0u8; 512 + buffer_descriptor::TRAILER_LENGTH as usize];
let buffer = AtomicBuffer::wrap(&mut bytes);
let mut ring_buffer = ManyToOneRingBuffer::wrap(buffer).expect("Invalid buffer size");
let mut source_bytes = [12, 0, 0, 0, 0, 0, 0, 0];
let source_len = source_bytes.len() as IndexT;
let source_buffer = AtomicBuffer::wrap(&mut source_bytes);
let type_id = 1;
ring_buffer
.write(type_id, &source_buffer, 0, source_len)
.unwrap();
ring_buffer
.write(type_id, &source_buffer, 0, source_len)
.unwrap();
let mut msg_count = 0;
let c = |_, buf: &AtomicBuffer, offset, _| {
msg_count += 1;
assert_eq!(buf.get_i64_volatile(offset).unwrap(), 12);
};
ring_buffer.read(c, 2).unwrap();
assert_eq!(msg_count, 2);
// Make sure that the buffer was zeroed on finish
drop(ring_buffer);
let buffer = AtomicBuffer::wrap(&mut bytes);
for i in (0..record_descriptor::ALIGNMENT * 2).step_by(4) {
assert_eq!(buffer.get_i32(i).unwrap(), 0);
}
}
}